Aircraft performance requirements and design

Recommended reading:

Torenbeek & Wittenberg: Chapter 6
Nicolai & Carichner: Chapter 3
Tonerbeek: Chapter 5

Brandt et al.: Chapter 5

Performance requirements — 1

Civil-aviation-type performance requirements are typically obtained from design range and payload and
standardized (international) safety regulations (which cover much more than aircraft performance).

1. Takeoff: distance required to take-off at a safe flying speed and clear a barrier (50ft/15m), with
landing gear extended, flaps in takeoff position, aircraft at maximum takeoff mass (MTOM)

2. Second-segment climb: a minimum gradient of climb, with landing gear retracted, flaps in takeoff
configuration, aircraft at MTOM and with one engine inoperative (OEI), up to 400ft.

Cruise-climb: at initial cruise height, aircraft must be able to climb another 500ft with a climb rate
of at least 300ft/min (1.5m/s).

Cruise: carry a payload over a distance (with minimum fuel use)
Missed approach: in landing configuration and at approach speed, climb at a minimum gradient.
Diversion: reserve fuel for diversion to another airport.

Landing: distance required to clear a 50ft barrier and brake to rest without thrust reversers, starting
from a safe approach speed, landing configuration.
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Military-aviation-type performance requirements are broadly similar but for combat aircraft, manoeuvre/
air-superiority/interception requirements may be added (and are often more demanding), e.g.

Minimum cruise and/or short-term dash speed, at various altitudes.

Minimum service ceiling.

Minimum acceleration at various altitudes.

Minimum time to reach a given altitude/speed (energy state) from SL.

Minimum instantaneous turn rate/radius at various altitudes.

6. Minimum sustained turn rate/radius at various altitudes.
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Combat aircraft performance requirements are often set with regard to opposing threats/aircraft.



Extract from the

Australian Civil Aviation Safety Regulations

Summary:

Australian civil aviation safety certification

Performance requirements — 2

Type of Aircraft Date accepted for Regulations that apply '
operational use by the
Armed Force
Small Before May 16,1956  Civil Air Regulations Part 3, as effective May 15 1956
reciprocating-
engine powered
acroplanes

After May 15, 1956 Civil Air Regulations Part 3, or FARs Part 23, or
CASR Part 23

Civil Air Regulations Part 3, as effective Oct.1 1959

Small turbine- Before Oct. 2, 1959

. : engine powered
regulations (CASRs) basically follow US acroplanes
i H : After Oct. 1, 1959 Civil Air Regulations Part 3, or FARs Part 23, or
Federal Airworthiness Regulations (FARs). kit
Commuter After Feb. 17, 1987 FARs Part 23, as effective Feb 17, 1987, or CASR
category Part 23
aeroplanes
Small civil aircraft FAR 23 Large Before Aug. 26,1955  Civil Air Regulations Part 4b, as effective Aug. 25,
reciprocating- 1955
Larger civil aircraft FAR 25 engine powered
acroplanes

Small civil rotorcraft | FAR 27

After Aug. 25, 1955

Civil Air Regulations Part 4b, or FARs Part 25, or
CASR Part 25

Larger civil rotorcraft

FAR 29

Large turbine Before Oct. 2, 1959

International/European regulations are

engine-powered
aeroplanes
After Oct. 1, 1959

Rotorcraft with a

called Joint Airworthiness Regulations maximum

(JARs), have same numbering as FARs.

certificated take-
off weight of:

2,722 kgorless  Before Oct. 2, 1959

Civil Air Regulations Part 4b, as effective Oct. 1, 1959

Civil Air Regulations Part 4b, or FARs Part 25, or
CASR Part 25

Civil Air Regulations Part 6, as effective Oct. 1, 1959

Over 2,722 kg

After Oct. 1, 1959

Before Oct. 2, 1959
After Oct. 1, 1959

Civil Air Regulations Part 6, or FARs Part 27, or
CASR Part 27

Civil Air Regulations Part 7, as effective Oct. 1, 1959
Civil Air Regulations Part 7, or FARs Part 29, or
CASR Part 29.

Certification performance tests

List of performance ground and flight tests required for a certificate of airworthiness

1. Calibration of pitot-static system
- with a towed static tube as a reference at low speed
- with a towed static cone as a reference at high speed
- calibration during ground runs.

2. Calibration of angle-of-attack and outside-air temperature sensors
3. Determination of stall speed and stall characteristics
4. Determination of minimum control speeds with one engine inoperative (Vyc, and Vi)

5. Determination of the take-off performance

- minimum unstick speed (V)

- rotation speed (Vy)

- lift-off speed (Vo)

- recognition time engine failure

- runway length over 35ft obstacle

- accelerate-stop length

- take-off performance with an early rotation before the established Vy
These characteristics have to be determined with

- all engines operative

- one engine inoperative (for two-engined aircraft)

- every flap setting for which the aircraft should be able to take-off

6. Landing performance over a 50 ft obstacle (for all landing flap settings)
7. Buffet-boundary at high Mach numbers

8. Climb performance in
- take-off configuration (undercarriage up and down)
- cruise configuration
- approach configuration
- landing configuration

9. Engine calibration in an altitude test facility
10. Determination of inlet and exhaust efficiency

Note:
Although the following subjects are in general not part of the basic certification procedure,
with regard to field performance tests are also performed on

- wet runways

- runways with wet snow

- the effect of failure of one of the braking devices of the aircraft

Figure 44.18 - List of performance-related ground and flight tests required for a certificate of
airworthiness of a large civil transport aircraft
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Design for performance

In most of the performance analysis to follow, we don’t usually explicitly relate aircraft weight
back to MTOW W, or explicitly relate the propulsion system output back to maximum rated
values, i.e. To or Psp.

However, when it comes to inverting the performance analysis to use for design, we will need to
do these conversion. So it is useful to remember the implicit relationships

w W
Weight W =pWy andlor - =f—

S S
Available thrust (jet) Ta = a(V, h, throttle setting)Tp

Available power (prop) | Pa = npra(V, h, throttle setting) Ps o

It is also useful to note that we generally treat the aircraft as an equivalent point mass (located
at the aircraft CG) and ignore rotational inertias and motions, as well as aircraft flexibility. These
things are of course important, but usually are not considered in aircraft initial design.

Aircraft equations of motion

First consider flight where there is no
bank angle, and all forces and motion
occur in the aircraft plane of symmetry.

The aircraft is assumed to be trimmed
so that moments sum to zero.

From flight path geometry we have
dz

T & =V cosf
iitb = h="Vsinf
Newton’s second law is Z F = d(?(?ith) = m%t/ + V% —mV +Vim~mV

Note that it is usual in aircraft performance dynamics to ignore the time rate of change of mass, except
when computing fuel consumption. This assumption may be inadequate when fuel burn rates are high,
e.g. for performance analysis of missiles.

Now we consider components tangential and normal to the flight path, leading to

dv .
Tangential m—— =T cose — D —mgsinf = mV

dt
do . ; V2 - ,
Normal mVa =Tsine+ L —mgcosf =mVH = mR— where Ry is flight path radius of curvature.
v

1%4 _ Tcose— D

(Divide tangential equation through by mg = W.) —sinf
Rearrange: g w
(Divide normal equation through by mgV.) 9 _ Tsinef+ L cosd
g Vw \%4



Note coupling of terms between

Aircraft equations of motion

Since the thrust and lift are functions of altitude and speed, the drag is additionally a function of lift, and
the fuel burn rate depends on thrust, we have a set of five ODEs to consider, four of which are coupled:

Integrate to get range T = V COS 9 (not directly coupled to the remaining four)

Drag polar Cp = Cp o + KC’%

5 ; : parabola
% % $ Integrate to geth h=Vsin6
o
"0 .
o EJ_; Integrate to get W~ W = —gct(h, V)T(h, V)
c o
i) .
0% V. T(h,V)cose—D(h,V,L) .
= E ¥ Integrate to get V — = W —sinf
w2 ’
é E g ’l ] I profile drag
© = . - Il parasite drag
o]
S %§ Integrate to get 6 o — T'(h,V)sine+ L(h, V) _ cosf [ 1l induced drag
g Vw 1% 3 G

The standard approach for most performance analysis is to obtain decoupling by assuming that
B=const., and base everything around the 4th equation in the set. i.e. the one containing the drag polar.

(Also, since ¢ is typically small or zero, cose =1 and sine —+¢.) Thus, starting with the 4th equation,

(r-oyv __ . vV d V2\ de Fundamental Performance
W —Vs1n9+Vg == h o) = at Equation

where e, the sum of potential and kinetic energies per unit weight, is called the aircraft’s specific energy
or energy height. The equation is often called the Fundamental Performance Equation and is the basis
for most performance analysis (and design for performance). The rate of change of KE is often ignored.

The term (T-D)/W is called the specific excess thrust and (T-D)V/W is called the specific excess power, i.e.
the amount of thrust/power per unit weight available to increase the aircraft’s altitude or speed, or both.

Aircraft equations of motion

L=nW In manoeuvres, we seek to change the heading of the
aircraft, and a commonly-used basis for analysis is to
assume that the aircraft executes a coordinated
horizontal banking turn of constant radius R+ and at
constant speed V.

R/

For now we will also assume that =0, and hence
that the thrust makes no direct contribution to

turning. It is simple enough to restore it if required.
W@ Note the use of the load factor n to describe the lift.
This corresponds to the increased wing bending load.
V2
Horizontal Lsing =m—— =mVw
Ry

1 1
Vertical Lecos¢p =nWcosp =W, ncosp=1, cosp=—, ¢=cos ' <>
n n

1 1 21 21
cos’p+sin?p =1, sin®¢+— =1, sin®p=1-—="—" sing="
n n n n

Substitute into horizontal component equation:

nWvy/n? — 1 gvn? —1
n

=mVw, mgvn?—1=mVw, w= v

Equivalently: Ry =
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Level unaccelerated flight

Recall

Vv
T
——

Thrust

T=D WlWeight E_B_C_D_ 1 (T) _(D> - 1
W =L W L Cp Cp/Cp W/min \L/min (CL/CD)pmax

Minimum drag, or thrust, for given weight (T/W) occurs at minimum Cp/Cy, i.e. maximum C./Cp.

Now if Cp/Cr, = Cp,o/Cr + KCf, this has a minimum where Cpo/C; = KC; i.e.

Cl=4/Cpo/K and (Cp/CL)" =21/CpoK or (Cp/Cp)* =1//4CpoK

For the case that the powerplant’s thrust is approximately

independent of speed (i.e. a jet, at cruise), a number of

questions arise: ot

1. What is the minimum thrust required to fly? § ~~~~~~~

2. What is the corresponding speed (either TAS or EAS)? E i
3. For a larger thrust, what is the speed? g e

4. What is the maximum altitude the aircraft can attain?

5. What is the speed/altitude envelope of the aircraft? g

Velocity (knots) Shevell
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Thrust and speed — 2

1. What is the minimum thrust required to fly?

T D\*
(W) _<L) =2y/CpoK, Ty =2W,/CpoK

Note that this does not depend on altitude.
Reducing W, Cp,0 or K reduces Tmin.

We recall that for this condition, the zero-lift
drag equals the induced drag:

Ch=Cpo+KC3*=Cpo+ KCpo/K =2Cpy

2. What is the minimum-thrust speed?
EAS

o WA\Y2 /1 \/2 o WA\Y2 /g \ V4
‘/ve*: _—— = _——
&5 &) -GF) @)

TAS

oW\ 1\Y? vr
V:(E?) (O_z) G

We see that minimum-drag (minimum-thrust) TAS b,

increases with altitude, while the drag stays fixed.

Also, increasing W/S or reducing C.* raises V*.
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D/D*

1
0.5v2 N =
AN

A

~

_— =

_—
—

T Vvt or Ve/Ver

Induced and parasitic drag
are equal at the minimum.

Increasing

Thrust and speed — 3

3. What is the speed for a thrust Ta > Tmin?

We see that there are two possible solutions.

Ta_D_D_(Co\'wiu? (Cp)u'+l
w W L \C 2 \C 2u?2
Rearrange:
Ta (CL\"
o (2 ) wPH1=0
U w \Cp u” +

Solve quadratic in uz:

* *q 2 1/2
2o T (e ([T (C\T |
- W \Cp W \Cp

* *m 2 1/2 1/2
oo 4T (G (T (YT,
. w CD W C'D

2W 1

1/2
TA =Vu= (22—
S V=V* (p 5 C}i) u

Alternatively (check!)

Caveat: the aircraft may stall at an
airspeed above the lesser of the two.

TA/ Tmin

—

V/V* or Ve/Ve*
u v

One can show that uijus =1

EAS V.=V u=+oV*u

1/2

V= { (Ta/W)(W/S) £ (W/S) ([Ta/W]? = 4Cp oK) " }

pCp.o
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Variation of Tr with altitude, configuration, weight

We have already seen that for a given aircraft, the 4000
drag (or thrust required to fly, Tr), does not vary with Sl
altitude (i.e. o), though the TAS for a given drag does. 5 3000 DR
©
. . . . . o
However, increasing W (i.e. W/S) at fixed altitude 3
. . T 2000
increases the minimum thrust and the speed at & 22,000 ft (0=0.498)
which that occurs. 3
£ 1000
And changing aircraft configuration (drag polar) at
fixed altitude and weight also changes things. o, - =5 = o s
Velocity (fps)
All these effects are simple consequences of - - .
Figure 3.6 Effect on T, of changing aircraft altitude (0 = p/pSL)
w w
T = = and W=L=1pv2sC
CL/Cp  CL/(Cpo+ KC2) 2P L
4000 4000
Gear Down
I 3000 S 3000
3 3
= E
T 2000 g 2000
o« o«
£ 1000 £ 1000
0 0
0 100 200 300 400 500 0 100 200 300 400 500
Velocity (fps) Velocity (fps)
Figure 3.4 [ifrf:C}‘CW T, of :?*:x'wgu'*u aircraft weight Figure 3.5 Effect on T, of changing aircraft configuration

Thrust and speed — 4

4. What is the maximum altitude the aircraft can attain?

While the thrust required does not change with altitude, the thrust available falls.

It is most convenient to plot the drag curve with Ve as abscissa, since it is the same at all altitudes.
Over this we plot the available powerplant thrust as a function of Ve and h.

The altitude at which the available thrust falls below the minimum drag is the aircraft’s ceiling.

The approach here is graphical but if we can describe/curve fit the propulsion system’s thrust lapse
with speed and altitude then we can solve the problem numerically. If we assume thrust is
independent of speed and just depends on altitude, the solution becomes quite simple.

T D

30,000 ft

- Aircraft ceiling

| 40,000 ft
| approx. 48,000ft.

<__
o
<
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Thrust and speed — 5

5. What is the speed/altitude envelope of the aircraft?

We just found the minimum and maximum EASs at each altitude. Next we convert to TAS.

While maximum EAS falls with altitude,
TAS will initially increase, then decrease.

h Ceiling

h. Recall that

Ceiling

16

Drag (Ib)

Typically there will be additional limits
imposed by Crmax/stall at low speeds and
buffet/flutter effects at high speeds.

The discussion above does not allow for

compressibility. Wave drag may also
substantially reduce maximum TAS.

24,000

22,000

20,000

18,000

16,000

14,000

12,000

10,000

8,000

6,000

35

Stall limit

Altitude
(1000 f1)

40
35

Weight = 100,000 Ib

Analysis with
compressibility

effects

8
=1

Rapid drag rise near M

Trmin independent

of altitude

Thrust and speed — 6

300 400

Velocity (knots)

>

>

500

600

I
6. Speed limitations Tx Velocity unstable : Velocity stable s
The minimum speed achievable is limited by stall, to perturbation. | to perturbation.
. . |
a nonlinear effect not accounted for in our two- .’ |
4 I
parameter drag polar. ! Stall limit !
: I
|
‘/stall — incréasing C.
% Increasing angle of attack
Ve stall = {| — — ———— = const. ==
e,sta 00 S CL . and C.
. . . reasing veloc Voo
Landing approach speeds are typically given as dncreasing yolotity o
some factor (e.g. 1.3) above Vstall. ke sl abead ket berascond
0 50 100 150 200 250 300 350
Maximum speed may be limited by aeroelastic effects % ] ] : ; ] ! %9
(maximum IAS) or by shock buffet (maximum Mach ! AN i
2 NN ' NN AN AR P A A '\ {25
number). 5 80 £ ! oA 3 2
Stall and shock buffet speeds converge as altitude s SN 3 , 3 “ 20 E
. . . e 2 5 NN AN ERNNNNNY -~
increases. This presents an operational difficulty for g 60 fiz 1 ; 5 §
high-altitude subsonic aircraft. 3 | s §“ 15 §
£ ) 3
i . R Tropopause IS NN S N 3
Finally, we note that of course we can achieve 4 & —pg'f—" ----------- { 0=
lower speeds than the maximum predicted $ A :fﬁgz:ebzp‘:ggn'i?g: 5
. . . \ I
values simply by reducing the throttle setting. 20 g “1/incidence stall and shock stall 5 *
However, most aircraft engines become rather 2
inefficient if throttled back significantly below Sea-level e
0 100 200 300 400 500 600 700

their design values.

True air speed, knots
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Power and speed — 1

If engine performance is better characterised by available power than thrust and e.g. we are interested
in minimum power required to fly, the analysis is similar but the outcomes somewhat different.

The aircraft thrust-speed curve is converted to a power-speed curve by multiplying through by velocity,

since P=TV=DV.
/
/
T, D R, DV /
) =V
/
xV /
\ /
N
AN /
= /\\ v
/// - - \“\“\R“
VTmin V VPmin V

We see that the minimum-power speed is lower than the minimum-thrust speed.

Following our previous approach for thrust-related performance we seek answers to the questions:
1. What is the minimum power required to fly?

What is the corresponding speed (either TAS or EAS)?

For a larger power, what is the speed?

What is the maximum altitude the aircraft can attain?

What is the speed/altitude envelope of the aircraft?

(Essentially an adaptation of the method used for thrust-related case.)

A
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Power and speed — 2

1. What is the minimum power required to fly? and 2. What is the corresponding speed?

9 1 3/2
P =DV =3pV?SCpV; V3= (,)stc)
L
_24Cp (W)”
p ¥ \pS

B (2 W>1/2W Cp L (2 W)1/2 Cp  Minimise power requirement
(22 7=

PG i p S c? 3/2 by flying at (C;3/2/Cp)max.
Now 02/2 _ el CL 01/2 Cr 2 01/2 Where Cr\" _ 1
cp Foop Cp) w2+u? Cp) 2 CpoK
1/ w11/2
and u:l*; V* = 2K %2: 2W SO (CL)l/ZZ%
%4 p S (ca)v pS CDO u
/ _ Constant with speed
P [2W L (Co\ w1 _ (2WN\Y2 o gaut il
w\os) oela) G (CpoK®) " —5— Minimised where
L

u=(1/3)1/4=0.760.
l.e. P/W is least when C;32/Cp is maximized, at speed V=0.760xV/*.

(At this speed, induced drag is three times larger than the zero-lift drag, and C./Cp= (3/4)1/2x(CL/Cp)max.)
Substituting in u=(1/3)74, we find that

P 256\ /* (2 W » - »
(W)min B (27> <p S ) (CpoK?) "= 1755 (p 5> (CpoK?)

1. Best to fly at minimum altitude, largest p. 2. More important to reduce K than Cp,.
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Power and speed — 3

The minimum power required (P;) to fly
increases with altitude, owing to the
p12 term. The corresponding TAS
also increases.

3. For a power larger than the minimum
required to fly, what is the speed?

Even in the case that power is
constant with speed, we have to carry
out a numerical/graphical solution of

P (2w 1 ()Tt
W \psS (02)1/2 Cr 2u

in order to obtain u.

4. What is the maximum altitude the
aircraft can attain?

The power required (P;) increases with
altitude, while the power available (Pz)
typically reduces with altitude. The

aircraft’s ceiling is at the match point.

If the available power is independent of
airspeed and is a known function of o, we
can solve directly for ceiling. Otherwise
use a numerical/graphical approach.

20
Pr
| -
1 —— -~
i -~
-
| Voo / min
|
= Tnin
| pid : Prin
| |
| // | |
| -~ : I
| .~ I I
Ve 1
V for V for Voo
maximum maximum
endurance range
Tr

.

I
|
|
|
|
|
|

e
V for V for Voo

maximum maximum

endurance range

R

Increasing
altitude _ -~
p
-~

-
-

Total =~

~— b Line of
tangency

P

Induced
power
Parasite
power

Ve Viwn) v
in max

P (hp) s

600

Aircraft ceiling
approx. 20,000ft,
st TAS approx.

// 265ft/sec.

T T T T T
50 100 150 200 250 w0 V(ftsec)

200 4 — P““m

PSFC ¢ = mass of fuel consumed per unit power per unit time.

Maximum endurance: minimise kg of fuel per second

kg fuel/sec « c x Pr.
Fly at minimum-power speed, i.e. (C.32/Cp)max.
Maximum range: minimize kg of fuel per m travelled

kg fuel/m =« (kg fuel/sec)/(m/sec) =c x Pr/ Vo =c¢ % Tg.
Fly at minimum-drag (and thrust) speed, V*, (C./Cp)max.

TSFC ¢t = mass of fuel consumed per unit thrust per unit time.
Maximum endurance: minimise kg of fuel per second

kg fuel/sec « ct x Tr.

Fly at minimum-drag (and thrust) speed, V*, (C./Cp)max.

Maximum range: minimize kg of fuel per m travelled

Now vV, =

kg fuel/m (kg fuel/sec)/(m/sec) = ¢t x Tr/ V.

w1 Tr w 1
S

2
pSCy SO Vi T ValCi/Co) ~ ¢y,

Fly at minimum power/kinetic energy speed, i.e. (C."2/Cp)max.
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Range and endurance — 2

The ratios C32/Cp =« L/DV, C./Cp = L/D and C.2/Cp =« VL/D can all be considered as functions of

dimensionless speed u=V/V* where V* is the minimum-drag speed.

We already know - T ]
L_(Cu\" 2 _(Cu) 2 - C,\2/Cy
p\e,) wrez—\G,) w1 —1.140 - = ~—
1 /’ N \__
S L 1 2  2u —0.866 —+ // < |
© DV S w1l Wt g Y ] Cu/Cy
L /’ / \\\ i
d VL 20 P /) / .~
an D Ocuu4—|—1_u4—|—1 o/ // e i
L,/ sz /0 "
//' // 0.760 1.316 C2/2/C
Plotting and then analysing these functions 0 =" b P .
we can find various useful ratios associated 0 1 2
with the maxima which are tabulated below. u=v/v
Function Dimensionless V/V*, at max (L/D)/(L/D)*, at max C./C.* at max
L/(DV) C132/Cp (1/3)174=0.760 (3/4)172=0.866 312 =1.732
L/D C./Cp 1 1 1
(VL)/D CL12/Cp (8)174=1.316 (8/4)172=0.866 (1/3)12 = 0.577
Recall: C.* = (Cp,o/K)72; (CL/Cp)* = 1/(4Cp,0K)12; V* = [(2/p)(W/S)(1/CL)]12.
Range and endurance — 3
Now we look at the specifics of estimating range and endurance.
Range; based on weight of fuel consumed per unit distance.
Wr _ d—mg— i ﬁ__&__diwg__diw:_ﬂ where R is range. Hence £=—l
z Sdtde ®dw V dtdz  dz  dR ' dW g
. W
Jet mg=gcT and T:L/—D
dR 1% 1 L1 Wi 1 Law Wil Ldw
dw gey T gy DW w, g D W w,; 8Ct DW

where Wi, is the initial, Wt is the final aircraft weight for a flight segment.
W;

1 _ L
Now assuming c;, V, L/D are all constants: R = —V —1In

g, D Wy (3/4)172 34

We already know that VL/D is largest when we fly at (C.2/Cp)max., i.e. L/D=0.866(L/D)* and V=1.316V".

27\ /* 1 L\ . 114 L\ :
16 gcy D Wy e D Wy
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Range and endurance — 4
oo oop_ 8DV eIV gcWV dR |4 Npr(L/ D)
— ocP = = = (- ) Tee\E/ )
e = 8e n Tlpr npr(L/D) and < >

pr W o mg o gCW

Npr L AW o , ner (L\°, Wi
dR=—-——"“——— : max = — | = | 1

oc D W Hence, to maximise, assuming L/D and c const: R oc \D n W,
(as originally derived by Breguet).

Endurance; based on weight of fuel consumed per unit time.
. dw dw . dE 1

mg = —-W % = 4B where E is endurance. Hence a7

Jet| mg=gc,T Then, working similarly to previously for jet range, we have

1 Ldw . 1 L, W 1 (L\", W,
dF =——=—— Assumingc:andL/Dconst: F=—_"In— By = — In —
gee D W g ger D ! Wy T g ;

geDV gV gcWV

Prop | As above: mg = gcP =

Tlpr Tlpr 7/pr(L/D)
Npr 1 L dW Npr 1 L f ) . o .
_ = = Zn 3/2/C
dFE p” p n 7 which we know is maximised when flying at (C.3/2/Cp)max,

1/4 * ]
where L/D = 0.866(L/D)", V = 0.760V*  Eyax — G-Z) "chi (%) i 3//
(3/4)172 (1/3)1/4 . .

NB: In a design problem, we will normally have the range or endurance specified and
need to find the weight fraction Wi/Wr and from this Wsuel = W; (1-W¢/W)).
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Range and endurance — 5

Optimal conditions for range and endurance all demand flying at a fixed point on the drag polar.

This leads to varying implications for optimal flight strategy as fuel is consumed and W falls.

Range, R
Type Equation Optimal flight strategy
1 LW Maximized at high altitude (high V = low p).
Jet R= gT:VB In W Fly at 1.316V*, 0.577C.*, 0.866(C./Cp)*.
¢ ! If Mpp > 1.316V*, fly at Mpp and close to C.* (CL/Cp)*.
Prop R Mo &y Independent of altitude
ge D Wy Fly at V*, C.*, (C./Cp)*.
Endurance, E
Type Equation Optimal flight strategy
Jet o 1L In Wi Independent of altitude.
gee D Wy Fly at V*, C.* (CL/Cp)*.
_ Maximized at low altitude (low V = high p).
npr 1 L WZ * * *
Prop E= w VD In W, Fly at 0.760V*, 1.732C.* 0.866(C./Cp)*.

V* reduces as W falls, h fixed near SL.



Unaccelerated climbing flight
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Climb rate and angle — 1

1. Consider an aircraft climbing at angle 8, assume thrust angle « = 0.

\ 7w dynamical equilibrium tangential to the flight path:

1% .
(T — D)V . Vo d V2 de
———— =Vsinf4+V—=—(h+— ) =—
yat [ w smo+ g dt + 2g dt

. dh Rearrange, using d(V2)/dt=2V x dV/dt An equation for

T The fundamental performance equation, obtained by
L K

D , dx and dV/dt=dV/dh x dh/dt: (weight-) specific
= B excess power.
w2 g ’ dh_ @ -D 1]

where dh/dt = Vv = VsinB is the rate of climb.
The components of forces normal to the flight path gives, when 6=const, L = Wcosf n = £ = cosf

In the simplified treatment to be given here, VxdV/dh is assumed small and cost — 1.

Using just the first of these we have Rate of

climb-Vy
4 B l Best rate of climb
_ _ est angle
Rate of climb dh =V = (I - D)V = r-Dv of climb //
dt w W /
Angle of climb W —sinf = r-p_Pr-Dv
% W wv
v
These are two related variables whose /
maxima occur at different airspeeds. / 0
// \ Raymer

*> V=V
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Climb rate and angle — 2

(T—-D)V _P-DV

W
T-D P-DV

w

Rate of climb == — y;, —
a Y
. \%4% .
Angle of climb — =sinf =
1%
Idealisation

Available

excess power

Max

Power

Minimum
power
airspeed

Drag
in level
flight

Drag

thrust

Minimum
drag

Speed

W

Power

wv

Max I
excess power

Drag

Speed
Idealisation

Engine thrust

A
Minimum
drag
airspeed

Speed

simplest to analyse if P independent of V

simplest to analyse if T independent of V

When we use idealised
approximations for propulsion
and drag we find that propeller-
driven aircraft are simplest to
analyse for rate-of climb
performance while jet-propelled

aircraft are simplest to analyse
for angle of climb.

If we also assume that cosf—1
then we find that maximum rate
of climb for a propeller-driven
aircraft occurs at the minimum-
power airspeed, while the
maximum angle of climb for a

jet-propelled aircraft occurs at
the minimum-drag airspeed.

The simplification cos6—1
generally leads to only small
errors unless T/W-1.

Climb rate and angle — 3

To make progress we unify and non-dimensionalize the treatment starting from the FPE.

We had already assumed that VxdV/dh = 0. For now we will retain cosB. Working with angle of climb:

T — D Py — DV

= sin @, thrust producing engines, or, for power-producing: AT sinf where Pa = nprPes

Say we can have either or both of thrust, power-producing engines:
pr Fes (using L = nW).
14
Now use V=uV* and D/D* = V2[u2+n2/u?], with D* = Y20V*2Sx2Cp,0:
T 1 {UQ N n? } 1L A 1
u? n D*

D 3 sinf® or equivalently u +7—
A ] I - T—— — d— T T T
in which we can set either A | L+ | }— —1- ——
or T to zero as we wish (for l —T1 T T

jet or prop). B : = T

L
+T—-D=Wsinf = - sin 0 FPE, with VxdV/dh=0.

nprPes
uV*D*

From this point we will | [
take n =1, i.e. assume
cosB—1. Typically the
resulting errors are fairly
small until 6 > 45°, see
plots:

|
=
!

Error in y (deg)

Error per cent in rate of climb

IANNN
JHAR NN

¥ (deg) y (deg)
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Climb rate and angle — 4

Jet| i.e. thrust-producing engines (A=0)

1. Climb gradient 7 —

SinB, hence 0, is maximized where V2[u2+u-?] is
minimized, which occurs when u=1:

T—1

% [u2 +u_2] = (IL)> sin 0

i

L *
T—1= (D) sinf  or Opax = sin ! [(L/D)*

(L/D)*sin®

Minimum
drag
airspeed
3r _Max gradient
iu=

2 —

: o t=3
tr =2

: Relati eefl, u
0 s H " .

! 1
5 110 =1 29 25

T =0
N \
3 F

4 L

2. Rate of climb  Tu — % [? +u™t] = (L> v where v = Vi/V* and sin@ = W/V,

D
which has a turning point at

u—\}g [74—(724—3)1/2}

Making the substitution z = 1 + (1 + 3/77)
we obtain

= )" -2

1/2

1/2

(L/Dy*v

Max rate

= )

r=2 Relati eed, u

Climb rate and angle — 5

i.e. power-producing engines (t=0)

1. Climb gradient: the gradient is given by
L\" . A1, _9
<D> sm@zafi[u +u ]
which has a turning point where
w4+ du—-1=0
requiring numerical solution.

16\ /4
The gradientiszeroat A = (27> & u= (

l.e. minimum power for level flight.

The maximum occurs for lower u as A increases

and eventually the aircraft will stall before
maximum climb gradient is reached.

2. Rate of climb: maximized where
L\" 1.os
(D) v=A— 3 [u® 4+ u™']

()"
)]

Py

has a turning pointat « =

leading to 1

(L/D)*

vmax -

~zor (1) [7

(L/D)*sin®

(L/Dy*v

- Max gradient
=f(u)

Relative speed, u
s )

0.5

Minimum
power
airspeed

3 r Max rate
fu=076

Relative speed, u
L 5

D 0.5 : 1.0 353 15 2.0 25
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Climb rate and angle — 6

1. Absolute ceiling — altitude where maximum rate of climb falls to zero.

2. Service ceiling — altitude where maximum rate of climb falls to (e.g)

100 ft/min (1kt, 0.508 m/s): JAR25 for Propeller aircraft
500 ft/min (5kt, 2.540 m/s): JAR25 for Jet aircraft

h We already know that the absolute ceiling is where the specific
&2_ _ _ Absolute ceiling excess thrust (or power, for prop) is zero in level flight.
LNL _ Service ceiling For service ceiling we have

Jet (thrust independent of speed)

(V¥ )max = [%i)ﬂ " (VTV>3/2 [l N % N 2(T/W)2(3L/D)?naxz

Prop+engine (power independent of speed)

) P 2 | K <W>1/2 1.155
V )max — - o~ | & e
0 ~ ikt (Vi) max W p\3Cpo \S (L/D)max

3 1/2
(L/D)3ax (T/W)? >

Procedure for service ceiling estimate: take one or other of these equations and solve for the
density p at which (V)max=100 ft/min, either numerically (if we have climb thrust or power as a
function of g, say) or graphically (in the more general case) Then work back to get h, from ISA.

As previously defined z =1+ (1+3/7%)1/? =1+ <1 +

It is best to compute and plot (V)max as a function of h.
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Climb rate and angle — 7

3. Time to climb to a given height can be obtained by integration.

dh dh /Wy
— =V, le dt=— 1
a Y Vv i
1
/hz dh !
t= —
% :
|
ho ha dh t = area under |
timin :/ dn tmin :/ TN curve :
h1 (VV)max 0 (VV)max J|
—| h2
Ah
Jet (note that we can include thrust variations with height and speed) Altitude h
(VW )max = (W/5)]""* 23/21—7— 3
T 8pCpe ] \W 6 2(T/W)2(L/D)2rz

Prop+engine (can include power variations with height and speed)

Voo = WP 2 | K (W Y2 1155
Vime = oW T p\[3Cpo \ S ) (L/D)max

Procedure: take one or other of these equations, and with density p at each altitude h, compute
1/(W)max. Integrate from given starting height to desired height to get tmin.




Maximum range and endurance in gliding flight

Gliding flight is a special case where there is no engine power supplied. Gravitational potential
energy is dissipated to drag power. Vv is negative and is replaced with sink speed Vs.

Force equilibrium

p W 1
L=W _ =,/ —
cos 7y Voo 55 cos Y o,

D = W sin~vy

Geometry

tan_VS_AZAt_AZ D
YTV, T AtAr Ar L

1. To maximize range for a given height loss (minimize v), maximize L/D. i.e. fly @ (CL/Cp)max

2. To maximize endurance for a given height loss (or, maximize rate of climb in rising air), minimize Vs.

B . D 1 9 S p S [(pW 1\%? (P W 1/2 32 Cp
VS—VOOSIH,Y—VOOW_VOOEPVOOWCD_§W §§COS’YC_L CD— 5? (COS’}/) W
w\? ¢
Typically, glide angle « is small, so assume cosy —1 = [Vg= e —L
2 S 02/2

1
i i.e. fly @ (CL32/Cp)max

For larger glide angles, use cos(arctanz) =

34

Takeoff and landing
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Normal take-off

A normal takeoff is made with all engines operating.

V.
V=0 VR VLOF %

| I
N { | = Y2

i : L ,
e 3 Smn S Sair 3
|

Sto

1. During the ground run the aircraft rolls from standstill with nosewheel on the ground so that the
angle of attack is nearly constant (and typically a value that makes aerodynamic drag small).

2. Rotation is initiated at speed Vr. When L = W, the aircraft becomes airborne at speed V. or.

3. During the initial airborne phase L > W and there is acceleration normal to the flight path, but soon
afterwards the angle of climb settles to a constant value and the undercarriage is retracted to
reduce drag. The aircraft accelerates to “safety speed” V2 which is at least ki (usually a factor of
1.2) times the stall speed.

4. Takeoff is said to be completed after the aircraft reaches a “screen height” ht, which is 35 ft for
commercial aircraft and 50 ft for military aircraft.

5. The total runway length must exceed the ground roll plus the distance required to clear the screen.
Sto = Srun T Sair

2w 1
Vo > kto‘/stall =12y/-— CLz < CL,rnax/l-44
P S C'L,rnaux

% MONASH University MAE4410

Engineering

Normal take-off

Simplified analysis assumes Vior = V2 and that a steady climb with speed V> and angle Y2 starts at lift-off.

V.
Voo Ve Vi %

|
| |
N ‘ { | Y2

iy m (
o Smn ‘_>1€‘_,SL_4
Sto |

2
~ Vé hto
Sto ~ o=

2a  tanvy,

where a is the average acceleration over the ground.

Kl pol S S A more complete analysis has to account for a drop in engine thrust with

—————————————————————— » speed, the friction of the tyres on the ground, and the fact that the vertical
I reaction force (hence friction force) falls as the aircraft starts to produce lift

7 (for a jer) | even while on the ground.
|

| For now we take these complexities into account by applying a simple
r-+nw-01| reduction factor on thrust and say that

Force

|
i g = rplw o a—rpig
| =" =TT~
DanW-D__ o= : m w
2 2 m(W- ) | where for a jet aircraft 77 ~ 0.8 - 0.9 but is lower again for propeller aircraft
0 e o p—p 5 where thrust falls with speed.

Z MONASH University MAE4410

~ Engineering
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Recall for steady climb

finally

Normal take-off

‘/22

Sto %

Srun

T—-D T D

sinyg = —— = — — —

T TwW Twow

sinyy = z—@

Y2 = W o ,
and sin~yy — tan-ys

1 1 WWw

St N ——
‘ pgrr Cr, S Tio

Srun

P N
tan vy N TI/Vg
Sair
2 1
where W — L = %pVQQSCL2 or V22 = fy
S Cr,

CL2 ~ CL,max/k?tQO and CD = C’D,O + KC%Q

hto
Ty /W — (Cp/CL)2

Sair

Typically an additional 15% safety margin is added to this value (or any better estimate).

Note that T> may be significantly smaller than T, especially so for a propeller aircraft.

1. Ground run swn increases quadratically with weight W and is reduced by either decreasing the wing
loading W/S or increasing the thrust/weight ratio Ti/W, or both. Increasing weight also increases the

air distance sajr.

2. Air density+temperature may have a significant effect on both p and T. High, hot take-offs are worst.

3. Increasing flap deflections will increase Crmax and hence Ci2, which reduces the first term but
increases Cp/C. and hence the second term. There is an optimum flap deflection which is typically
less than the value used at landing, and hence Cr maxto < CL,maxland.

% MONASH University

Engineering
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Engine failure during take-off

Engine failure (fortunately rare) will obviously lead to an aborted takeoff in a single-engine aircraft.

Multi-engined aircraft are designed so that they will still be able to climb with one engine inoperative (OEI).

If an engine fails then obviously total thrust is reduced but also the unpowered engine may contribute
significant drag. There is typically a lateral asymmetry of thrust (and associated yawing moment) and the
available control surface authority (as well as the pilot!) must be able to cope with this.

If engine failure is recognised at a sufficiently low speed (on the ground) then all engines are throttled
back and all available braking (excluding thrust reversal) is used to de-accelerate the aircraft to a halt.
The associated total distance on the runway is called the accelerate-stop distance.

After a certain speed is reached it takes less runway distance to continue the takeoff and climb to screen
height ht than it does to brake to a halt. This speed, less than the rotation speed VR, is called the
decision speed V1. Above V4 the pilot will continue to take-off regardless of the runway length available.

For any given engine failure speed, the total distance
required required to accelerate to it and stop can be

distance

A balanced take-off

T —

! factored all-engines take-off

accelerate-stop

continued take-off \

\

> engine failure speed Vi

% MONASH University

Engineering

VR

found, as can the distance required to continue and
climb over screen height. The first increases with speed
¢ while the second decreases. The distance at which
they are equal is called the balanced field length (BFL)
and the associated speed is V4.

The required runway length is the minimum of the BFL
and 1.15 times the value estimated for the all-engines-
operative case.

Because the aircraft’s climbing capacity is reduced,
there is typically also a regulated minimum climb
gradient at V2 with OEL. This is 2.4% for two engines,
2.7% for 3 engines and 3.0% for four engines.

MAE4410



TOP & TOFL

For transport aircraft, takeoff field length

(TOFL) is specified to FAR/JAR rules for Aoy,

“balanced take-off field length” which is the —-— B Olstance.

length of takeoff field at which the space | . I 1 . 0O e
required to accelerate, recognise an engine A Distance, Vio'o Vss ——

|

|
=

%\,

failure, and brake to a halt, is the same as the

space required to continue to take-off with Accuaraton 6 Wo,
one engine inoperative. This is the required
TOFL unless 1.15x the distance to takeoff
with all engines operating is greater, in which
case that is the TOFL.

74‘*\—- RTO Stop from Vy

1
Distance (F1) 6\09 :
g I

1
| All Engine Acceleration 10 V,

! ‘
Detailed computation of these lengths is usually o
handled by a computer program. For preliminary Any Vy Vi for Balanced Field Length

I
]
I
1
|

design, correlations are typically used instead. Engine; Falwre frecogntion; Speed = vy, 19)

The correlating parameter is called the TOP (takeoff parameter). It combines wing loading, thrust or
power loading, air density and Crmax in take-off configuration in a sensible way: the larger TOP, the
larger TOFL must be. TOP is a dimensional parameter, and note its dimensions and units are
different for jet and propeller aircraft.

Wo WO 1 1 WO WO 1 1
TOP, = 2002 & TOPprop = 20002 2
T Tor S 0 CL max,TO PP Py S 0 CLmax,T0

For jet aircraft, thrust is evaluated (using low-M model for a) at 0.70 Vo, where Vo is
typically 1.2 Vstan. For propeller aircraft, the maximum sea-level power is used.

39

TOP & TOFL

T 2500 ———
3000 |- o /
&
s S 000 |
/ |
$z¢?°z
‘b:é&} 1
— r u 1 — L
£ 2000 |- | £ 1500
[ | i [
= =
S ] S
3] b = 1000
1000 —
| 500 |-
ol v ey Py EEPE N N R BN B
0 5000 10000 15000 0 20 40 60 80 100 120
TOP [Pa] TOP [Pa.N/W]

12. The following curve fits link TOP to TOFL. Note again that the correlations relate dimensional variables.

Two-engine jet aircraft: TOFL, m = 261.3 + 0.1800 x TOP + 2.460 x 10~% x TOP?
Three-engine jet aircraft: TOFL, m = 203.6 + 0.1713 x TOP + 1.635 x 10-% x TOP?
Four-engine jet aircraft: TOFL, m = 148.6 4+ 0.1668 x TOP + 1.236 x 10~% x TOP?

One-engine prop aircraft:  TOFL, m = 9.65 x TOP + 0.0255 x TOP?
Two-engine prop aircraft: TOFL, m = 11.8 x TOP + 0.255 x TOP?
Four-engine prop aircraft: TOFL, m = 11.8 x TOP + 0.066 x TOP?

40



Four Climb Segments after TO, JAR25 regulations

AN

MAXIMUM
CONTINUOUS
POWER

TAKE-OFF POWER

GEAR DOWN

~—— RETRACT FLAPS 400 FT

REFERENCE
ZERO
V&

BRAKE
RELEASE 35 FT

|
|
|
T
I
|

'
|
I
|
I
I
|
|
1
1
|
|
TAKE-OFF
FIELD LENGTH FIRST —sja— SECOND = 3RD SEGMENT
'
|
|
|
|
I
|

FINAL

| SEGMENT 1  SEGMENT ACCELERATION SEGMENT

| g
1 LIGHT PATI
| REQUIREMENT

|
1 |
T
| |
| !
| I
| I
| |
) !
|
I |
i |
1 |
| |
| I
! I
| |
| |
| |
I
I |
)
| |
| |
4 1

% ] SECOND SEGMENT H
$ REQUIREMENT

) . , Required gradient, %, OEI
Second segment is usually the most demanding part

of climb so far as aircraft performance is concerned. No. of Engines
1st Segment
V2 = kroVstan, T0 Config = 1.2Vtall, TO Config 2nd Segment
_(Tor1 Cp 3rd Segment
V2 = Wo C, ,

Final Segment
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I\ Landing
xv,,,

Vip =0

42

Prang Yapp = | ' S

S
¥
lllllllllllllllllllliQ!l!illlillll(;illlllillk!!::lf?Ti!liiYs!lliilI?llelifii
| |

< .Sai' J Srun )i

TEERER SN RansIrateey

| Sland |
| |

1. During landing approach the aircraft flies at a steady speed Vapp > kapp Vstal = 1.3 Vstar. The gradient
Yapp is typically around 2.5° to 3° for commercial aircraft.

2. Once the runway threshold height hiand (typically 50 ft or 15 m) is reached the engines are throttled
back and the pilot executes a landing flare or round-out to touch-down at Viq, typically 1.15 Vstan.

3. After touch-down of all the undercarriage elements the aircraft is slowed by wheel brakes (and
perhaps airbrakes) until it comes to rest. While engine thrust reversal may be applied this is
typically not included in an analysis designed to compute the minimum runway length required.

. i . Rland Va2pp 2W 1
For a simplified analysis and = Sair run R where Vi = 1.3/ ——
P Yy ,  Sland S +s tan’yapp + 2|d| app P S CLJnax
hland

WS
. and © ——— 1697—
leading to Sland A Yapp - pla|Cr max

Note that the wing loading W/S may be much less than the maximum takeoff value, owing to fuel use.
Max de-acceleration possible on a dry concrete runway is |a|/g = ¢ = 0.3 to 0.5, use 0.15 for wet.
Note also that, unlike the case for take-off, the thrust loading T/W does not come into account here.

% MONASH University MAE4410
Engineering
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Landing approach

V;a‘pp = kapp‘/stall, landing config = 1-3‘/51:&11, landing config

T

) e =),
50 ft W CL/ana
_I. WZW\

|~———— AIR DISTANCE } GROUND DISTANCE ——

Note that fuselage upsweep/clearance and landing gear length must be adequate to avoid
ground impact accounting for a 3° glide slope when trimmed for AOA at approach C..

k=) —_
Elo e|¥
<0 ©o
o o |
= w2
=

J >

M

—
E 0000 :ocoaceaaoo'?@:cooong.gj~ 7000000000000 |
. ) =N {
=

Q-, 5 l =G }T{" s
T % ‘h‘\\ ,,,_4)'“
507 m ’ 12.64m | — O-takegff
(16.6311) (@1.47f) ! — O-landing

It is usual to leave 2.5° additional clearance, or 1° with a tail skid.

Manoeuvring flight

OPERATING FLIGHT LIMITS
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The V—n diagram

1. This expresses the load-factor/speed envelope of the aircraft as determined by performance
constraints (e.g. stall) and structural strength. Its limits vary with altitude and aircraft loading.

2. The load factor is derived from L=nW, i.e. n=L/W and describes how much load the structure

carries compared to the case in level flight.

Altitude: Sea Level Positive Structural Limit

Weight: 5800 Ibs

6 1 Clean Configuration
1pv2C

e _ 3 4 L max
=' 4 stall W/iS
—
- ), e St . . ) .
< Positive Sl.?]l Limit Cruise .Velocnv q Limit
= E Corner Velocity ‘ : Aka.
= Vc \ ’ H
g \t : VxE, Vb
- 0 . —

150 200 250 30

)

Negative Stall Limit

Negative Structural Limit

Calibrated Airspeed, V., knots

8. Example codified limit load factors:

TABLE 10.1: Maximum load factors for various
aircraft based on FAR-25 and 23.

3. Normal level flight has n=1.

. Exceeding the structural limit n value can
lead to airframe damage or breakage.

. Exceeding the dynamic pressure (q) limit
can lead to flutter or shock buffet.

. Typically, positive structural limits are
larger than the negative limits.

. At the ‘corner velocity’ V¢, simultaneously
at the structural strength and
aerodynamic stall limits, the maximum
rate of turn is achieved.

2W niimie
P S CL max

* Regulations typically require an additional structural
safety factor of approx. 1.5 at the peak load factors.

Aircraft Type Load Factor TABLE 10.2: Load factors for transport aircraft based
General Aviation (normal) -125<n<3.1 oaFaR 2>,

General Aviation (utility) -1.8<n<44 Wro(lbs) Mmax

General Aviation (acrobatic) -30<n<6.0

Homebuilt -2<n<S§ <4100 38

Commercial Transport -15<n<35 4100 < Wro < 50,000 2.1 + (24,000/(Wo + 10,000))
Fighter -45<n<175 >50,000 2.5

The gust load diagram

1. Allowance is made for atmospheric turbulence in the form of gust loading factors, using gust
velocities based on statistics and experience, varying with altitude.

2. Consider an aircraft encountering an idealised gust, speed Uge, in level flight:

QS 77/ /1 /SIS 777 y - Ude 1 2 aCL Ude 1 9 (90[,
Use Aax o AL=30Vs oo Voo W=2pVs Do
L W+ AL Uqge pVOOUde(aCL/()a)
"Tw W e T T T 2w

3. A‘gust alleviation factor’ Ky is applied to allow for aircraft motion/flexure in gust:

KngooUde(BCL/ﬁa)

Ky is a quasi-empirical function of

n=1+

2(W/S)

aircraft density relative to air density.

4. Different gust factors are applied at different flight speeds V¢, Vb.
5. Finally: another load envelope that overlays the V—n envelope, and we take the worst cases.

+ Maneuver

+ C-“"A maximum

C

== === Limit maneuver envelopes
= s = Limit gust envelope
== Limit combined envelope

= =
5 <~ Vo
2
2 v
~ D _9ust i,

° - —_—llne ,
§ o — - Speed V

) ~ e —— ] ~“| E (normal)

=< g -
NS < Quse liny, e
e
Cx, maximum =] E (utility
— Maneuver - F and
acrobatic)



Turning performance — 1

L=nW Recall the relationships developed for turning flight:
V2
/ Horizontal equilibrium  Lsing = m—— =mVw
/B i
Vertical equilibrium Lcosp=nWcosp=W
1
Leading to ¢ = cos™! (n)
. n?—1
W@ sin ¢ = —
vn2 —1 V2
From which we obtained the following for rate and radius of turn: _gvn =2 Ry = ——
g w % H . Z—1

Typically we wish to maximise the turn rate and minimise the turn radius. The first usually more important.

Now to consider the thrust requirement, we use the fundamental performance equation, simply (here):

T =D =1pV2SCp = 1pV2S(Cpy + KC?)

2W n
— _ 1,72 _
Now L—TLW—§[)V SCL or CL_;?W
2W\? n2 p 2W\? n2
T=D=1Lpvs|C K(==) | =58 |CpoV*+K (%) —=
2P Do+t <pS> Vi 9 DoV + <pS> Ve

If we set n=1, we recover the equation for thrust required in level flight at speed V. Increasing the load
factor produces more induced drag at a given speed and hence demands more thrust.

Turning performance — 2

2W 1/2 KO\ /4
pS) (C ) is the level-flight minimum-drag speed
D,0

and D* = %pV*%‘QCD@ is the corresponding drag force,

Using V =uV* where V*= (

_ T D 1], n? 1[, n?
we normalise the FPE: =—|u“+ — or — u+$ =0

D+ D+ 2 u? 2
And we can see how the extra induced drag We wish to find out the aircraft manoeuvre
that comes with load factors n > 1 produces a capabilities, both for instantaneous and sustained
requirement for more thrust at any speed. turns.

\Spud for maximum
instantangous rale of turn

6 Increasing Iift
o racvinyd M"g/ Speed for meximum
s Bk loading sustained rate of turn
e | 4 - %
L / Flnuusing TMW or LJD
24 _ //’ =
H c Ve X Thrust = Drag
$3 : ve 00
= = ]
) s )
x 2} | : 9G structure limit
rl ¥ (independent of
1 - (. agrodynamics &
[ 1
L& geometry)
0 L —T 4 4 } ‘
0 0.5 1.0 1.5 2.0 25 3.0 Mach number

Relative speed, u
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Turning performance — 3

sample data at
some given altitude Egmer . .
i speed On a rate of turn or manoeuvreability diagram
d(degls) Typical fighter one plots the sustained rate of turn vs speed
30 ¥ structural limit that the aircraft can attain (supplied from the
NN SEiie FPE), as well as the aerodynamic and structural
25 \ \ Sustained tum .. .
rate eavelope limits imposed by stall and load factor.
20 \\
\ . , . . .
15 -0 g In our analysis we’ll work with a dimensionless
= e 8 & FPE, so we’ll make the rate of turn
Sta 8 . .
limit 6z dimensionless also.
5 t o
C —
Lmax e 5 gvn2—1 gvnZ—1 — 0 wV* nZ —1

0 + + + + + w = = = =

0 100 200 300 400 500 600 700 V U’V* g &

TAS, kt
Structural limit just derived: /m2 . 1
Qstlruct = hrzlt
Stall limit

2W n 2W 1 CD()

Vitall =\ = a1/ and V' =,/-— where C] = >

el P S CLmax P S Cz o K
CLTax)Q_]_

4
Vstan nCy C Ny u ( Ly
L Lmax 9 n, L
SO Ustall = = Oor  MNgtall = TU’stall = Qstanl = StZH =
L

V= C(L max u

5 Solving Qstruct = Qstan for u gives the corner
Qstar] = \/ a® <CLC Tﬁ") — lQ speed (we already had it for given Crmax and niimit).
L “ The aim is to develop optimal relationships.
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Turning performance — 4

Now we have the structural and aerodynamic limiting values, compute the sustained turn rate
on the assumption that thrust is invariant with speed.

1 n? 2 _
From 7—2[u2+12}:0 and 0=Y""1 e n2=0%2+1 = ut+(2-2r)ul+1=0
u

Q2 1 1/2
Obtain solution to quadratic: uj 2 = l:T -5 *3 (Q —47Q% + 477 — 4)1/2]

There is a single value of u (i.e. a TP) when the discriminant is zero, i.e. at max Q, u = +/7 — Q2?/2

Using also the condition that the discriminant is zero, we obtain uqgmax =1 and Quax = V27 — 2

141
l.e. the maximum sustained turn rate always occurs at u=1. For given tand u, find: Q = /27 — Y _;
u
4 Limit type
| Thrust
---- Stall
S+ [y | TG L e H e Structure
I The instantaneous corner-
(SR speed turn rate is typically
significantly larger than the
i sustained turn-rate
1 capability.
0
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Turning performance — 5
We just found the maximum sustained turn rate (MSTR)  Quax = V27 — 2
By similar means one can find the conditions for a sustained minimum-radius (sharpest) turn, SST.
Or the sustained turn that produces maximum sustained load factor n.

Defining also a dimensionless turn radius r = gR+/V*2 one can tabulate the maximum
dimensionless sustained-turn values permitted by the drag polar and constant thrust.
(One should compare these to the limits imposed by structural strength and stall.)

Special case U n 0 T
1
MSTR 1 V2r —1 V21 —2 \/ﬁ
1 272 — 1 21 1
T [
SS N . - =
2 _ 1
T'max \/F T T 1 5
T T4 —1

Note that these values are for (jet) aircraft where the thrust is assumed independent of speed.

Similar relationships could be derived for prop aircraft where the power is assumed independent
of speed.
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(Instantaneous) Pull-up and Pull-down

1. For instantaneous manoeuvres, we don’t worry about having enough thrust to maintain airspeed.

Pull-up and pull-down from level flight are typical.
2

T 2. At Pull-up m‘;%o =L-W

- ’i Pull-Down

[ meo _ K Vfo _ Vfo _ VOQO
L-w gL-W gL/W-1) gn-1)
| wzvﬁ:g(n—l)
| R Vo
V2
3. At Pull-down mf’o =L+W
i o EntD
gn+1) Vo
y2=0
Pull-Up V2
n=1- pr=
4. One consequence is that looping manoeuvres v2=-90 "‘ v2=90
typically do not have a true circular fight path. L ’ LV
gR / gR
\ \//
1
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Limiting cases for large load factor

Radius R
Level turn Pull up Pull down
R Ve R Ve R Ve
gvn?—1 g(n—1) g(n+1)
Turn rate w
Level turn Pull up Pull down
gvn? —1 g(n—1) gn+1)
W= w=———-= Ww=———-"=

Dependence on aircraft and flight parameters

2L
L=1pV2S8C,, V2=
2p [e’e) L, o0 pSCL
R vZ 2L 2L 2 W
gn  pSCrgn  pSCLg(L/W)  pCrg S
oo 2 gn _ gn _ npCr,

TV T VRLI(pSCL)  VBalGCoIW/S) o\ 207/S)

Large-n limit (n>1)
V2
R= =
gn

Large-n limit (n>1)
gn
Ww=—

Voo

2 w

Rmin = AN &
pg(CL)max S

p(CL)maxnmax

T A 2(ws)

_ 1 9 (CL)max
Nmax = QpVoo—W/S



