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Introductory fluid mechanics

Torenbeek & Wittenberg Chs 2 & 3
Anderson Ch 2

Dimensions and units in fluid mechanics

A dimension is a qualitative aspect of a physical variable (e.g. mass, length, time, force, pressure).
A system of units is a way of assigning numerical values to a given quantity of a physical variable.

The quality and quantity of a physical entity (i.e. its dimension and amount) stays the same as we
change the system of units, but the numerical value that gets assigned can change.

E.g. 10m or 32.81ft describes the same quantity of length using two different unit systems.

We only need a small number of primary quantities to describe problems in mechanics.
We work with mass, length, time and temperature (other choices are possible) and use Sl units:

Quantity Dimension SI Unit
Mass [M] kg
Length (L] m
Time [T] (Notsymbol for temperature variable, T.) s
Temperature 0] K

Note the use of the [ ] operator to signify the dimensions of a quantity.
Quantities may be dimensionless (e.g. angles), expressed as [1].

The dimensions of derived quantities such as area, pressure can all be expressed in terms of the
primary quantities raised to some power. Sometimes names are given to the units of the derived
quantities (e.g. Pascal for pressure) — just as a kind of shorthand — this has no effect on the dimensions.

[pressure] = [force/area] = [massxacceleration/area] = [MLT-2/L2] = [M/LT2]
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Dimensions of variables and equations in fluid mechanics

Examples of derived quantities with dimensions and Sl units.

Quantity

Area
Volume
Velocity
Acceleration
Density p
Force

Pressure, stress

Frequency
Angle

Angular velocity

Energy, work
Power
Specific heat,
Viscosity

gas constant

Kinematic viscosity v = u/p

Diffusivity

Dimension
[L?]

[L?]

[LT']
[LT?]
[ML~?]
[MLT_Q]

[ML-1T2]

[T

m/s

m/s?

kg/m3

N = kgm/s?

Pa = N/m? = kg/(m.s?)
Hz=1/s

rad (dimensionless)
rad/s

J=Nm

W =17/s
m?/(s*.K)

Pa.s = kg/(m.s)
m?/s

m?/s

An apparently simple but far-reaching truth is that equations in mechanics have to have
dimensional as well as numerical equality.

For example, take F=ma. Obviously the numerical values should agree, but also the dimensions will.
[Fl=[ma], i.e. [MLT-2] = [M x LT-2]. ¥/ This property is called dimensional homogeneity.

A very useful check if you rearrange any equation in mechanics is to ensure the equation still has
dimensional homogeneity. If it doesn’t, you made a mistake.

You should always state the units as well as numerical value of any calculation. E.g. F =134 N.

We will typically work
in Sl units but always
in this area one has to
convert between
British Engineering
System and Sl units,
owing to the fact that
international aviation
agreements adopted
measurement of
distance in nautical
miles, altitude in feet.
Also, many texts use
non-SI unit systems.

Unit conversion factors

British Engineering

Conversion factor
(Multiply British

System SI Engineening system
Quantity unit unit to get SI value)
Length ft m 0.3048
Mile 5280 ft 1.609 km
Nautical mile (NM) 6080 ft 1.853 km - 1kt = 1nm/hr ~ 100 ft/min
Area 2 m 0.09290 1kt = 0.5148 m/s = 1.853 km/hr
Mass lbm kg 0.4536
slug ke 14.59 1US gal = 3.7851
1UK gal = 4.5461

Force 1bf N 4.448 UK ga 546
Pressure and 1bf/fC (psf) N/m? (Pa) 47.88 T(K) = T(°C) + 273.16
Stress 1bf/in.? (psi) kN/m? (kPa) 6.895
Density Ibnv/ft! kg/m* 16.02
Temperature difference R K 1/1.8
Specific enthalpy and Btu/lbm ki/kg 2.326

fuel heating value
Specific heat (c,, ¢,) Buw/(lbm-"R) kJ/(kg-K) 4.187
Gas constant (g.R) ft?/(s*-°R) m/(s*-K) 0.1672
Rotational speed mpm rad/s 27 /60 = 0.1047
Specific thrust (F/m) Ibf/(1bm/s) N-s/kg = m/s 9.807
Thrust specific Ibm fuelh _ Ibm mg fuel/s mg 2833

fuel consumption (§)  Ibfthrust ~ Ibf-h N thrust ~ N-s
Power hp w 745.7

Btu/hr w 0.2931

Power specific Ibm fuel/h mg/s  mg 0.1690

fuel consumption (Sp) hp W W
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Unit conversion methodology

To convert the numeric value of a physical quantity from one system of units to another is a
simple matter once we know the conversion factors for all the quantities involved.

E.qg. convert a pressure of 32 p.s.i. (Ibf/in2) to Pa (N/m?).

. Ibf
32psi =32 —
in

o 2 N 1 x
= 32% X 44:48& X (254 > 10_3)2 E

4.448 N
(25.4 x 10-3)2 m?

=32 x

N
=32 % 6.894 x 10°—
m

kN
=32 x 6.894 — (cf. conversion factor of 6.895 in last table.)
m

= 220.6kPa

Dimensionless variables

Arising from the fact that equations in mechanics have to have dimensional as well as numerical
equality we find that we can typically reduce the number of independent variables and so number
of experiments that are needed to understand a functional relationship.

E.g. supposing we wanted to find the dependence of pressure drop per unit length Ap; for flow
through a pipe, diameter D, at any average speed V for fluid of density p and viscosity y. We
might guess that Ap; = f(D, p, p, V)

Using the fact that this relationship must be dimensionally homogeneous we can establish that
instead of a functional relationship between five dimensional variables, there is an equivalent
relationship between only two dimensionless variables DAp, . (pVD)

Ap, Ap, pV?2

D, p, u— constant 'U’
This greatly reduces the number of experiments

we need to understand/describe the relationship.

Partly for this reason dimensionless variables
are very often used in fluid mechanics.

V, p, u- constant

Dependence
onV

Dependence
onD

We will see a few of the more common ones.
E.g. pVD/u is called the Reynolds number.

V D

From four experiments
B, 55 Often: Dige
- P
D, p, V- constant ratlos Of
D, V, u— constant fOYCeS

/ N
Dependence Dependence

onp onpu

To one experiment
VD
(%)
w

P [ pvD
u
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Fluids vs solids

1. Definition: Solids at rest can support a shear stress (tangential force per unit area), while
fluids cannot. Shear stress is typically given the symbol 1 (tau).

Fluids subjected to a shear stress deform continually until (if ever) the shear stress reaches

zero everywhere. However, even at rest, they can support normal stress (pressure).

Both liquids and gases are fluids. In aerospace applications we most often consider gases

(especially air). Gases are much more compressible than liquids.

while gases expand to fill a volume.

Static
deflection

)

_ Solid_

_11

Nl

Definition: Liquids will form a distinct surface and occupy a fixed volume at given pressure,

Free
surface
/

/

4

)

Liquid

/777777 LA

Fundamental variables in fluid mechanics

The four fundamental variables of aerospace fluid mechanics according to Anderson are

Density
Pressure
Temperature
Flow velocity

)

p
T

v

To which we could add a fifth, a fluid property that is principally a function of temperature

5.

Viscosity

u

Viscosity provides the linkage between fluid motion and shear stress: friction.

In reality fluids are composed of molecules in motion, but we make the continuum assumption that
length scales of interest are large enough that we can take average properties over a very large
number of molecules.

dv*

measurement volume

Batchelor

dv

Consider characterising some quantity as a function of
position in space (e.g. the density, p) at some instant in
time

Need to locally average to eliminate “statistical’ fluctuations
produced by random (e.g. Brownian) molecular motion

As the averaging volume dv increases, a value at which
statistical/molecular fluctuation is imperceptible is reached:
dv*; at this volume we have the local density

Typically dv* is very small, say of order 10-°mm3

At larger volumes, variations may start to arise owing to
spatial variation in the average value

We then can use the ideas of calculus to deal with
gradients of these averaged local properties.
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Density and pressure

Density of a substance (including a fluid, or gas) is the mass of that substance per unit volume.

If m is mass and v is volume, then [p= lim dm

dv—0 dwv
i.e. we conceptually obtain the density via the continuum assumption @
— but it is simple enough to measure the mass of a finite volume of 2

gas or liquid. &

Volume of gas

Density is a function of location in space and may vary in time, so p=p(x,y,z,) in general.

Dimensions of density are those of mass per unit volume, in Sl units this is kg/m3. The standard
density of air at sea level is 1.225 kg/m3. For comparison the density of pure water is 998kg/ms3.

Pressure is the normal (i.e. perpendicular) force per unit area (traction or stress) exerted on a surface
owing to the time rate of change of momentum of gas (or fluid) molecules impacting on the surface.

P Force per unit area

Pressure properties

Pressure is by definition a scalar, isotropic quantity.

In concept there is no difference whether the surface on which
pressure is exerted is solid or not, so it could be drawn inside
the fluid.

Pressure also exists within the surrounding fluid and in general
varies from point to point in space and in time, i.e p = p(x, y, z, 1).

ps Mo o

Pressure (as distinct from shear stress) can exist in a fluid at rest.

Dimensions of pressure are those of force per unit area: in Sl units
this is N/m2 or Pa. Another common unit is atm, 1atm = 101,325Pa.

Note the convention: positive pressure is a compressive stress.
Above atmospheric pressure Usually in aerospace engineering we work with
N absolute pressure, or pressure measured relative
Positive gauge pressure to an perfect vacuum. (Note that negative
absolute pressures cannot be obtained in fluids.)
Atmospheric pressure
T _ In day-to-day usage we typically consider pressure
Vacuum (or negft've) gauge pressure measured relative to a background value, which
Below atmospheric pressure typically is the surrounding atmospheric pressure.

| This is usually called a ‘gauge pressure’ — what
you’d measure with a differential pressure gauge.

Absolute pressures

S E.g. a typical car tyre pressure is 200kPa (gauge)

= 200 + 101.3 kPa (absolute) = 301.3kPa.

Absolute zero pressure (perfect vacuum)
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Pressure is isotropic and scalar

area = dA p1dldy

; .

| 5_‘
p2dzdy ’

—_— 1 di

z
.m | (B
/ side view I p3dzdy
b X
4 pgdzdydz

2

Consider pressure and gravitational forces acting on an infinitesimal wedge of fluid at rest.

First, suppose that p1, p2, p3s might be different — that pressure depends on direction.

Horizontal equilibrium

(p1dlsin® = padz)dy  and  dz = disiné Conclude p1 = p2

Vertical equilibrium
(p1dlcos® + pgdA = p3dz)dy and dA =daxdz/2 and dz =dlcosd

or dy dl cos Q(pl + pg dz/2 = pg) soin limdz — 0 | Conclude pP1=p3

Hence p1 = p2 = p3 = p, independent of direction.  Also p must be a scalar quantity (only 1 value needed).
l.e. it’s isotropic. But p(x, ¥, z, t) may vary in space and time!

Temperature and velocity

Temperature is a measure of the average kinetic energy of the particles (molecules) in the gas as
they move around and collide with one another.

Units of temperature in Sl are Kelvin (K), which is an absolute temperature scale. Degrees Celcius
°C are also commonly used, with the zero reference being the only difference. 0K=-273.16°C.
The standard atmosphere sea-level temperature is 288.16K (15°C).

The temperature can also vary in space (e.g. with altitude) and in time.

The velocity at any fixed point in a fluid is the velocity of an infinitesimally small volume of fluid as
it sweeps through the point.

B .
B AT Streamlines

@.4/'/ S e
N ey B e e
/\ ﬂ___,,——»—-»————v—-—v-—“—’

Rocket engine Flow over an airfoil

The velocity V(x,y,z,1) is a vector, so has three components: V=(u,v,w)(x,y,z,t) but often (and a little
incorrectly) we state a scalar value V called velocity when we really mean the speed or velocity
magnitude, i.e. V= |V |.

Dimensions of velocity are those of length divided by time. In Sl units this is m/s.
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Kinematics - flow studies related to velocity field

Rocket engine

B .
|74
———

e

Flow over an airfoil

By connecting up the local velocity vectors with lines that are locally tangential to the vector field
we draw trajectories that are called streamlines. If the flow is steady in time, these streamlines are
the same as the paths that particles (e.g. dye particles) take as they move through the fluid.

These pathlines are often used in experiments as indicators of

streamlines.

(Note that if the flow is unsteady in time, pathlines are not the same
as streamlines, but in this course we only deal with flows that are

steady - at least, on average - in time.)

— ’s,. :

FLUID MECHANIG formal description.

Flow visualization provides a great way
- to rapidly comprehend flows which
MULTIMEDIA would otherwise require a complicated

View the ‘Kinematics’ section of the
MFM DVD for more information.

i

http://www.youtube.com/watch?v=0uF9Xkoi3uk&NR=1

Viscosity and viscous stress

The viscosity of a fluid supplies the relationship between the spatial gradient of velocity and

tangential traction or shear stress.

For a solid material under shear deformation, the
shear stress (1) is proportional to shear strain Y.

____________

dvy dvy
— or T=pu—
T TR

viscosity.

T —

u is called the fluid’s  in the limit as Ay—0 we have

Txy or T=GYy
G is called the solid’s
shear modulus.

Since AvAy = AuAt where u is a velocity component

d

dy du _du
t T dy and then T—ud—y

Dimensions of viscosity are those of stress multiplied by time. Its Sl units are Pa.s or kg/(m.s).

Simply changing the viscosity can have a
dramatic effect on the nature of a flow.

In this video we see four jet-type flows
with exactly the same momentum/
buoyancy fluxes but with different

viscosities in each case.

Viscosity of air at sea level is about
18x10-¢Pa.s (i.e. very small).
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Effect of viscosity in wall boundary layers

Where it meets a solid boundary, fluid flow velocity matches that
of the wall (often taken as zero).

Moving out from the wall, local flow speeds change from the wall
speed to the free stream, or far-field speed, through a region called
the boundary layer (BL) where viscous effects are relatively strong.

The plot of flow speed vs distance from the wall is called a

velocity profile. 99% of
y free-stream

P speed.
Exampl e -f_) > http://www.youtube.com/watch?v=cUTkgZeiMow
BL é i The thickness of the BL (d) is often taken to be the distance
Velocity g U from the wall at which 99% of the free-stream speed is reached.
Profile g Boundary layers in aeronautics are typically thin (say a few cm).
P E%

Boundary layer velocity profile near a solid wall.

Flat plate BLs grow in
depth with distance
downstream.

Increasing viscosity
increases growth rate.

Viscous shear stresses are highest at the wall and trend to zero outside the BL.

Equation of state for a perfect gas

Thermodynamics tells us that for any substance, only two of the three quantities p, p, T are independent.

The implication is that e.g. p = function (o, T), which is an equation of state. The two independent
variables (arbitrary) are called the state variables.

For perfect gases (and to a very good approximation air near near the surface of the Earth is one) the
relationship is especially simple:

p
p=pRT or pP= RT where R is a constant specific to the gas in question.

4 )
Example: what is air density if the local pressure is 75 kPa
and the local temperature is -5 °C?

-5°C=273.16 -5 K=268.16 K.

o =75x108/(287.05 x 268.16) kg/m3 = 0.9743 kg/ms.
. J

You may be more familiar with the universal gas constant R = 8314 J/(kmol K), the same for all
gases — but in that case one also needs to know the molecular weight of the gas, which for air is
M=28.96 kg/(kmol). One kmol contains 6.02x1026 molecules of gas. For any gas, R=R /M.

For air, R=287.05 J/(kg K).

R 8314J/kmolK
M 28.96 kg/kmol

In thermodynamics, one often sees the symbol v for specific volume, or the volume occupied by one unit
of mass. Note that the density (mass per unit volume) is the inverse of this, i.e. p=1/v, and so pv=RT.

Rair = = 287.1 J/kgK
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Speed of sound

The speed of sound in a medium is the speed at which an infinitesimal pressure pulse propagates in it.

The speed of sound in a gas, symbol a, is related to the average molecular speed as the
molecules move around at random, v.

In turn this speed is related to the temperature of the gas, since the temperature is
proportional to the average kinetic energy per unit volume of the gas.

It follows that a o \/T .
The exact relationship can be shown to be @ = y/yRT'

where 7 is the ratio of specific heats,Cp/C',, and R is the gas constant.

For air, Y = 1.40 and R = 287.05 J/(kg K).

4 )
Example: estimate the speed of sound in air at sea level,
std atmosphere. T =288.16 K.

a =+/1.40 x 287.05 x 288.16 m/s = 340.30 m/s.
This is 1225 km/hr.

. J

The fact that this speed is finite explains why you may be
able to see a supersonic aircraft well before you hear it.

Typical fluid properties

Table 3.1 Values of the density and viscosity of several media, at normal conditions.

Medium p (kg/m3) u (Ns/m?) v (m?/s)  p/pair I/Mair V/Vair

Water 998 1.00x 1073 1.00 x 107825 549 6.67 x 1072

Air 1.21 1.82 x 1073 1.50 x 1073 1 1 1 s
Glycerine 1,260  1.50 1.19 x 1073 1,041 82,417 79.3 Wittenberg
Lubricating oil 960 0.986 1.03 x 1073793 54,176 68.7

Mercury 13,500 1.57 x 1073 1.16 x 1077 11,157 86.3 7.73 x 103

Note that the group p/p occurs so often in fluid mechanics that it is given its own name,
kinematic viscosity, and with symbol v. It is a kind of diffusivity coefficient.

v=u/p

The viscosity u is sometimes called dynamic viscosity to distinguish it from the kinematic viscosity.

T3/2
. . . e air:1.4 1 _6—P. T K
Viscosity of air (curve fit): u© 58 x 10 T 1104028 (T in K)

Density of air (gas law): =5+



T Aerodynamic forces

stream velocity is given
as a single scalar value

Ve and a direction.

Voo
Flow

Arbitrary body
in flow

p(x,y,2)
p(x,y,2)

-~
=

T(x, y,2) Flow field
V(x,y,2)
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For typical aircraft flight, almost all LIFT results from
pressure differences, while DRAG is caused by pressure
differences and tangential stresses in approximately
equal measure.

20

The flow field as described by the variables p,
p, Tand V at all points (x,),2) in space in a
region of interest completely describes the
flow.

(Secondary fluid variables like viscosity can be
defined in terms of p, p, 7).

The flow field is sufficient to define everything
about the flow, including the forces it exerts on
bodies immersed in it.

All the forces that are exerted by the fluid on
objects in it result either from normal stress,
i.e. pressure p, or tangential stress, 1.

Tangential stresses on solid bodies are
produced only by viscosity and velocity
gradients normal to the surface, while normal
stresses can result only from pressure.

To obtain the total force exerted by the body,
we integrate the surface tractions p and 1w
over the surface area of the body.

From Newton’s 3rd law, the body exerts the
same total amount of force back on the fluid.

The Earth’s atmosphere, hydrostatics and the
Standard Atmosphere model

Brandt el al. Ch 2
Torenbeek & Wittenberg Ch 2
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International Standard Atmosphere

1000
3 ) -1150
900 Do = 2116216 I/’
800F 3
00k Po = 000238 slugs/Mt

Aurora Borealis

g =1202 x1075 b sec 100
" Thermosphere

L Mesopause

—_———
Mesosphere Noctilucenit clouds

g 20} §
5 | Temperature Speed of sound Relative dynamic viscosity E
& o ) | (1hug) ; §
= & 150 125 3
< 3 e
3 § | Statosphere ————
E ; 1%: Nacveu(:sauds 30 km *_
3 : W Maximum for
“ < 70 . .
80l . :I airbreathing
sof 2 : propulsion
40 10pOpaut
) —/ 11km <
g I Efficient fan jet
cruise altitude
1 er % Cl lo-nmb
k oposphere umulo :!?u;ss 2.5 km I
sk Limit without
cabin
1 1 . .
’ Cll 02 03 04 05 06 07 08 09 10 pressurlzatlon
Relatve pressure. density and dynamic viscosity
\ 1 1 1 . 1 1 1 1 . 1 I 1 J
-100 0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Ambeent temperature, “C
L & = 1 1 L J
800 900 1000 1100 1200
Speed of sound, ft/sec
22
—— o " == - - -
1 Altitude, gravity, and hydrostatics
|
h 'C ha = absolute altitude from the centre of the earth
he = geometric (or true) altitude above sea level
7 According to Newton’s law of gravitational attraction,
>ea level) ravitational acceleration g falls with altitude
9 g9
|| P
|r=6.356766x106m ( r )2 ( r )2
\ = 2o _— = 2o
\ 80 ) Tt e
i go = 9.8065m/s? at the surface, and r = 6.356766x106m.
ed
§ Pressure in a static fluid must decrease with altitude
S as the weight of fluid to be supported falls.
s
s p *dp  Pressure force at top Consider a rectangular element with horizontal sides of
= - 4 unit length and an infinitesimal vertical height dhe.
‘ Pressure and weight forces must sum to zero.

p=p+dp+pgdhg

or dp = —pgdhg

S

This is the fundamental differential equation of hydrostatics.

Increasing altitude, hg

// p((1ydhg g 4 In principle we can integrate it to get pressure at any altitude.
b 1
// 4 ’ H .
| ’/ | Two slight problems: Note that if g and p are
: 1. g is a function of height constants, then

P . . . = —
Pressure force at bottom=p x 1 x 1 =p 2. p is a function of height Ap = —pghhe.
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Simple approximate solutions in hydrostatics
For small changes in elevation, neither gravity nor density variations are important and we can use
Ap ~ —pgAh
Example 1

How much does air pressure at the top of the Empire State Building (height = 381 m) differ from that
at ground level, assuming p = 1.225 kg/m3 ?

Ap ~ —pgAh = —1.225 x 9.8065 x 381 Pa
= —4825 Pa
This i 1825 100) % = 4.5% lower than at d level
IS IS 101325 o= 4.0/0 lOwer than at grouna level.
Example 2

What is the absolute pressure at a depth of 20 m in seawater, p = 1025 kg/m3 ?

Ap~ —pgAh = —1025 x 9.8065 x —20 Pa
= 201, 033Pa

Absolute pressure p=po+ Ap = 101,325+ 201,033 Pa
302,358

= tm = 2. t
101, 325 atm 98 atm

= 302, 358 Pa = 302.4 kPa

Altitude, gravity, and hydrostatics

1. To deal with g being a function of height, we make a change of variables.

If we set g = go (sea-level value) we can compensate by using a fictitious altitude instead of the
(true) geometric altitude for the same change in pressure. This ‘fake’ height is called_geopotential
altitude and given the symbol h.

Instead of dp = —pgdhe suppose dp = —pgodh  Fine, except we can’t yet define h.

variable constant

2 2
Since 1= go_dh we get dh = gﬁdhc Andweknew & = " hence dh=
0

" _an
g dhg g  (r+ha)? (r+ha)2 ¢

h ha r2 ) ha 1
Integrate: / dh = / ———dhg=r / ———dhg
9 0 0o (r+he)? o (0 +he)?

2 [ -1 } ha ( -1 1> ro, 1 b Now we know h, given he.
r+he r+ha L+ ha/r Recall r = 6.356766x106m

o r+hg+r

So in the calculations to follow, whenever we are given the true (geometric) altitude hg, we first
calculate the geopotential altitude h.

Because r is huge, the geometric and geopotential altitudes are always quite similar.

E.g. at hg = 9000m, h = 9000/(1+9000/6.356766x108)m = 8987m.

With regard to our differential equation dp = -pgdhg, we achieve the same effect with dp = —pgodh,
provided we define the density-dependence with height in terms of h instead of he.

This is exactly what the Standard Atmosphere model does.
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International Standard Atmosphere - 1

105

The ISA defines a set of linear
variations of absolute temperatures 100 —
with geopotential altitude h, as shown.

225.66 K

Thermosphere
as =4 X 1073 K/m

2. To deal with p being a function of
height we use the perfect gas law
o=p/RT to redefine density in terms 80

of temperature.
dp = —pgodh

p
rr &0

Mesopause

1165.66 K a3 = —4.5 X 1073 K/m

60

Mesosphere

d
@ _ 80 4

P RT Stratopause

“dp  go [Mdh
o P RJo T

282.66 K

Stratosphere

Geopotential altitude h, km

Airbreathing ~a; =3 X 1077 K/m

aircraft limit

Integrate to get pressure at any ‘ 95—
altitude. We know temperature, so 20 Supersonic
then if we need density we re-use - [ G

the perfect gas law again. Simple.

Tropopause

a; =—6.5 X 1073 K/m
|€&— Subsonicjet | 1—
cruise

Note that either the temperature is 216.66 K 288.16 K Troposphere
constant with h, or it varies linearly ( (4 Limit without pressurization | |
with a lapse rate ai. 160 200 240 280 320
Temperature, K
%0 4 .
»  RT International Standard Atmosphere - 2
Case A. Constant lapse rate layer: dT/dh = a, ’ QL\ 1 ]
with bottom temperature To, pressure po. 09 \ ~] — Speed of sound
d_ s AT g dT o8 | APt Trampae
p  RAT/dh T~ aR T 5 o7 \\\ -
T - BN The two lower levels of _|
P = 8, = 3 the Earth’s atmosphere
Po aR TO g 05 \\ N R :
g i | Pressure \\\ TI [T
P 7\ —80/aR p 7\ ~(&0/aR)-1 ;5 ' = N \\\ - Topopause
= = = and — = (— 0.3 [ Constant AN Constant
Po To o Ty 02 || 1apse rate NOING temperature
layer layer
*'I™ Troposphere
\ 4
Case B. Constant temperature layer, T=T¢ % 4 8 1z 1 20 24
starting at geopotential altitude hc where p=pc. Geopotential altitude, km
L ! | ! | ! | 1 J
@ — — gO dh 0 20 40 60 80
p RTC Geopotential altitude, thousands of feet
p &0 P _ o(—80/RTe)(h—he) P _ o(~80/RTe)(h=he)
In— =— h — he — =e\ 8 = —el780/Re e
Do RTC( ) De and e

E.g. Find all properties at geometric altitude 9000m. This is in the troposphere, case A, lapse rate -6.5x10-3 K/m.

To = 288.16K, po = 101325Pa, po = 1.225kg/m3 and go = 9.8065m/s2. R = 287.1 J/(kg.K).

At hg = 9000m, h = 9000/(1+9000/6.356766x106)m = 8987m.

T=288.16 - 8987x6.5x10-3K = 229.74K T/To = 229.74/288.16 = 0.79727. cf. Table

p = 101325 x 0.79727-9.8065/(-0.0065x287.1) Pg = 101325 x 0.30408 Pa = 30.81 kPa. 30.80 kPa v
p = 1.225 x 0.79727-9.8065/(-0.0065x287.1) - 1 kg/m3 = 1.225 x 0.38136 kg/m3 = 0.4672 kg/m3. | 0.4671 kg/m3 ¢
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Summary ISA table for geometric altitudes up to 20km

hgkm) T (°C) a/ao 6 =p/po (@ =p/po
0 15.0 1.0000  1.0000 1.0000
1 8.5 0.9887  0.8870 0.9075
2 2.0 0.9772 0.7846 0.8217
3 -4.5 0.9656  0.6920 0.7423
4 -11.0 0.9538  0.6085 0.6689
5 -17.5 0.9420 0.5334 0.6012
6 -24.0 0.9299  0.4660 0.5389
7 -30.5 0.9178 0.4057 04817 ?3(1)2211;/138;1
8 -37.0 0.9054 0.3519  0.4292 Po 1995 k e
9 435 08920 03040 03813 T o O
10 -50.0 0.8802  0.2615 0.3376 0 9 8665 m/s?
11 -56.5 0.8674  0.2240 0.2978 %’_ 2'87 16 /kg K
12 -56.5  0.8671  0.1909 0.2541 ?" 1 46 &
13 565 0.8671 01632 02171 e
14 -56.5  0.8671  0.1395 0.1856
15 -56.5 0.8671  0.1192 0.1581
16 -56.5  0.8671  0.1019 0.1356
17 -56.5 0.8671  0.0871 0.1159
18 -56.5  0.8671  0.0744 0.0990
19 -56.5  0.8671  0.0636 0.0847
20 -56.5 0.8671  0.0544 0.0724
Interpolation in tables
hg (km) T (°C)  afay  d=p/po o0 =p/m Two standard tasks with table interpolation:
0 150 1.0000 1.0000  1.0000
; gg gg??g giigzg 8221‘;’ 1. Given the independent variable (here, altitude,
3 -4.5 09656  0.6920  0.7423 hg), estimate a dependent variable (e.g. T);
4 Eg ggigg 862?2 gggﬁfg 2. Given a dependent variable (e.g. T), estimate
5 175 0. 5 6 ; .
6 940 09209 04660 0.5389 w3105 the independent variable (hg).
7 2305 0.9178  0.4057  0.4817 ’ 01325 Pa
8 -37.0 09054 0.3519  0.4292 ’;}g 1_22’51{‘;/“13 In either case, use linear interpolation,
9 -43.50.8929 03040 0.3813 T, 288.15K based on similar triangles. It’s usually
10 -50.0  0.8802  0.2615  0.3376 R : ; :
1 565 08674 0.2240 ‘997 g  9.8065m/s helpful to draw a diagram as a visual aid.
56:5 0.86 0 0.2978 Rair  287.16J/kgK
12 -56.5  0.8671 01909 0.2541 S 8
13 -56.5 0.8671  0.1632  0.2171 Tair 2 In the example below, we are given density
14 -56.5 0.8671  0.1395  0.1856 ratio 8, and want to know the altitude hp at
15 -56.5  0.8671  0.1192  0.1581 o
16 565 0.8671 01019 0.1356 which it occurs.
17 -56.5 0.8671  0.0871  0.1159
18 -56.5  0.8671  0.0744  0.0990 First, identify the bracketing values &7 and &2
19 -56.5 0.8671  0.0636  0.0847 and corresponding hy and hz, then work out a
20 -56.5 0.8671  0.0544  0.0724 . .
formula based on similar triangles.
01— Similar triangles: rearrange to solve for hp:
9
01— 0 01 — 0 01— 9
32 1-»p 1772 hy, = hy + P (hy —h
hy—hi  ha— Iy p=hit g g, (e )
hy hy By
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(simplified) International Standard Atmosphere

FLUID MECHANICS

The difference between the true and 1 T T * T T
geopotential altitudes is quite small at - ® | " | o b
typical operational heights (e.g. 0-11 km). —_ L 2 } 5 } % 4
5 g 8 3
Thus one can usually use them interchangeably = % | gm -
in calculations (i.e. assume g is a constant) and ,q° & | & | @
this is often done. X 0.5 - \ |
c -
If we re-do the previous calculations using f: } |
just the geometric altitude then we will find S _
that the differences are small. i | |
| | 1/1000 error level -
Re-estimate properties at geometric altitude 0 i | ‘ ! |
9000m assuming this also is the geopotential 0 20 40
altitude. Tropopause, case A, lapse rate Altitude [km]
-6.5x10-3 K/m.
To=288.16 K, po = 101325 Pa, po = 1.225 kg/m3 and go = 9.8065 m/s2. R =287.1 J/(kg.K).
T =288.16 - 9000x6.5x10-3K = 229.66 K (cf. previous 229.74 K)
T/To = 229.66/288.16 = 0.79699 (cf. 0.79727).
p = 101325 x 0.79699-9.8065/(-0.0065x287.1) Pg = 30.76 kPa (cf. 30.81 kPa, 0.16% error)
p =1.225 x 0.79699-9.8065/(-0.0065x287.1) - 1 Kkg/m3 = 0.4665 kPa (cf. 0.4672 kg/m3, 0.15% error)
cf. Table The temperatures, pressures and densities estimated
30.80 kPa using this approximation are always a little low, but
0.4671 kg/m?3 offen within ‘engineering error’ folerance.
30
Basic fluid mechanics
Anderson Ch 4

Torenbeek & Wittenberg Ch 3
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Introductory concepts

Streamlines are locally tangent B ve?V .
to the velocity vector field. V=V  streamiine

:
/ A C-
_/—< By definition flow cannot et i \ ;

cross a streamline. _>__—————\>

Streamlines cannot intersect except at
stagnation points where the velocity is
zero (typically, though, stagnation points are
located on solid walls where a streamline

A streamtube is a
collection of streamlines

that pass through a
simple closed curve. attaches to the wall).
Individual exit flow
streamline stream filaments . ,/”
L

Stream filaments are small stream tubes in which the :
" stream tube

flow properties may be taken as locally one-dimensional K.
(1D) - only varying along the length of the tube. ‘
inlet flow 7
Initial derivations assume flow is:
I-dimensional stream filaments = stream tubes 3 tundamental conservation laws:
Steady Conservation of mass
Inviscid/frictionless Conservation of momentum

32
Conservation of mass: continuity equation

Physical principle: mass is conserved, i.e. neither created nor destroyed.

Consider 1D steady flow in a stream tube with entry area As.
Say the area-average flow speed and density here are V4 and p1.

The amount of volume swept out by the flow through this
area in an small amount of time dt is V1A:dt.

The amount of mass carried by the flow through this area in
an small amount of time dt is dm = p1V4A1dt.

dm .
The mass flow rate through area At is then  — - =7 = p1V14;

Further downstream, the cross-sectional area of the streamtube is Az.

Since (1) the flow is steady, (2) no flow can cross the boundaries of the streamtube, and (3) mass has to
be conserved, mass has to be transported across area Az at the same rate it was transported across As.

1hy = 1hy = const. Hence (mVlAl = paVoAg = const. 10 steady continvity equaﬁon.)

Stream tube

Note that if the flow is incompressible (so density is also
constant), ViAy = Vo Ay

In general: where flow speeds up, streamtubes get
narrower.
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Continuity example - Venturi tube

Upst;eom Tap
Dogmstreom Tap
Vi / Can reasonably
e, 3 S assume 1D flow
Entrance Con;-l 0\ e Cone provided boundary
¥ \ e Flow layers are thin.
N L — &
Dl Figure 3 Venturi Tube DQ
Suppose D1= 100 mm, D2 = 40mm, V1 = 0.5 m/s
and this is a flow of water, p = 998 kg/m3. Can safely assume flow is incompressible: p1 = p2 = p.
1. What is the mass flow rate?
D2
m = pAV) = 7T41V1
7 x 0.12 _3
=998 x ———— x 0.5kg/s =998 x 7.854 x 107> x 0.5 kg/s = 3.919 kg/s

4
2. What is the volume flow rate?

Q= % = AVi = AV =7854x 1073 x 0.5m%/s = 3.927 x 102 m3/s
3. What is the speed V>?

AV = AV oAy Diy 0 6.5 % 0.5m)s — 3,125 m/s
1Vi=42Ve  or 2—A21—D%1—m><.m/s . . .

34

Conservation of momentum: Euler’s equation

area dA

Newton's 2nd law applied to steady frictionless flow

along a stream filament. p-dp/2

Pressure force, LH end <p - S}ids/?) dA = (p—dp/2)dA Str?_aﬂi_ne,\.._.
RH end (p+dp/2)dA \
Differential mass dm = pdAds \

dh dh
Component of weight force along streamline —g dmd— = —gpdA dsd— = —pgdhdA
S S

Forces along streamline dF = (p—dp/2)dA — (p + dp/2)dA — pgdhdA = —dpdA — pgdh dA
, dv

Newton’s 2nd law dF = de ‘Convective acceleration’

. . . dV dVds dV  NB: even for
Acceleration of mass owing to change of speed along streamline T VE time-steady flow!

d d
Newton2 dF = dmd—‘; = pdAds Vd—v = —dpdA—pgdhdA or pdAds V(;—V = —dpdA — pgdhdA
S S

dv dp

or pdsvgz—dp—pgdh or dp+pVdV +pgdh=0 or ?+VdV+gdh:0

Neglecting weight forces: dp = —pV dV

Euler’s equation
Increase in speed = fall in pressure.
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Normal pressure gradient and flow curvature
New+ton's 2nd law applied to steady frictionless flow but NORMAL to a streamline.

Now we consider curvature of streamlines. 13

Take s and n as orthogonal coordinates along
and normal to a streamline in a 2D flow.

Formally, since the flow is 2D, we have to
allow partial (0) derivatives of pressure but
this is not central to the development.

We take x as the out-of-plane direction.

g The local streamline radius of curvature is R. ¥
2 2
§ The flow-normal component of acceleration (centripetal) a,, = —%
~ Differential mass dm = pdndsdz
. Op dn Op dn
Forces normal to streamline dF =|p— —— |dsdz— (p+ =—— | dsdx — pg cos fdndsdx
on 2 on 2
dp
= —3—dndsdm — pg cos fdndsdx
n
V2
Newton’s 2nd Law dFf =dma, = —pdnds dxf
10 2
Rearrange —2P | geosf =
pon

R
' _ ap V2 1. Pressure decreases towards centre of curvature.
Neglecting weight forces: =y )
0 2. Pressure constant across flow if no curvature.

36

Conservation of energy: Bernoulli’s equation

P, V2

streamline

d
Euler’s equation for steady flow ?p +VdV +gdh=0

D2 dp Va ha
Integrate along streamline / —+ / Vdav + / gdh =0
p1 Vi h1

P2 d 1
or / Lo (V- V) +glha— 1) =0
p P2

1
. 1 Lo 1o
Constant density case: ;(pz —p1)+ §(V2 — Vi) +glhe —h1) =0

or  p1+ 2pVE + pghi = po + LpVE + pgha

FLUID MECHANICS

or [p + 1pV? + pgh = const.  Bernoulli’s equation J

Neglecting weight forces: p+ %pV2 = const.  Typical in aerospace applications to gas flows.

As pressure rises along a streamline in an incompressible frictionless flow, velocity must fall (and vice versa).

All terms have dimensions of energy per unit volume. This is a statement of conservation of energy.
The pressure represents stored potential energy of compression in the fluid, the ¥20V?2 terms represent
kinetic energy per unit volume, the pgz terms represent gravitational potential energy.
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Example application of Bernoulli’s equation

An aircraft is flying at an altitude of he = 10km with a speed V.. = 150 m/s.

If at a point just above the top surface of the wing, the flow speeds up above the flight speed by
20%, what is (a) the local pressure relative to the surrounding air and (b) the absolute pressure?

Assume incompressible flow and neglect any elevation change.

p,V

he =10 km —> o = 0.3376,6 = 0.2615.  (tables)

Hence p = 0.3376 x 1.225 = 0.41356kg/m?, poc = 0.2615 x 101325 = 26 496 Pa

Ans (a): —2047 Pa,

. P = 1pV2 (1 — 1.44) = —2047 Pa
(Bernoulli) p—p 2PV ) (b): 24449 Pa.

Pabs = 26496 — 2047 = 24449 Pa

Supposing the air had gained an additional altitude Ah =1 m in rising above the wing.
How much additional pressure drop would that cause?

(hydrostatics) Ap = pgAh = —0.41356 x 9.8065 x 1 = —4Pa Ans: —4 Pa.

Velocity measurement via Bernoulli’s equation

Measurement of air speed R
‘h'__ . A Pitot tube
We note that if a fluid can be brought to rest without ¢ s e
friction losses (say along a streamline that attaches to T
the leading edge of a body at a stagnation point) then i

ulli uati i i w
Bernoulli’s equation says that for incompressible flo
Open end (stagnation point)

p+3pV?=po where pois called the total pressure.

This relationship is very commonly used to estimate the freestream air speed.
A Pitot tube and a pressure gauge can be used to evaluate po. Aot 8 |

Before examining this in detail, note that all the terms in this equation have
dimensions of pressure. By convention, the different terms have different gauge
names. We just saw the total pressure. Here are all the names:

Pressure

1 2
p+ 50V = Dpo
static dynamic _ total
pressure pressure  ~ pressure

Paradoxically the name static pressure does not imply a lack of motion -
which is associated only with the total pressure (a.k.a. stagnation pressure). | .

The name dynamic pressure is a good one. PV Pitot tube mounted on a winvg.;v

Often the symbol g is used as shorthand.

S}
Il
N[

Now supposing we can simultaneously measure p and po. Then if we know p we can estimate V.
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Applications of Bernoulli’s equation

. Total pressure measured here oo js one means to do this. If we also measure

AT @ the pressure on a wall in a region where therg is no
streamline curvature, then we get a good estimate
> ey, — Z;?O of the static pressure in the free-stream, e.g. p1,
! and can then find the velocity there, say V4.

Static pressure orifice (or tapping)

> - S
i pi+3oVEi=po or V4= M

) Pitot tube
Static

pressure
measured here

FLUID MECHANICS

P Differential pressure gauge €Stimate it from the static pressure and the perfect gas law.)
Pressure tappings to obtain both the total and static pressure can be combined in one device, the
Pitot-static probe (or Pitot-static tube). There are two input ports, which can be connected to a
differential pressure gauge (e.g. a manometer).

= OTAL PRESSURE CONNECTION
Total pressu : sre
fc(l)ln;le[:'; SSUEe Sti}lc pressure felt here PR,
s s s srss CONNECTION
M/////// /// M// TIT777777777Z. I}
777 i
Pitot-static probe
= OUTER TUBE ONLY J
‘=:\d7_/
DIRECTION OF AIR FLOW
PITOT TUBE
40
Aircraft hardware related to Bernoulli’s equation
Typically aircraft use separate pitot and static tappings.
Often the static tapping is somewhere on the fuselage,
while the pitot tube may be on the wing, front of the
fuselage, or elsewhere. The integrity of both tappings,
and the associated tubes, is critical for safe flying.
Note that the static tapping may be connected to a
number of devices as well as the airspeed indicator
(e.g. to estimate altitude, vertical speed, and, in
combination with a temperature measurement could
be used to estimate the local air density).
Vertical
Speed

FLUID MECHANICS

Airspeed Indicator
Indicator  (VSI) Altimeter

$ Static Port
L L

Pitot
Heater Switch

o/
pltol e ‘ Drain ;g'nc ]
Tube™= - . &

Opening L2
Pressure [
Chamber Alternate Static Source

Crash of Air France Flight 447, 2009, thought to caused by icing of pitot
tube. 228 passengers and crew lost.

(Note we need density p, as well — if we measure T we could
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TAS and IAS (a.k.a. EAS)

Static pressure + dynawmic pressure = stagnation pressure

p+3pV:=po p+q=po po—p=q=3pV?

Now po — p is the difference obtained between the two pressure tappings of a Pitot-static combination.

If we want to estimate the true speed V we also have to know the density, p.

If o is assumed to be the ISA sea-level value, then the equivalent air speed Ve is obtained.

In an aircraft this is what is shown by the air speed indicator instrument.

The equivalent air speed is also known as the indicated air speed (IAS).

This is typically lower than the true air speed (TAS) but is very useful to the pilot
at all altitudes because it is always directly related to the dynamic pressure.

E.g.in level flight an aircraft always stalls at the same |AS, regardless of
altitude and TAS.

p—po=q=3pV:=3psLV; V=T =T 2
p p V., IAS )
V. TAS  \ pst
psiVe _ v.o_ [2a _ |20 —p) peL
pV2 ¢ PSL PSL

Applications of continuity AND Bernoulli equations

p1+ 3oV = p2 + 5pV5
Recall: piViAr = p2VoAs  and
p+ % pV? = constant along a streamline

Low speed (subsonic) wind tunnel, or flow in a duct

Settling
chamber
(reservoir)

" V,
—_ — C‘/\ﬂ { -
”m P2, A2

Ay ) A3
Test section

Nozzle Diffuser © L soon
NASA Langley Research Conter 471995 mage # EL-1906-00227

If the velocities are low (say less than 50% the speed of sound, 340.3m/s at sea level) then density
remains nearly constant. Also we work with average flow speeds at any location along the duct.

Then from the continuity equation V1A, = VoA = V343 ande.g. Vo= —V;

2
Bernoulli’s equation tells us p1+ 3oV =p2+ 3pV5 =ps+ 3pV5  and Vi = ;(m —pa) + V2

. o . 2 Ar\? 2(p1 — p2)
Now using continuity, eliminate Vi: V2 = =(p1 — p2) + () V2 Or Vp=,.| 1 B2
9 Yy 1V p(pl p2) A, 2 2 o[l = (A2/A1)7]

l.e. we can control the flow speed by influencing (o1 — p2), or estimate V2 if we know (p1— p2).
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Example application of continuity and Bernoulli equations

Upst;eom Tap
/
4 Downst T
~ ¢ et Suppose D= 100 mm, D> = 40mm, V1 = 0.5 m/s and
Vi@ . o B this is a flow of water, p = 998 kg/ms.
oS B [ s RS
Entrance Cone | n Cone
7 ‘ A SR Can safely assume flow is incompressible: p1 = p2 = p.
N — &
Figwe 3 Ventun Tube
Dl - DQ

What is the pressure difference between the upstream and the downstream pressure tappings?

We have already worked out from continuity that V> = 3.125 m/s.

Bernoulli ~ p1+ 3oV =p2+ 3pV5 i.e. p1—p2 = 5p(V5 = V)
= 0.5 x 998 x (3.125% — 0.5%) Pa
= 0.5 x 998 x 9.5156 Pa
= 4748 Pa

= 4.748 kPa

44

Integral form of momentum equation
1 dm
|
T 0

Steady 1D flow in a ___l__’______,_.ﬁ———
L L F= dF:Fext—i—Fint:m/dV:m(Vg—Vl)
|

stream filament. i P1
dv i

Newton’s 2nd law dF = dm— vy,  Nv, v
av dt [ T 7> Assuming internal forces (e.g. gravity) are zero:
= pAds— = pAV AV = dV A BLA A
8 Sdt g " M Fext:m(‘/Q_‘/l)
where 71 = const. (from continuity) r TR 2

Say Fext is caused by pressure differences on faces 1 and 2, as well as any other externally applied forces.

Foxy = p1A1 — p2Aa + Ry = m (Vo — V1)
S 4 4 4 s S
Steady flow in a larger domain with an immersed s T T T e e
body on which drag force D is exerted. g Y=V e [
i :
Domain is large enough that on the upper/lower far-field =2 Q‘, T
. . . e > V2 wake
boundaries the flow is undisturbed = 1 = 0 there. = e |
Then (Newton’s 3rd law) D = —R, r’__;; ‘Control volume’ FL—;
_ ‘e« I P22
Say, on the upstream boundary p1 = peo, Vi =V, prepe T S

Also, the downstream boundary far enough away that p2 = ps

Then D =m(V, —Va) However, the development above is for 1D flow. If V2 non-uniform on S (integrate):

D= / pV (Voo —V)dS This method is often used to estimate drag.
S

momentum deficit - only significant in wake of body where |/ 7& Vo
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Introduction to viscous laminar and turbulent flow

Torenbeek & Wittenberg Ch 3
Anderson Ch 5
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Introduction

All flows of real fluids (with viscosity) A F
show viscous (friction) effects. Exactly A: : .Osepam 4
how these are manifested depends on O flow
the flow in question. In some flows the v M
effects can be profound and completely ~— = ——r S

change the pressure distribution Frictionless flow: no drag Rl o it dree

The streamline that is right on
HOWGVGF, typ|caIIy in aeronautics, basic ShapeS are Inviscid approximation the surface slips over the surface.
streamlined (i.e. streamlines follow the shape) and in
these cases, inviscid theory (e.g. Euler, Bernoulli
equations) does a good job of predicting flow speeds
close to, and pressure acting on, the surfaces involved. Ve = V3

In these cases, the effects of viscosity are mostly confined

to thin boundary layers, where the flow speed drops 3

rapidly to zero at the solid surface. This leads to viscous gt~

shear stress on the wall, according to S— (dV) 2
y=0

|
%Vcluci(y profile through
the boundary layer

Surface

dy
The resulting skin friction is the dominant
source of drag for jet transport aircraft. anel o

Boundary layers start out very thin where flow attaches
to the body, and their thickness 6 generally increases o
downstream. (Implies 1w is largest at the attachment.)

33

¥ .|
t .&_ -
CEEIFBNIRES

S

Boundary layer
velocity profiles
around an airfoil

- flight test
data.
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Boundary layer flows, laminar and turbulent

Leading
edge

The thickness 6 of a boundary layer on a flat plate increases with streamwise distance x in a I — PVooiE
way that scales from one flow to another according to the local Reynolds number Rex:

Proceeding along the Laminar
plate, an originally well-

ordered (laminar) flow first - A

becomes unstable and TRl I .

then, turbulent.

6 is taken as the height at which
99% of freestream speed is reached.

. : v(y) | ~ “

& turbulent™.

B —

A turbulent boundary layer is better at mixing high-velocity fluid towards the
wall, making the flow profile ‘fuller’ and increasing its gradient at the wall.

v(y)

y
o) laminar A Given equal 8, V! <dV> < (dV)
v v dy y=0, laminar dy y=0, turbulent
< N5 4 - Hence | Twlaminar < 7w, turbulent  Turbulent BLs produce more drag.

Laminar boundary layers
YA Us

B
I VYVVY

Pulse of dye released

from wire passing through
boundary layer shows the /§ =
velocity profile

¥y

y‘U(y):O.QQUOC

Laminar flow past a flat plate Laminar flow past a round-nosed body

Flow is smooth and orderly.
Cross-flow communication between different layers parallel to wall occurs via molecular diffusion.

We can directly solve the equations of motion in steady flow to find velocities, thicknesses, etc.
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The process that transforms laminar to turbulent flow
(and sometimes, the reverse) is called transition.

How far downstream transition occurs (say, at
Xer) depends largely on external flow fluctuations
as well as V, p, u. External flows that slow down
in the streamwise direction promote transition at
smaller values of xcr) and vice versa.

Structure varies with distance from wall.

Turbulent boundary layers

Communication between different layers parallel to wall occurs
mainly by turbulent mixing. Note intrusions of freestream fluid.

Flow is disorderly and chaotic/random.
Characterisation (e.g. of ) requires averaging.

We cannot directly solve the equations
of motion for the time-average flow.

Boundary layers typically
make a transition from
laminar to turbulent state
going downstream.

Boundary layer flows, laminar and turbulent

>

xC’l‘

laminar

e

turbulent

-
-
-
s

——

N flat plate

Slowing external flow is associated (through Bernoulli’s equation) with a external pressure that increases
with x (i.e. dp/dx > 0). This is called an adverse pressure gradient, since we generally want to delay
transition. Conversely, external flow that get faster with x is associated with an external pressure gradient
that decreases with x (i.e. dp/dx < 0), and this situation is called a favourable pressure gradient).

We can change the external flow by varying the shape of the object on which the boundary layer grows,
and hence influence somewhat if the boundary layer will be laminar (low drag) or turbulent (higher drag).

P Pe

Fhaba

or

{- Misimam prssue

~ Point of maximum thickness

NACA 0012

L
—

c

Standard airfod

i S

02b

04

Lor

],u.n.m -
Point of maximum thickness
I
x NACA 66012

e ‘
—_—

f ¢ 1
Laminar flow airfoil

68

http://www.archive.org/details/Boundaryl ayer
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Boundary layer flows, laminar and turbulent

Laminar boundary layer on a flat plate e
V G _tn ———————————
_00__» \u = 7 4
Two quantities of great interest for BL flows are \ s 1> I
the streamwise (x) distributions of BL thickness | i\ v
8, and the shear stress at the wall, Tw. — s
NB dimensionless
. . 5.2x 6laminar 5.2
Laminar boundary layer theory gives |dlaminar = ———  OF = (recall Re, = pVox /1 )

Re, x Re,

Hence dlaminar X V& or 2 o6 —the shape of the BL boundary is parabolic, starting at the plate
| leading edge.

Tw = f(x). What is f(x)?

We already said the wall shear stress, 1w, will fall with distance along' the wall as the BL thickens.

It is typical to deal with wall shear stress in dimensionless form, too. We talk of the local skin

friction coefficient Tw Tw
C prt = —_—
0.644 0.644q5 . 1/2

Laminar boundary layer theory gives ¢y, = (laminar) or 7, = Ty X Cf, X T~

\/R—ew l.e.

Boundary layer flows, laminar and turbulent

As well as the local skin friction coefficient, we are typically interested in the total drag per unit
width, Dy, that the BL exerts on a flat plate of a given length, L. This is obtained by integration.

Veo

D}:/Ldew / tTW/J
0

L >
:/ Joo Cf, dx el 1
0
For the laminar case c¢: = % so that " = 0.644 : dix
T VRe P )y VEe
0.644q | 0.644q 1.328¢ L 1.328¢- L
D} = —~1 L T ey 2 20

T oVeeludo Vo oVelu T pVeeL/n  VERer

Vol .
where Rej, = pT is a Reynolds number defined for the overall plate length.

Define a total skin friction drag coefficient for the whole plate surface as

D’f(l) D} 1.398 . (note Captial ‘C’ here, a‘s’
Cy= A (laminar)  opposed to lower case ‘c’ used
oo oo Rer, for skin friction coefficient c.)

Note: although the total skin friction drag coefficient falls as L increases, the actual drag force increases.




FLUID MECHANICS

53

54

FLUID MECHANICS

Boundary layer flows, laminar and turbulent

Turbulent boundary layer on a flat plate Voo
Turbulent boundary layers both grow TR
more quickly than do laminar ones, and —_— |

produce more skin friction drag for the
same thickness and free-stream speed.

— —

& laminar
ST

L

L,

Unlike laminar boundary layers, there are no pure theoretical results for turbulent boundary layers, and
the relationships between variables have to be obtained experimentally.

0.37x

~ — Th 6 urbulen
6turbulent Rei/s IS Means Oturbulent X T
And 0.0592
cf, RS (turbulent)
.074
Cy =~ 0 017/5 (turbulent)
Re;!

Note: these power laws are only approximations.

Interestingly, typical overall plate length
Reynolds numbers for a switch between one
regime and the other are broadly similar to
wing chord Reynolds numbers for a range of
aircraft. This implies the switch is likely to
be an issue in many cases of practical use.
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These drag coefficients are not
large, but the drag force is still
significant for aircraft because of
large areas and speeds.
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Example: supertanker power consumption

Assuming that most of the drag on a supertanker is produced by

the immersed BL, estimate the power required to drive a tanker

which is 300m long and 50m wide at a speed of 20km/hr.
Approximate the immersed hull as a rectangular flat plate.
Sea water: p = 1025 kg/m3, y=1 x 103 Pa.s.

D = %pVZSCf
V =20/3.6m/s =5.55m/s
S =L xb=2300x50m? =15 x 10° m?
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0.006 1+~
Transition
. 0.004
( 1
e ,/ Turbulent
| /
0.002 +—
‘ Laminar
0.001 ¢ B I E— B I I
108 108 107 108 10° 1010
Reynolds number, poo Voo L/ Moo
pVL 1025 x 5.55 x 300
Rey = = =1.71 x 10°

1x10-3

We can reasonably assume the entire BL is turbulent.

0074

Cy~ —— (turbulent)
! Re}/s
0.074
Cp=——"—455=105%x10"°
(1.71 x 109)™
D= %pVQSCf

=0.5 x 1025 x 5.55% x 15 x 10°> x 1.05 x 1073 N

= 248.6 kN

P =DV =248.6 x 10> x 5.55 W = 1.38 MW
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Increasing area =
rising pressure X
—
e . . & . . S— — — — — —
Qo 19 b c d
15 E
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dogo |9 <
dx i F i

“Favourable”  “Adverse”

Separation point
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Flow separation

Flow separation occurs where boundary layer flows are unable to
conform to the shape of an object, and the flow moving in the
downstream direction ‘separates’ from the wall at a location
called a separation point (in 2D) or along a separation line (in 3D).
Downstream of a separation point, there is slow counter-current
flow near the wall.

Flow separation is a major problem in aeronautics, because it almost
invariably leads to an increase in drag. Over an otherwise streamlined
object, the freestream flow is changed, influencing pressure
distributions, often to the point that drag caused by pressure
differentials between the front and back of a body causes ‘pressure
drag’ that can greatly exceed the viscous skin friction drag.

Flow separation is very often associated with an adverse pressure
gradient — pressure increasing in the streamwise direction.

In this situation, Euler’s equation suggests that the velocity will
decrease. For fluid near the wall, velocities are already small,
and the imposed pressure gradient can eventually bring fluid
there to rest, and indeed to reverse direction - leading to
separation.

The whole process is a delicate relationship between momentum,
pressure gradients, and viscous stress.

Importantly, turbulent boundary layers are better at resisting flow
separation, since fluid near the wall tends to have more momentum
than would be the case if the flow were laminar. Perhaps surprisingly
this may lead to a lower overall drag even though the boundary layer
component can be larger.

Drag: viscous skin friction vs pressure drag

We note that drag can be created both by viscous -/—\ force
skin friction (skin friction drag) and by pressure ﬁ
differences front-to-rear (pressure drag). For 2D

bodies, BOTH these effects need viscosity to _\_/D_»
produce them — neither would be present in an ideal \/,;»

frictionless flow.

Large pressure drag is typically associated with

present in the absence of separation.

Relative drag

Separated
flow

(a) Blunt body (a.k.a. bluff body)

flow separation, although in fact it can also be ‘/\

= Separated flow
D=D;+D, p
Total drag due Drag due Drag due to
to viscous to skin separation
effects friction (pressure drag)
. o o (b) Streamlined body Code
The relative contributions of skin friction and I Skin friction drag

pressure drag depends on whether the flow has
a large or small amount of flow separation.

[] Pressure drag

Note that pressure drag is by far the dominant
component when there is a large amount of
separation (for flow around a bluff body).

Because of this a bluff body with small cross-

section (or projected area in the direction

normal to the free-stream flow) can produce the

same total amount of drag as a streamlined ot—— Wire

body of much larger projected area.

1.2. NACA 64-421 airfoil compared with a circular wire having the same drag.



. Perhaps the single most

Flow separation and stall significant flow-separation

phenomenon in aerodynamics

is the separation of flow over

_ o the top of an airfoil as angle of
a=0 o

attack a is increased.

In this case all the action

leading to flow separation

typically occurs around the

upper leading edge of the airfoil,

where the pressure gradient is

very adverse (dp/dx is very

Latactea now large) if a is significant.

a=10°

Attached flow — — — —

L separated flow Separated flow
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This separation leads
to increased drag and
a loss of lift, which is
where p,,¢ is an arbitrary reference known as the a|r‘f0|l/
pressure slightly less than the minimum . . .
pressure on the airfoil. wing/aircraft stalling.

a=20°

Note: The length of the arrows denoting
pressure is proportional to p — p_,




