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Range and endurance fundamentals

Recommended reading:
Torenbeek & Wittenberg: Chapters 5, 6 &
9
Ruijgrok, Chapter 15.
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Range (R) and endurance (E) in level powered flight

All range and endurance tasks for powered flight considered here rely on stored energy sources (fuel).

For generality let’s say the initially stored on-board energy is of chemical-bond type, with total amount
C and conversion rate dC/dt = Pc, the power available from conversion of this energy to another type.

We will use the mass-specific energy density of this mass-specific . weight-specific
storage, H (with dimensions energy per unit mass) and Fuel H(MJ/kg) H/g (km)
also its mass density pr (dimensions mass per unit Hydrogen 120 12200
volume). The total amount of stored energy C = mr H. Methane 50 5100
Total fuel weight Wr = g mx. Natural gas 45 4600
Jet fuel/kerosene/petrol/diesel 42.5 4350
Note the interesting fact that H/g has dimensions of Fat 30 3060
distance. The maximum achievable range for each Peanut butter 27 2750
kind of fuel is approximately the same order as H/g. Sugar 15 1530
Lithium-ion battery 0.9 92

For air-burned fuels, H is the (lower) heating value of the
fuel. For many liquid hydrocarbon fuels, H = 42 MJ/kg.

As fuel is burned, its mass flow rate is 7y = dmy/dt and its weight flow rate dW;/dt = gdmy/dt.
Note that as fuel is burned, aircraft weight W decreases. dW/dt = —dW;/dt. or dW = —dW;y

Whenever we convert this stored energy to another type, there is an associated conversion
efficiency (n < 1). There may be a number of conversion steps before we get to useful (e.g.

> L
drag-resisting) power. The overall efficiency to that stage is no. Q@@ Q\»\@
Q}(Z) Q&o
Potentially no can be broken down into a number of sub-conversion efficiencies, e.g. Mo = Mel X Npr

Regardless of the particular energy system, the organising principle is: no Pc = useful power =T V.




Range (R) and endurance (E) in level powered flight

Stored energy is converted to useful work done, which for winged flying vehicles is usually
estimated in steady level flight and is the product of thrust times distance or power times duration.

w
The fundamental flight mechanics equation for steady level flightis T'=D = (L/D)
. : CoL dC Vw
The fundamental thermodynamics equation for steady level flightis 7,Pc = o gy = VT = m
L dR dx
Considering range R and endurance E we note: dE =dt and T \%
Non-fuel-burning aircraft (W = const).
t=to

Endurance o _ dC _ VW dC = ﬂdE AC — / dE

a "aE ~@/p) 1o(L/D) or e T L/D

For a segment where speed etc. is steady: %AC = AE

To maximise endurance for a given amount of energy and weight W, we want to fly in a way that maximises
nNo(L/D)/V. Unsurprisingly, this is flight at the minimum-power airspeed. If no is constant, that means flying
at a point on the drag polar where C;3/Cp? is a maximum (this occurs because V < C.-172).

. " _ moH(L/D) Wy
If we consume all the stored energy on board at the same flight condition, then E =

gV w
Range  q¢  vw W dR W =tz
No—r = = — or NodC = dR or AC= LdR
dt  (L/D) (L/D) dt (L/D) t=t, To(L/D)
For a segment where speed etc. is steady: %AC = AR
. . noH(L/D) W
If we consume all the stored energy on board at the same flight condition, then I = TW

Range (R) and endurance (E) of electric powered aircraft

Battery energy capacity C (J); mass-specific energy density H (J/kg), battery weight W = gC/H (N).
Electrical power PC = dC/dt.

To maximise endurance E for a given amount of energy C, minimise energy per unit time (i.e. power).

dC dC
oAb TV, A% 2w\ Y21\ 2
= ~dE =————dE where V = —
NEpr nEnprCL/CD (p S ) (CL>
GIN
Hence dC' = p—dE and again assuming constant operational conditions, integrate to get
nEnprCy'*/Cp
nelyr  Ci
- 1/2 ¢
w D
w{25)

We fly at the minimum power point on the drag polar — (C.32/Cp)max — and minimise weight, etc etc.



Range (R) and endurance (E) of electric powered aircraft

Battery energy capacity C (J); mass-specific energy density H (J/kg), battery weight W = gC/H (N).
Electrical power PC = dC/dt.

To maximise range R for a given amount of energy C, minimise energy use per unit distance C/Azx

¢ At  Po _dr _ dR At ng dC e
szcfx:VOrSIHCG V= 575 we have C—x S dR- Vv
Pc
dC = —=d
C v R

Now 7nEn,-Pc =TV where ne is electric power conversion efficiency and np is propeller efficiency.

po= Voo Po_ T o dC——T 4R whichNBisjust dC = -2 dR

NENpr Vv NENpr NEpr NENpr

NENpr

that = =T U
so tha R D C

Maximize range by minimizing drag: fly at (L/D)* and reduce qCooS.

NEpr CL / CD

we can integratetoget R = —

C

Splitting weight W into airframe and battery weight (We and W¢) R = %

H
Interestingly, as airframe weight We — 0, we have R = nEnp,«CL/C’DE independent of C.

(Recall earlier remark that maximum range is always of order H/g for any fuel type.)

Range (R) and endurance (E) in fuel-burning flight

Fuel-burning aircraft

Estimation of range and endurance has to account for the fact that fuel burn reduces aircraft weight.

F=dW;/dt = mpg = —dW/dt is weight flow rate of fuel.

The (weight-) specific endurance 1/F is the time dt _ 1 _ 1 dE = 4t

airborne per unit of fuel weight consumed. dwy  dWy/dt  F -
Recall:

The (weight-) specific range V/F is the drR  dR/dt V drR _ dz _

distance covered during the airborne time. dw,; dWw;/dt F dt — dt

Say we fly from time labelled 0 to time labelled 1,

then the weight of fuel consumed Wi=Wy,—-W; Wenotethat dW; = —dW

We see that the endurance and range [ /dt /W1 aw Wo aw Wo qw

can be considered as integrals. F w, MMsg

Wo WO
ne fva—- [" Car [ e [V
Wo F Wy F w, Mrfg

1F \ V%F

area=E

di

W,

> W 0
(a) Endurance (b) Range



Range (R) and endurance (E) in level fuel-burning flight
Fuel-burning aircraft

First we give a generic treatment of range and endurance that isn’t specific to powerplant type.

dW H VW dR dx
= .1 = — = Recal: dE=dt and —=-—=V or dR=VdE
UOPC 770me "o dt g (L/D) dt dt
W,
Endurance _%ﬂEZLdE ap = 2 LdW :/ 1o H L dW
dt ¢ (L/D) VgD W w, VgDW
dWw H 14 H L dwW Wo H L dw
Range ST Y 4R __,HL :/ i LdW
W g  (L/D) dit = =m0 =), e Dw

If segment 0-1 (say) is flown at constant speed and angle of attack, then o and L/D are constant:

E=2"Zp 20 R=p 2210
VgD W %gDnWl

The range equation is very interesting because it shows directly the sensitivity of R to:
e H/g, the weight-specific energy of the fuel type used;
® o, a figure of merit for the propulsion system;
® C;/Cp, the aerodynamic efficiency;
o Wo/Wh, a figure of merit for the structural system (larger values indicate greater ability to carry fuel).

Range optimisation considerations

This form of range equation
works for any type of fuel-
burning aircraft, prop or jet,
because it is based on power
output rather than thrust.

Similar developments can

be made for endurance, or
non-fuel-burning propulsion
(e.g. batteries).

This initially seems like a straightforward division of optimisation targets but in reality, aerodynamics and
structures are coupled through the weight ratio Wo/W4.

Note also that there is an PN 200 " . T |
interesting effect where overall | f
propulsive efficiency tends to sf
rise even while L/D falls with o -
increasing Mach number. This -~ °r
implies that perhaps much the _Z

same range can be achieved P e
with the same value of Wo/W1 T ; . .
across a wide range of speeds. ' M ) ' M




Range (R) and endurance (E) in level fuel-burning flight

Propeller- and jet-type fuel-burning aircraft

One usually deals somewhat differently with powerplants rated on shaft power Ps (typically, propeller-
powered aircraft, where propulsive efficiency is broken out as a separate item) or on thrust T (typically,
jet-powered aircraft, where it is not).
™
For propeller-powered aircraft, Ps = Tf (NB: different from specific excess power P;.)
P
where ¢, is the power-specific mass flow rate of fuel (dimensions: [mass/(power x time)])

and the total efficiency is splitupas 7, = npr X Mt = propulsive efficiency x thermal efficiency
From 7oPc = 1np:Ps (=TV) one finds Mot = Mpr/(cpH)

m
For jet-powered aircraft, T = -
Ct

where ¢ is the thrust-specific mass flow rate of fuel (dimensions: [mass/(thrust x time)]).
From 7.Pc =TV onefinds 7 =V/(ctH) = Ma/(ciH)

0.5 i
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Range (R) and endurance (E) in level fuel-burning flight

Breguet-type relations for fuel-burning aircraft

Starting frgm the power- or thrust-specific fuel VW ) . dwy o 1dW
consumption rate definitions, the fundamental noPc = m andusing my = g? = —gﬁ
thermodynamic relation for steady level flight
we derive equations for the two different aircraft classes
Prop Jet .
L LAw_vw _vaw _vw o et
"lpr ge, At L/D gep At L/D un a.menia
rearrange to get equation
_ Npr (L/D) AW 1 Cpdw
dE = dt -t =dFE ————=dFE
VW co Cp W Endurance
dR _ dz Mpe(L/D) AW V CpdW
t o dt v gep, W g Cp W Range

To integrate the equations in analytical form, assumptions have to be made about flight protocols.

The best range for jet aircraft can be obtained if speed and angle of attack (hence V, c:, C./Cp) are all
constant and the aircraft climbs continuously as the weight reduces.
14 CL W() H CL WO

In which case R=——"In— c.f., previously: R =n,——=1In— (the same statement)
ge; Cp Wy P y o g Cp " Wi

This is the standard form for the Breguet range equation.
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1. Liquid hydrogen has a higher energy density per unit mass but a lower energy density per unit volume
than conventional hydrocarbon fuels (see table). TSFC: roughly 1/3 (i.e. 42/120) of CHx.

2. LH2is a cryogen — only helium has a lower boiling point. This has some unusual design consequences.

3. Those two facts imply some significant changes are required in aircraft sizing compared to hydrocarbon
fuels. For the same range requirement and compared to an equivalent CHx aircraft:

a. wings of LH2 fuelled aircraft are smaller (fuel weight is lower);
b. fuel volume is larger than for CHx and the (pressurised, insulated, more heavy) tanks typically need
to be more roughly spherical in shape — these features imply reduced values of (L/D)max.

4. Ha can either be oxidised in gas turbine engines (higher efficiency is possible than for CHx) or by using
fuel cells to convert to electricity, driving electric motors. Both require significant technical
development. Gas turbines seem the more likely immediate choice for long-range passenger aircraft.

Hydrogen’ Methane’ Jet A**
Nominal composition H, CH, Lo, Property Effect (relative to jet fuel)
Molecular weight 2.016 16.04 168°
Heat of combustion (low) High heat of combustion Fuel weight reduced by factor of 2.8
kg Loy 200 425 Quieter aircraft
Eab) (51,590) @1,500) (18.400) High specific heat Fuel cools engine and vehicle hot parts
Liquid density S =
gem® at 283 K 0.071° 0.423° 0.811 High TIT and OPR
(Ive’) (4.43) (26.4) (50.6) Further reduced SFC
Specific heat® Further weight saving
JgK 9.69 3.50 1.98" Low density Lesser weight of fuel requires about 4.15
(Bru/1b-F) 2.32) (0.84) (0.47) X more volume; this lcads to
Boiling point at | atm Lower L/D
II\‘H (20 j;” ’“23”) ?::):i::” ) Low wing loading at takeoff
Freezing point Cryogenic Requires
K 14.4 91 233 Airtight insulation system
P (—434) (~296) (—41) Heavy tank and fuel system
Heat of vaporization at | atm Special tank fill and vent procedures
Vg 446 510 360 Constant tank pressure to minimize boil-

(Bw/Ib) (192)

219

(155)
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See Brewer (1991), Hydrogen Aircraft Technology, CRC Press.

TSFC and total efficiency

TSFC (ct) can be supplied either on a mass-specific basis (as we have done above) or on a weight-
specific basis.

In Sl units, the mass-specific values are in kg/(N.s) — but it is customary to use kg/(N.hr).

In Sl units, the weight-specific values are in N/(N.s) — but it is customary to use N/(N.hr).
Either of these differ from (are less than) the mass-specific values by a factor of g.

In Imperial units (as appear in many texts and in industry), TSFC values are usually given in Ib/(Ibf.hr).

Note that the numerical values of pound mass (Ib) and of pound force (Ibf) are the same.

l.e. we can use numerical ct
values we find supplied in
Imperial units directly in Sl

calculations, provided we keep in
mind they are to be considered
as weight-specific TSFC.

Consequently, the weight-specific TSFC in Sl units is
numerically equal to the mass-specific TSFC in Imperial units.

ey = thrust power developed by engine _ TV _ TMa _ Ma where a = aqVe 0 - relative
® " rate of fuel energy added to the engine  mmsH  myH ¢ H atmospheric
temperature
MO
When c: is given on a mass-specific basis, 7, = % C\f NB: ¢ > (aqMV0)/H
t
a MV
When c: is given on a weight-specific basis, 7, = ;/lg . NB: ¢ > (agMV0)/(H/g)
t
340.3 x 3600 M6 MO
E.g. for jet fuel, ¢t in Ib/(bf.hr) we have 7, = x VO _00516MY0 gm0 > 02816 MVE
4350 x 103 ¢, P

Note that for similar engine types, cruise speeds and altitudes, total efficiency
will be much the same (and c: will vary with fuel type according to ratio of H).



Optimal range for transonic jet aircraft

See Torenbeek J Aircraft V20 (1983), Prog Aerosp Sci V33 (1997), Advanced Aircraft Design
(2013).
Hﬂl W() Vﬂl WO M(J,CL WO ao MCLI W()

R:

o— n——=— no—=—-—"In— = —~In—
e Ch "W, g Cp Wi ge Cp W gei/VO Cp Wi

Optimal aerodynamic efficiency C./Cp

The initial focus here is on the term C1./Cp. However, Cp = Cp(Cr, M) in the transonic regime and above.

Cp r M09 M w045 Cp |

Ci w09

A common definition of
the drag-divergence Mach
number is

0.4 Maa = Mlacpjarmr=0.1

0.06 ) % 03 L.
0.2 As shown here this is a

0.1 function of C', .

0.4

002

M=
{ <\CD‘A

1 L " " " L L ) 1 L L
02 04 06 os 10 05 06 07 0s 09

To make progress we consider (a) partial optima and (b) logarithmic differentiation.
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Partial Optima

An optimum for a two-dimensional
function F occurs where the partial
optima dF/0x, = 0 intersect.

At an optimum, the differential
OF

oF
dF = —d ——dzs =0
8$1 T1+ 81‘2 2

Logarithmic differentiation

d d d f/ g/

—log(fg) = —log f + —logg = = + =

d df(x)/dz (@) dz de da f g
log f(z) = =

dx f(:l‘) f(x) d f B d 1 d ) B f/ g/

EIOgE_ﬂ ng—a 0g9—7—g

So the optimum for C./Cp occurs where dlog(Cr/Cp) = dlogCr, — dlogCp =0

dlogC dlogC
but Cp = Cp(Cyr, M), hence dlog Cp = m‘fTCLL’dlog Cr + %gz\;dlogzw = Cp,dlogCy + Cp,,dlog M
. : ; dlogC Cr oC

where the logarithmic partial Cp,. = gogtp _ L 9%D (constant M) .

o ) Th be interpreted
derivatives are given shorthand © 9logCr CpoCy percentage change in a dependent

H . iable divided b i t

notations: Cp., = dlogCp M 9Cp (constant C7) ¥ Ghange of the independent variabie,

~ dlogM  Cp OM



so that dlog(Cy/Cp) = dlogCr, —dlogCp =0 becomes (1 —Cp,)dlogCr, —Cp,,dlogM =0

Clearly we need Cp,. =1and Cp,, =0 atthe optimum for C./Cp., i.e.

oCp Cp
Cp, =1 — = —— (constant M
L 8CL CL ( )
oC D This is true before compressibility effects

Cpy =0 — oM =0 (constant Cf) produce an increase in Cp with M and is a
common assumption in many texts.

Cp, =1 corresponds to the locus | and, since clearly C./Cp takes a local maximum at
£ on a Cp vs C_ plot: those locations, with the maxima on a C./Cp vs C. plot:
In steady level flight, the corresponding C. are

~- 20 . e
those for minimum drag, Cr,md, at each M.
o GEREGR=T] g 4
M C./Cp
Cp ~ :
/ Note that peak aerodynamic
[ g efficiency occurs in the
= - 5 : ] }
X transonic regime. This
: happens because the
A linearised compressibility
Cp, > v Cp, <1 o effect on C.
\.—4 1 s Cp ~ CL.U
A ——
e ! = 065 initially starts lh]g/C
' g initially starts to push C./Cp
— o l Mach number - up before the nonlinear
g 1 n's7 compressibility effect
— . [CilCovemii T elevating Cp overcomes it.
092
0 4 54 o n L =
0 Cra Cra Crs Cra CL_g CL 0.2 04 06 08 c 1.0
C forms the lower boundary of the Mach number regime where compressibility starts to
DM -

degrade Cp at any Ci (see curve Cp,, = 0 on earlier Cp vs M plot).

Next, consider the (M, C.) map of C./Cp . If no constraints are applied we can see the global
optimum occurs where the partial optima Cp,. =1 and Cp,, = 0 intersect at point A where L/D* = 18.40.

requirement to fly at a given
altitude with L=W gives

1.0 12 10 - A constraint can move us
=~ b: [L/D in the C, versus M plane] away from the unconstrained
\ optimum. For example, a

0.8

T

2
CLM? = M = constant
P
or
dlogCr, +2dlog M =0
Substitution into
(1-Cp,)dlogCr, —Cp,, dlogM =0

T

gives

CDL =1+ %CDM

Since above the onset of

04} compressibility effects,

CDM>0:>CDM>1

(and hence C. > Cr*), the
constrained maxima for
CL/Cp must lie along
points of tangency
between C./Cp = const
and C.M?2 = const, as
shown.

0.2}




Optimal value of parameter MC,/Cp

If TSFC c: is independent of M, then the parameter to be optimised for range is MC./Cp. Again using
logarithmic differentiation we have

dlog M + dlogCr, —dlogCp =0
and since dlogCp = Cp,.dlogCr + Cp,,dlog M we obtain (1 —Cp,.)dlogCL+ (1 —-Cp,,)dlogM =0

First, examine what happens if there is no compressibility effect on Cp, i.e. Cp,, =0

(That is a common assumption in many simplified texts.) In that case, for a simple quadratic drag polar, the
contours of ML/D look like this:

O
<

ML/D= 4 i Clearly there is no unconstrained maximum.

1.2
i

At a given Cy, L/D is independent of M and so ML/D increases
without bound with increasing M. Best range would be obtained at
CL=Cv*= Crma. Fora given W and with Cy fixed at this value,
altitude has to also increase indefinitely with increasing M.

If altitude is fixed, then CLM2 = const. After some manipulation, one finds that
= 1/2 and finally that this occurs at a maximum of C1/Cp2, a well-known result
leading to C, = C%/v3 and V = 34V* This occurs along the locus of
tangencies between ML/D = const. and C.M2 = const., as shown.

Alternatively, if thrust is fixed, one finds that CoM?2 = const, and
eventually that this occurs for maximum C;2/Cp3, at which

Cp = C;/v2 and V = 274V another well-known result (see e.g.
Nicolai & Carichner). This occurs along the locus of tangencies
between ML/D = const. and CpM?2 = const., as shown.

In this fixed-thrust case, one additionally obtains
93/2

L/D ="

(L/D)* = 0.9428(L/D)* V =2Y4V* = 1.189V"

2

o

Now return to optimising ML/D in the presence of compressibility effects, and with

(1—Cp,)dlogCy + (1—Cp,,)dlogM =0

We already dealt with finding the locus of partial optimum Cp,. = 1 from a plot of Cp vs Ci, leading to curve .

Similarly, we can find where The contour plot for MC./Cp is obtained by multiplying the plot for C./Cp by

Cpy =1 M, with the two partial optima | & Il intersecting at point A, with M just slightly
from a Cp vs M plot, leading lower than Mgq. L/D is 17.61, 95.7% of (maximum+compressible) L/D* = 18.40
to another partial o;;timum previously obtained. The maximum of ML/D = 14.0 occurs at M = 0.795.
locus, Curve II: 101 JL/D=% We don’t actually need to make
’ n e this contour plot. We could just
. @, - obtain the partial optima curves
B c 1o LA ! | and Il from drag polars (as
b: [_L“.—ﬂ_”—'_—:_l_l shown earlier) and find their
& 0.8 intersection on the C. vs M
Cpf y plane.
i E An obvious problem in
B c s/ i the initial design office
' \ 06 phase is how to model
‘| A / the polars in the presence
o Cpay > 1 \ Cp,, <1 e _q-,‘; 1 of compressibility without
/ ? - resorting to CFD or a
C g / 4 wind tunnel.
B \
c o Curves lll and IV
% ) correspond to
L /CLa — D constraints for
C,=0 Cyp, constant altitude
1 (CLM2 = const) and
0 . » constant thrust
0 M, My My My Ms Mg 0 6" (CoM2 = const). See
1 ' 1 1 — I - ll 1 l 1 I 1 J teXtS'
0.4 05 0.6 0.7 08 0.9
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Optimal value of parameter noC./Cp

Egln% or, for brevity, = Egln%
‘g Cp Wi ’ ¥ ngCD Wi

Recall R =1
More generally TSFC c: is not independent of M, so that the parameter to be optimised for range is nC./Chp.
This requires dlogn + dlogC, — dlogCp =0
Proceeding similarly to before, one obtains (1 — Cp,)dlogCr + (hpm — Cp,,) dlog M =0

dlogn _ M dn
dlogM 7 dM

where nm =



