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Aircraft performance summary

Aircraft performance considered
here involves only simple concepts,
mechanics, and maths.

Key inputs
» Drag = F (Lift): drag polar model
» Aircraft maximum lift coefficient Crmax
» Powerplant (propeller and jet) models
» Standard Atmosphere model

Key ideas

Energy (power) supplied = energy
(power) dissipated (in steady state flight)

Thrust = drag (in steady state flight)
Lift = n x weight (load factor n = 1 typical)

TOPICS CONSIPERED

Equations of motion
Fundamental performance equation
Aircraft energy state

Steady level flight
Minimum thrust or power required to fly
Altitude envelope: maximum sustainable altitude
Speed envelope: minimum and maximum speeds
Fuel use: Range and endurance (air-breathing)
Steady climbing flight
Maximum rate or angle of climb
Gliding (steady descending) flight
Range or endurance for given altitude loss
Steady turning flight
Level banked turns: turn speed and radius
Drag increase in turning flight
Turning in the vertical plane
Take-off and landing

Runway distance requirements



Aircraft equations of motion

Center of T First consider flight where there is no
Gravity, CG L \ /7/7 bank angle, and all forces and motion
14 occur in the aircraft plane of symmetry.
The aircraft is assumed to be trimmed so
_yab that moments about CG sum to zero.
dh From flight path geometry we have
p dx
D o
Angle — =12 =V cosf
M of climb d
WL =mg dh . .
— =h=Vsinb
( ) dt
d(mV dVv dm . .
Newton’s second law is F = =m—+V—=mV +VimmcmV
Z 1 m i + 1 mV +Vm~cm

Note that it is usual in aircraft performance dynamics to ignore the time rate of change of mass, except
when computing fuel consumption. This assumption may be inadequate when fuel burn rates are high,
e.g. for performance analysis of missiles.

Now we consider components tangential and normal to the flight path, leading to

dv )
Tangential m—— =T cose — D —mgsinf = mV

dt
do . . V2 . :
Normal mVE =Tsine+ L —mgcostd =mVo = mR— where Ry is flight path radius of curvature.
1%
(Divide tangential equation through by mg = W.) 14 — Teoe =D sin @
Rearrange: g w
(Divide normal equation through by mgV.) Q — Tsine+ L _ cos ¢
g VW \%4

Aircraft equations of motion

Since the thrust and lift are functions of altitude and speed, the drag is additionally a function of lift, and
the fuel burn rate depends on thrust, we have a set of five ODEs to consider, four of which are coupled:

Integrate to get range T =V cos 0 (not directly coupled to the remaining four)

Drag polar Cp = Cp o + KC?

° / o parabola
0 g %’ Integrate to get h h=Vsin6 -
EGO .
2 ;%, Integrateto get W~ W = —gct(h7 ‘/)T(h7 V)
O c Qf
50 @ .
£EE V. T(h,V)cose—D(h,V,L
e ‘%é Integrate to get V — = ( ’ ) ( L ) —sinf
585 g W ;
g2s ‘ T Y-~}
S z= 1 - ! .
= g 3 ¥ Integrate to get 0 Q — T(h7 V) sin € + L(h7 V) . COS 0 : : 1l induced drag
g Vw 1% i e

The standard approach for most performance analysis is to obtain decoupling by assuming that
B=const., and base everything around the 4th equation in the set. i.e. the one containing the drag polar.

(Also, since ¢ is typically small or zero, cose =1 and sine —¢.) Thus, starting with the 4th equation,

(T-DWV _ 1y N VZ _d ( V_2> _ de  Fundamental Performance
w g dt

- 2% ) dt Equation (FPE)

where e, the sum of potential and kinetic energies per unit weight, is called the aircraft’s specific energy
or energy height. The equation is often called the Fundamental Performance Equation and is the basis
for most performance analysis (and design for performance). The rate of change of KE is often ignored.

The term (T-D)/W is called the specific excess thrust and (T-D)V/W is called the specific excess power, i.e.
the amount of thrust/power per unit weight available to increase the aircraft’s altitude or speed, or both.




Level unaccelerated flight

Analysis of steady level flight

L Lift S . .
V (Some artistic liberty is used in
— this diagram: typically L is
MUCH greater than D.)
T D
== b~ Note that L/D = W/T.
Thrust Drag

(And so, correspondingly, W is

€ = 0 assumed. typically much greater than T.)

W ﬂWeight

Understanding steady level flight is the key to understanding aircraft performance.

Central to this understanding is the relationship between lift, drag, speed and altitude (air density).

Questions we want to obtain answers to:

IZEE O

How are drag (thrust) and speed related?

How are power and speed related?

What is the effect of altitude on these relationships?

How fast and high can an aircraft fly?

How far can an aircraft travel with a given amount of fuel?

How long can an aircraft stay in the air with a given amount of fuel?



Lift, drag & thrust in level flight

174 L gptt V. Tcose— D .
—_— — = i —sind
T ~ Returning to i T I p
[ v _ sin € + _ cos
Thrust Drag g VW V
ith V=0, 6=0, §=0 and e¢=
W ﬂWeoght W ‘
_ o T=D Fromsimilar | 7 _ D _Cp _ 1
We have the simple relationships W1 triangles (W “ L C. C.)Ch .
- T . . T—-D
This is the fundamental performance equation in its most simplified form: 5 = 0
Thrust ired to fl T W Mini thrust ired to fly: T W
rust required to fly: == inimum thrust required to fly: min = T4 A4
a YR er/cn d Yo R T (O CD)

We now look at the relationship between thrust required (drag) and speed, given W, S and altitude (o).

O L=73pV?SC=W vl w
1 W 2w 1 800 = ks " \We find there is a
9 CL = — = - ..
1 2
5!0‘/2 S P SV £ 600 = Which is the required thrust definite Speed
) & < tha}jgg‘ggfcf a  corresponding to
® Cp=Cpo+ KO a0 - minimum o3 minimum drag in
© .
o UL Cr arepeed = 4 e level flight and for
— minimum
CD N CD o+ KC% 200 LI required _§ z Iarger thrusts there
e Sl thrust 2% could be two
® T=D= C1L/C ¥ = ~ s possible speeds.
L D = .

Voo, ft/s

Lift, drag & thrust in level flight

The underlying reason is that the lift/drag ratio depends on angle of attack and C. through the speed of flight.
L/D Tk ’

(or GulCo) (L/D)ma

=(L/D)* = (C/Cp)* /!

., Stall limit

b increasing Ct.

& Increasing angle of attack - 7

| [
A | U S P v
0'(l.,.’l))“““ « Increasing velocity i

Through some analysis

|
|
I
|
|
|
|
|
|
|
|

TR Note:
2 ote:
D = 4o SCp = ¢S (CD’O + KCL) zero-lift-drag = induced drag «---... 4
w at minimum.
Cr=—— N
GooS
K (W)\?

Tr=D=S|3pViCpo++— | =

i 2PYoo™ D0 %pVOQO S total drag

zero-lift drag lift-induced drag

we see that one contribution to drag A
varies with V2, the other with V-2,
Understanding and manipulating these

relationships is the key to aircraft performance.

‘/(L/D)max = V* VOO



Lift, drag & thrust in level flight

ie. K= Cpo
Coefficient of lift at L/Dmax, C.* ' Ci?
Cp Cpo+KC; Cpyo . d(Cp/Cy) Cpbo C
—_—= 2 = H KC . = — ? K = * D,O
C, cr c, + L Find TP a0, 2 + 0 cF = 2
Corresponding L/Dmax, a.k.a. (L/D)*, same as (C./Cp)* Ch =20pg

(&)*_ Ci . Ci B Ci B vCb.o _ 1
Cp Cpo+KC* Cpo+K(Cpo/K) 2Cpy VK2Cpo  +/ACpoK

Minimum-drag airspeed in level flight, V*

oW 1 aw\Y2/ K\
V* = _—— = _—— —_—
)5 C; (p S) (CD,0>

Dependence of L/D on airspeed

Cr Cx Ju? B Cx(1/u?)
Cp Cpo+KC?/ut ~ Cpo(1+1/ut)
Cy, 2 u? Cr\* 2u?
Cp T CD,OKU4+1:<@) ut +1
(dimensionless) constant x function(speed)
%% We are gaining a clearer
Recall Tk = C./Cp  understanding of how Tr

depends on speed.

Speed for a given thrust

What is the speed for a propulsive thrust Ta > Tmin?

We see that there are two possible solutions.

Dimensionless airspeed, u =V / V*

Voo =V =uV* o 2w 11 .1
SO L_pSV*2U2 L2
T T T T I T T T T
5
~ 2u?/(u+1)
o - i
S~
~
S ]
N
~ - -
[8) < S
L Inviscid drag Viscous drag E
degrades C./Cp. degrades C./Cp.
0 1 1 1 1 1 1 1 1
0 1 2
u=Vv/v

ut+1

2u?

Ta_D _D_(Cp\ w+u? (Cp
w W L \Cp 2 -\ Oy
Rearrange:
T C % " +pr+q=0
u4—2A<L> W+1=0 , [7p
i (o S RC

Solve quadratic in uz:
CL\ ([T
W \Cp W
. Cr\" Ta
u1,2—{ (CD) :I:([W
2W 1

1/2
TAS =Viu= (22—
V=V"u (p 5 Cz) U

2 T

u

Ta

W

IAS

Aircraft may stall
before reaching
this lower speed.

—

/
Ta = thryst provided by propulsion/
(assumed constant

|

E for jet aircraft)

N
=
&~
1

Eu72 \ F // 1,2

N
L T~ —
—_— - T T —— _
1 u=V/V*

One can show that ujus =1

Note Vi =V"ui,

Ve =Viu=+/cV*u

o=

wher =
ere PSL

Alternatively, the equivalent without exploiting non-dimensionalization w.r.t. the minimum-drag values is:

(Ta/W)(W/S) & (W/S) ([Ta/W]?2 — 4Cp oK)

1/2

V1,2={

pCbo

1/2}



Altitude effect on minimum thrust required

How does a change in altitude affect the thrust required? 4
T D\* g
— = (=) =2\/CpoK, Tin=2W\/CpoK =
W min L ' ' ~
=
Note that this does not depend on altitude. Note again that at
Reducing W, Cp, or K reduces Tmin. 1 minimum crag, the
We see that for this condition, the zero-lift to t:;tg;ﬂa‘f_rag
drag equals the induced drag:
Cly = Cpo+KC:2 = Cpo+ KCpo/K = 2Cp E————
& r / 1 w=V/V*
How does a change in altitude affect the speed at minimum thrust condition?
IAS
9 W 1/2 1 1/2 92 W 1/2 K 1/4
Vo= (—§> (C*) = (_g) (C ) (a constant, SL-equivalent value).
Po L Lo D,0
TAS D Increasing

altitude

1/2 1/2 "
V* — (Zﬂ) / (i) / _ V_e (recall o reduces
p S Ck \/o  as hincreases).

*The minimum drag force is independent of altitude,
but the corresponding TAS increases with altitude. P |———-——-><"=

lnduccd/

drag

Provided there is enough thrust, we can fly faster
by increasing altitude (or increasing wing loading).

Altitude effect on thrust available

What is the maximum altitude in level steady flight with a jet engine?

While the thrust required Tr does not change with altitude, the thrust available Ta falls.

It is most convenient to plot the drag curve with Ve (or u) as abscissa, since it is the same at all altitudes.
Over this we plot the available powerplant thrust T4 as a function of Ve and h.

The altitude at which the available thrust falls below the minimum drag is the aircraft’s ceiling.

The approach here is graphical but if we can describe the variation of thrust with speed and altitude
then we can solve the problem numerically. If we assume thrust is independent of speed and just
depends on altitude, the solution becomes reasonably simple.

Recall:
D A simple and reasonable
T, D approximation for cruise is

TA ~ ’I’T() (ﬁ)
Po

s
PA %’I‘PO (ﬁ)
Po

= where 0 denotes sea-level
static rated values and

r~0.5, s~0.7

20,000 ft

q\

[
\L Aircraft ceiling
I~ approx. 48,000ft. ‘00T

30,000 ft

l.e. thrust is only a function of h.

v, v* Ve (The thrust model shown in the
5 ¢ figure here is slightly more
sophisticated.)



Jonson & Coman_ |_ockheed SR71 initial design %‘9’
v Z °

Kelly Johnson’s initial design for the SR71, a supersonic successor to the
U2 spyplane, started with the choice of two J58 turbojets for propulsion.

The U2, essentially a glider with one turbofan, had an airframe mass of 2.6 t.
SR71 cruise range approx. 6500 km, speed Mach 3 at 90000 ft (approx 800 m/s).

At the design cruise altitude and speed of 90,000 ft and Mach 3, the J58 was
capable of T = 18 kN thrust with TSFC c: = 68 mg/s/N. Mass 2.7 t (each).

Preliminary aerodynamic estimates gave best L/D approx. 7.5.
So maximum initial cruise weight
Cr,

W_T(C) =2x 18 x 10® x 7.5 N = 270 kN or amass of 27.5 t.
D

As a very rough estimate, the amount of fuel required

) range R
R~ =g T —
Wy g Xy x poed gcy v
103 .
— 9.8 %68 %1070 x 2 x 18 x 103 x % N = 195 kN i.e. mass 20 t.

That left a target airframe mass of 27.5-20-2x 2.7= 21t
or only 80% of the U2’s airframe mass, seemingly unlikely.

In turn that left Johnson and his team with some more thinking to do!

Full story in From Rainbow to Gusto by Paul Suhler (AIAA).

Example - Grumman Gulfstream IV business jet

Supplied data:
W=324kN, S=88.3m2, b=23.7m

Estimated Cp,0 = 0.015, aircraft efficiency factor e = 0.85

Engines 2x R-R turbofan, SL static thrust To = 65 kN each

T 0.7
Thrust model =2 = 0.5 (p> = 0.50"7
Th PSL

-n

ind

1.
2.
3.
4.
5.

Minimum thrust required for level flight

Equivalent (SL) airspeed at this thrust (IAS)

Estimated minimum, maximum SL airspeeds

Estimated minimum, maximum airspeeds at 11km altitude
Estimated maximum altitude for level flight

Aerodynamic parameters b2 2372 1 1

= K=—= = 0.0589
S~ 883 0 mAe 7 x6.36 x 0.8

«_ [Cpo  [0.015 <CL>* - 1 — ! =16.8
Ci=\TFx ~ \/0,0589 = 0505 Co JiChoK  vVIx0015x 0058

1. Minimum thrust required for level flight

W 324 kN = 19.3kN TRmin 1 1

(CL/Cp)* ~ 168 W~ (Cp/Cp) 168

TR,min = = 0.0595




Example — Grumman Gulfstream IV business jet

2. Equivalent (SL) airspeed at this thrust

o [2wa
© \pSC;

2 1
= \/1225 X 3670 x 0505 m/s =108.9m/s (Mach number M = 108.9/340.3=0.320)

3. Estimated maximum, minimum SL airspeeds

Ty  050%"T, 05T, 0.5x 130
fa _ - . —0.201 0.0595 v
W W W 324 (> 0.0595 )

o (@)

, 1/2) 1/2
= {0.201 x 16.8 + ([0.201 x 16.8]% — 1) }

= {3.370 £ 3.2186}"/% = 2.567, 0.389  (u1 x up = 1)

Vie = w12V, = {2.567, 0.389} x 108.9m/s = 279.6 m/s, 42.4m/s

1 2 3670

2W
o . L s . Cr=2__—_ —_Z « = 3.33
We note that the minimum value is unrealistically low as it implies that C7, » 5 V22 1295 ~ 12.42

This could not be achieved without the aid of significant high-lift devices.

However the upper speed, 279.6m/s, corresponds to a Mach number of 279.6/340.3 = 0.822, which is
not unrealistic for this type of aircraft.

Example - Grumman Gulfstream IV business jet

4. Estimated maximum, minimum airspeeds at hg=11km At 11km, p = 0.2971 x 1.225 kg/m3 (o = 0.2971).

Ty 27.8
T = 337 = 00858 (>0.0595Y)

Ta = T50.50%7 = 130 x 0.5 x 0.2971%7 kN = 27.8 kN
. a2 1/2 1/2
wo = JTa(CN ([Ta (CLN|
YT Y w\ep w \Cp
, 1/271/2
- {0.0858 X 16.8 + ([0.0858 % 16.8]% — 1) }

= {14414 £1.0381}"/% = 1575, 0.635 (w1 x uz = 1V)

% 108.9
= ——m/s =199.8m/s Vie =314.7m/s, 126.9m/s

e
Voo 1/0.2971

The lower speed implies C. = 1.25, which is achievable without flaps. ¢/
The higher speed implies M = 1.07, which is somewhat unlikely (indicates a problem with our modelling).

Vio =upoV” V* =

5. Estimated maximum altitude for level flight

Maximum altitude capability occurs where Ty = = TR min = 19.7kN

W
(Cr/Cp)*
Ty =Tp0.50"" =130 x 0.5¢°7 = 19.7kN

19.3

1/0.7
72 =0.1 = =0.1765 x 1.225ke/m> = 0.2162 kg /m>
05 130) 01765 p=0p0 g/m g/m

Rearrange: o = (

Interpolating in ISA tables, we find h = 14.35 km.



Example — Grumman Gulfstream IV business jet

Finally we show the envelopes of equivalent and true air speeds predicted from the analysis.

15 = T
- e ’.—0\.\ ||
L o\ i
[ * ]
— 10 | Wi
g i N Recall that
= 7] Ve Ve
S [y v a4 Vo \/p/po
5 = e , $ —
- Achievable ! 8
i TAS region ] i
O L 1 1 I 1 ]
0 100 200 300

V, V_ [m/s]

Naturally, we can fly at speeds (either EAS or TAS) inside the envelopes by reducing the throttle
setting and/or changing the aircraft trim.

We note that other limitations may over-ride the predictions made on the basis of the propulsion
model and drag polar. At the low-speed end the aircraft may stall, severely increasing drag above
the simple model provided by the drag polar. At the high-speed end, Mach number (compressibility)
effects may increase the drag well above that predicted by the drag polar, too.

Power in level flight

If engine performance is better characterised by available power than thrust and e.g. we are interested
in minimum power required to fly, the analysis is similar but the outcomes somewhat different.

The aircraft thrust-speed curve is converted to a power-speed curve by multiplying through by velocity,
sinceP=TV=DV.

/
/
T,D P, DV /oy
/
/
/
xV /
\ /
N
AN /
AN ~_/
- - /T\\\“\~\3Ki
— — —
VTmin =V* VvV VPmin

We see that the minimum-power speed is lower than the minimum-thrust speed.

w w
Thrust required to fly: Tr = CriCh Power required to fly: Pr =TrVe = mvoo
2W 1 w 2W 1 2 W3 C?
i Voo = 4/ === Pr=—— |- — Pp=,/-"—=2
Since .S we see that R .o\ v 5y or R )5 Co

2 W3 C3 1 . .
Pr=\\l-—(GF5 X 75— We can see that Pg is a minimum at (C.32/Cp)max (and also at psL).
p S CL ey




Power in level flight

To find the speed for minimum power, where we have (C.32/Cp)max , We return to the relationship

where u = V/V* (CL> _

Co_(Coy 2 (G} 2 Co) ~ Aok
Cp Cp u? 4+ u—2 Cp ut +1 V= g[ 1 . CD,O
pSCy Cr = K

Since W =L =1pv25C; = 1pv*25C; wehave CLVZ=C;V*? or (Cp)Y%=(C})"?/u

c3? c CL\* 2u 2u
So ZL_=ci?ZL—(one|ZE) = ——— has a maximum where u = (1/3)"/* = 0.760
CD L CD ( L) CD ul +1 ul +1 ( / )
- - T T T T T T T ] This means the airspeed for minimum power
is lower than that for minimum drag by
;1‘1407— i factor of (1/3)174 = 0.760.
1 = <. —
L K ’ \\fu /(121/)6 . If we substitute back the relationships above into
* P _ [2WC
[ ,// 2u/(ut+1) i w P S C%
r /, 0(Cl_s/z/cu 7
el Tl S we have the following relationship for minimum
0 0 1 2 power loading, P/W:
u=Vv/v’

Best to fly at minimum

P 9 1/4 9 1/2 9 1/2 ’ .
(_) _ < 56> (pZ) (CD,OK3)1/4 e (_K) (CD,0K3)1/4 altitude, largest p

27 More important to

reduce K than Cp.

20

Power in level flight

We can also easily recover the minimum-
drag airspeed from the Pr vs V curve.

Draw a line from the origin that is just
tangential to the Pr vs V curve. This has
the minimum value of Pr/V.

But since Pr = TRV, (i.e. Pr/V = Thg), this line
corresponds to minimum Tgr, and is tangential
to the curve at the speed for (L/D)max.

| (L/D)max
I
I

J 'min PR l’min R Vao

Procedures for establishing minimum and maximum airspeeds with an available amount of power (Pa)

are similar to those for the case when the available thrust (T4) was supplied.

However even if power is independent of airspeed (prop aircraft) we now have to establish the intersection
points graphically or numerically (since we can’t make a quadratic equation that can be solved analytically).

cJ
'r 22,000 ft

500 - CP-1
sea level

400 -

10

Horsepower

300

Homepower X

——
hp,

|
]
100 = hpg 1V imax = 265 ft/s

| 1
1 | | 1 1
0 100 200 300 400

Ve, ft/s
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Altitude effect on power required

2 W3 Cz 2W3 Cz Po PRO
i Pro= 4| ——2 i Prow = (| =~ — =2 in Prai = Proy/— = —~
Now since at SL, Pr,o o S O3 and at altitude Pr,ait , 5 3 obtain Pg,alt R,0 P NG
Likewi Vo=V, = EEL Vi = EKL Vi, = V. @_Ve
IKewlse 0= Ve = 2 S CL alt = P S CL alt e P \/E
| Map SL Prpo to Pratt.

Propeller-driven aircraft typically have

Map SL Vo to Var. > their maximum speeds at SL:

- E— . level
L\ P, P at sea \eve

J Point corresponding
|
|
|
|
I

Point corresponding to a given (. ‘ ,
\ Maximuin Pa

to same Cy, but at
altitude

|
I
|
|
L
Vo It )
| S
L — - s
Voo e
§ s
I/_F
Pr - 7/
’ S /
N4 |
‘ 7 !
| \\&/ i
% | |
/ . |
/ | | |
% fizs
I
Find that Pr-V curves 12 I's
‘ are mapped up and to the | 3 | 8
right as altitude increases. ‘; i = )
VOO

v

=

Example - Bombardier Dash 8 regional turboprop

Supplied data:
W=155kN, S=544m2, b=25.9m

Estimated Cp,o = 0.02, aircraft efficiency factor e = 0.80

Engines 2x PW turboprop, SL static power Po = 1.53 GW each

P 0.7
Power model -2 — <p> =g"7
Py PSL

Estimate

1. Minimum power required for level flight at 5 km altitude
2. Airspeeds: TAS and EAS at this condition
3. Maximum SL airspeed

Aerodynamic parameters A= ﬁ = 25.9° =123 K = 1 = 1 = 0.0323
S 54.4 mAe T x 12.3 x 0.80
Cho \/ 0.02 (CL ) * 1 1
Ci = — = = 0.787 — ] = = =19.7
v K 0.0323 Cp VACp oK V4% 0.02 % 0.0323
w 155
— = —kPA =2 P
S~ 544 850 Pa

1. Minimum power required for level flight at 5km

P 2\ /? g\ 1/4 5 p  0.7364
) s (2 —0.7364 k =2 - =0.6011
<W>min 1.755 <p S ) (CpoK®) p=0.T360kg/m® 0= = So0s = 060
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Example - Bombardier Dash 8 regional turboprop

p 9 1/2
<W> =1.755 <0 Tl 2850> (0.02 x 0.0323%)

Prin = 155 x 4.42 kW = 686 kW

Y4 W/N = 4.42 W/N

Check: available power P4 = 0%7Py = 0.6011%7Py = 0.700 x 2 x 1530 kW = 2143 kW ¢ OK

2. TAS and EAS at this condition

* * 2W 1
At minimum power V' = Umin power V" = 0.760V" = 0.7604 | - —
p S Ck

2 1
=0. = x2 —_m/s=T75.4
0.760 x \/0.7364 x 2850 x 0787 m/s =754 m/s

Always V. =+/oV =+v0.6011 x 75.4 m/s = 58.4 m/s

3. Estimated maximum speed at SL

Maximum available power Pa = 2 x 1530 kW = 3060 kW.
P Vm/S CL CD \/C%/C% PR kW
. . 2W C%
Power required to flyis Pr =W R 100 | 0.4653 | 0.027 | 0.8505| 899
L
200 |0.1163 | 0.0204 | 0.5151 | 5446
Cp=Cpo+KC? and Cp= W1
b=~Do L p S V2 150 |0.2068 | 0.0214 | 0.2274 | 2404
Solve Pa = Pr iteratively/graphically for V. 160 |0.1818 | 0.0211|0.2719 | 2875
This occurs close to 163 m/s, accept V = 163 m/s. 163 |0.1751| 0.021 | 0.2864 | 3028

L

Paul MacCready got the basic idea for the first really successful HPA designs by considering hang-glider flight.

Hang-gliders are powered by gravity. If a pilot and glider have a mass of 90kg and sinking speed Vs = 1.2m/s,
the power supplied by gravity is P = mgVs =90 x 9.81 x 1.2 W = 1.06 kW.

To sustain level flight, a human powerplant would then need to sustain about 1 kW. But even elite cyclists can
only maintain about 400 W over extended periods.

W

Since Pp = ————
' r=cL/ch

2W 1
\/ ;ga MacCready’s aim was to reduce wing loading W/S while keeping W fixed.

MacCready reasoned that if the wing area S were increased by a factor of 9 over that for a hang-glider but
W kept much the same then (W/S)"2 would fall by a factor of 3, as would the power requirement, Pkr.

That would reduce the power required to 1060/3 W = 353 W, within the capacity of an elite cyclist.

The reduction in W/S was achieved, and designs by the
team went on to break all the records and win a number
of major prizes.

The challenges presented and the efforts of the team
to overcome them are well described in the book
Gossamer Odyssey by Morton Grosser.
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Scaling laws D

a.k.a. Allometry

@ metanophris): W38 N, 5=032 n?, 0

Consider the idea that all sea-birds are similar in structure.

And that they have related cruise performance.

v
w S wis m/sec mph
Common tern 1.15 0.050 23 7.8 18
Dove prion 1.70 0.046 37 9.9 22
Black-headed gull 2.30 0.075 31 9.0 20
Black skimmer 3.00 0.089 34 94 21
Common gull 3.67 0.115 32 9.2 21
Kittiwake 3.90 0.101 39 10.1 23
Royal tern 4.70 0.108 44 10.7 24
Fulmar 8.20 0.124 66 13.2 30
Herring gull 9.40 0.181 52 1.7 26
Great skua 135 0.214 63 12.9 29
Great black-billed gull 19.2 0.272 Al 136 31
Sooty albatross 28.0 0.340 82 14.7 33
Black-browed albatross 38.0 0.360 106 16.7 38
Wandering albatross 87.0 0.620 140 19.2 43

Kocb—»Kocwl/?'

S /S

boc WI/3

S b Wobd

™~
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The Great Flight Diagram

Now consider the idea that cruising
performance in all powered flight is related.

)\ .
e .

First we expand the range of weights (over an immense
11-decade range!) and change the constant of the
previous power law curve, moving it to the right to
better fit all the data.

Finally, think about flight speed. L =W = pV25C,,

p ~ 1.25 kg/m?

Representative values: ClLoruiee = 0.6

W ~0.38V2§ —> g ~ 0.38V2

used to obtain the lower scale on the diagram from W/S.

W
Recall < W/3 hence now also V. o W /6

Considering the huge range of W, it is equally reasonable
to use either of these power laws to correlate the data.

weight W (newtons)

108

10°

10*

10°

10?

10"

102

10°

10

On log-log scale
power laws = straight lines
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Gliding flight

Range and endurance in gliding flight

Gliding flight is a special case where there is no engine power supplied. Gravitational potential
enerqgy is dissipated to drag power. The vertical velocity component is the sink speed Vs.

Force equilibrium

1
P 5 COS’YciL

L = W cosvy Voo = 2w
D = Wsinvy

Note: similar triangles

Rate of energy dissipation = rate of loss of potential energy DV, = WV, siny = WVys

1. To maximize range R for a given height loss h (minimize ), maximize L/D. i.e. fly @ (CL/Cp)max
1/2
L =Wcosy = %prOSCjS Cy = (C]D{’O> Now if (as is typical) cosy — 1
1/2
v 2 W cos~y 1/2 v RV 2W( K )1/2 /
oo — p S C;‘fj o0, max range p S CD’O

Note that at fixed W/S, the TAS for best range increases with altitude but the glide angle y and IAS do not.
Alternatively, increasing W/S does not alter the best glide angle y or distance travelled for given height loss.
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Range and endurance in gliding flight

2. To maximize endurance for a given height loss (or, maximize rate of climb in rising air), minimize Vs.

D .5 . pS(2W 1N\ 2w\? a2 Cp
VS = Voo sy = VOOW = OOQpVooWCD = iw (pS COS’YC'L) CD = ;g (COS’Y) 02/2

2w\ ¢ -
Typically, glide angle ~ is small, so assume cosy —1 = Vs= (— ) D ie.fly @

3/2
1 PS5/ C}®  (CL¥2/Cp)max
For large glide angles, use cos(arctanz) =
) V1+ 22

1/2
30 ow [ K \?
One can show that C7, min sink = DO hence Voo,min sink = |~
’ P S 3CD70

K
Fly at what would be the minimum-power airspeed in level flight, i.e. 0.760 V*.
Fly slower than for maximum range.

Recall: rate of energy dissipation = rate of loss of potential energy = gravity power.
We dissipate potential energy at the slowest rate by gliding at (C.3/2/Cp)max.

Glider performance Equilibrium glide velocity V., —— Increasing Vyy— Increasing
information is often plotted in \\\\}Wmm
the form of a ‘g|lde minimum sink e minimum sink

hodograph’ which is sink rate
Vs plotted against either Vi or
V. (which are very similar).

Increasing Vs
N
5
e}

This is just another way of
showing the information
contained in the drag polar.

Rate of descent (sink rate) Vs
Increasing

30

Glide testing to estimate drag polar information

First set aircraft trim to achieve (L/D)*, At (L/D)* we have Cp = Cp =2Cp Cp,o=Cp/2
i.e. to achieve maximum range for a C
given height drop. and Cp =Cjp =4/ % K= C‘,:M)/C’,“-:2

For steady state glide, measure
h, R and duration T.

Also need W and S.

v=tan"'(h/R) (typically v — 0 and cosy — 1)
Sink speed Vs =h/T

Airspeed Voo = Vh2+ R?/T

WV,
Energy dissipation DV, =WVs or D = v 5
oo
2D 1 2W Vg
— l 2 g 1 = —-——— = - — ——
D= 3pVa5Cp = Wsiny Cp pSVZ pSVE These statements all hold true
2 W cos regardless of aircraft trim state (i.e.
L= %prOSCL = W cos~y Cr, = ;§ VQV where on the drag polar we are flying).

After trimming to obtain best range, use the measurements
to obtain Cp and Cy, i.e. Cp* and C.*, hence first Cp,0 then K.
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Anderson chapter 6

Range (distance flown) and endurance (time flown)

First, the simple principles:
Two idealized engine classes:

1. fuel mass flow rate 1y is proportional to power (typical of propeller engine incl. turboprop);
2. fuel mass flow rate v is proportional to thrust (typical of jet engine).

To maximize endurance, minimize the weight of fuel consumed per unit time, i.e. my
To maximize range. minimize the weight of fuel consumed per unit distance. i.e. 7 At/As =1y /Vy

Recall:

For power-type propulsion we use power-specific fuel consumption, PSFC, given the symbol cp.

Sl units are kg/W.s. Note the values below are in mg/W.s

(Range) (Endurance)
Typical PSFCs,cp: 1bm/bhp/hr {mg/W.s} Cruise Loiter
Piston-prop (fixed pitch) 0.4 {068} 0.5 {.085}
Piston-prop (variable pitch) 0.4 {.068} 0.5 {.085}
Turboprop 0.5 {.085} 0.6 {.101}

For thrust-type propulsion we use thrust-specific fuel consumption, TSFC, given the symbol c:.

Sl units are kg/N.s. Note the typical values below are in mg/N.s

Typical TSFCs, ¢;: 1bm/Ibf/hr {mg/N.s} Cruise Loiter

Pure turbojet 0.9 {25.5} 0.8 {22.7}
Low-bypass turbofan 0.8 {22.7} 0.7 {19.8}
High-bypass turbofan 0.5 {14.1} 0.4 {11.3}

Raymer
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Range and endurance

Pr
PSFC ¢, = mass of fuel consumed per unit power per unit time.

Maximum endurance: minimise kg of fuel per second

kg fuel/second <« cp x Ps. (Psis shaft power)
Fly at minimum-power speed, i.e. (C.32/Cp)max.

Maximum range: minimize kg of fuel per m travelled
kg fuel/m « (kg fuel/sec)/(m/sec) = ¢p x Ps /Vw = Cp x TR/Npr.

’T/
:
|
|

‘ Fly at minimum-drag (and thrust) speed, V*, (C./Cp)max.
4 ! 1
V for V for Vo
maximum maximum
endurance range

TSFC ct = mass of fuel consumed per unit thrust per unit time.

Maximum endurance: minimise kg of fuel per second

kg fuel/second <« ct x Tr.

Fly at minimum-drag (and thrust) speed, V*, (C./Cp)max.

Maximum range: minimize kg of fuel per m travelled
kg fuel/m o (kg fuel/sec)/(m/sec) = ¢t x TR/ V.

T - =\ psac SO Vo T ValCu/Cp) ~ ¢y,
V for V for Voo
maximum maximum .. . . .
endurance range Fly at minimum power/kinetic energy speed, i.e. (C.2/Cp)max.
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Three optimal aerodynamic ratios and flight speeds

The ratios C.%2/Cp =« L/(DV), CL/Cp =« L/D and C.1/2/Cp « VL/D can all be considered as functions of
dimensionless speed u=V/V* where V* is the minimum-drag speed.

We already know _- - - - - - - ]
* * 2
L_(Cu\' 2 (Cu)" 2 : e, ]
D Cp) uw?+u? Cp) ut+1 —1.140 R0 RN ~—_
1 v > o~ =~ ~
L 1 2U2 2u Speed function associated —0.866 ", 4 \\
and D7V 8 ; U47—|-1 = ut +1 V\ﬁth best prop endurance B ,/’ // \\\\ CL/CD 7
2 3 i // / \\\ ]
E 2u _ 2u Speed function associated | /, / RN < ]
SO D X u U4 +1 - ’lL4 +1 with best jet range /’ / S -~
LS // c,2/c, 3
K P 0.760 1.316
Plotting and then analysing these functions 0 = b b ' '
we can find various useful ratios associated 0 L . °
with the maxima which are tabulated below. u=v/v
Function Dimensionless V/V*, at max (L/D)/(L/D)*, at max  C./C.* at max
L/(DV) C132/Cp (1/3)174=0.760 (3/4)12=0.866 3172 =1732
L/D CL/Cp 1 1 1
(VL)/D C.12/Cp (83)174=1.316 (3/4)12=0.866 (1/3)2 = 0.577

Recall: C.* = (Cp,o/K)"2; (C./Cp)* = 1/(4Cp,oK)"2; V* = [(2/p)(W/S)(1/CL*)]"2.
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Range and endurance

Range; based on weight of fuel consumed per unit distance.

Minimize 7isueldt/da = ritsuer/ Vo
dt W dwdt AW _ AW

dR \%
—=—-—=—-——_—_=——_=——— whereRisrange. Hence |——=——"—
" T TV dt dr | dz dR 9 AW g
. w
Jet mgzgctT and T = IJ/_D
dR 1% 1% 1 L1 _ Wr 1 LdW Wi 1 Law
— === =——V=-—= ie. R=-— —V=—= —V—=——"
dw me g, T ge, DW w, g D W w, 8 D W

where Wi, is the initial, Wk is the final aircraft weight for a flight segment.

1 L f
Now assuming ¢, V, L/D are all constants: R= —V—1In W
gCy D Wf

=(9/16)1/4
We already know that VL/D is largest when we fly at (CL/2/Cp)max., i.e. L/D=(3/4)2(L/D)* and V=31/4V*,

o7\ V4 1 L\* W, 1.140 L\ W,
Rowx = [ 2£)  —v*(Z) In—i= Vi (Z) m—=
() wv(5) mw = (o) m

Dj W .
Mpr 1S
propeller
. cp, DV c, TV c, WV dR 1% (L/D efficiency,
Prop| g =ge,Ps = 22— =B — = @D A iE - i é/_) Nor = 0.8,
npr npr npr g g P
dR = e L AW Hence, to maximise, assuming L/D and cp const: Ryax = Tlpr (E) In Wi
g, D W ge, \ D Wy

(As originally derived by French engineer Breguet — the generic label for all these related equations.)

36

Range and endurance

Endurance; based on weight of fuel consumed per unit time. Minimize Mel

= here E is end H g 1
—W=--3=-4g \WhereEisendurance. ence

dw g
mg=gc, T Then, working similarly to previously for jet range, we have
1
ap— L LdW

Jet

Assuming ctand L/D const: E = 1L, W B = 1Ly W
gee D W gee D Wy ger \ D Wy
. gc, DV gc, TV gep, WV
Prop| Asabove: mg=gc,Ps = = =
? Tlpr Tlpr npr(L/D)
qp— M LLAW o e 1 LW

= which we know is maximized when flying at (C.32/Cp)max,
ge, VD W ge, VD Wy

D

27\ e 1 (LN W
where L/D = 0.866(L/D)*, V = 0.760V™": Emax:( ) i ( ) "

16 gcp Vv Wy

To maximize endurance for propeller aircraft,
typically want to have small induced drag (hence
high aspect ratio), and fly at low altitude. This
Breguet Atlantique ASW aircraft is one example.

S
NB: In a design problem, we will often have the range or endurance specified and
need to find the weight fraction Wi/Wr and from this Wiwel = W; (1-Wx¢W)).
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Range and endurance: the three aspects of design

It is interesting to note that the range and endurance equations engage the three central aircraft
design disciplines of (1) aerodynamics (2) propulsion (3) structures.

E.g. the jet range equation (all range/endurance equations are of similar form):

Propulsion

design

1 Wi

Aerodynamic Structural

design design

The goal of each design discipline is to maximise its ratio in this equation.

But in reality all the disciplines are coupled.
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Range and endurance

Optimal conditions for range and endurance all demand flying at fixed points on the drag polar.

Range, R
Type Equation Optimal flight strategy
Jet R_ iv£ In 1% Maximized at high altitude (high V = low p).
e T ga D W Fly at 1.316V*, 0.577C.* 0.866(CL/Cp)*.
Nor L W Independent of altitude.
Pro R= —1
P gc, D VW, Fly at V*, C.*, (CL/Cp)*.

A conceptual difficulty is that for jet aircraft, the above suggests that range increases indefinitely as
altitude is increased (reducing p, increasing V*). Eventually, Mach number and/or propulsion system
limits start to take effect and invalidate this simple model. But for now, it’s good enough.

Endurance, E

Type Equation Optimal flight strategy
Jet o 1L In Wi Independent of altitude.
ga D Wy Fly at V*, C.*, (CL/Cp)*.
p e 1L 1 W; Maximized at low altitude (low V = high p).
rop T e, VD W Fly at 0.760V*, 1.732C.* 0.866(C./Cp)*.
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Example — Grumman Gulfstream IV business jet

Wo=324 kN, S=88.3m2, b=23.7m.
\ g . TSFC for cruise: ¢t = 18 mg/N.s = 18x10-6 kg/N.s.
If the aircraft’s maximum takeoff weight is 40% fuel,
estimate the maximum cruise range at altitude h = 11km.

Wing loading at MTOW, Wo/S = 324/88.3 kPa = 3.67 kPa.

Previously derived C.* = 0.505 and (C./Cp)* = 16.8.

1.140 L\ W, W; 1
max — 7‘/* - 1 ! - = U. 3 .
Know R = ( D> n W, and 17 5 Tables say p = 0.3640 kg/m3 @ 11km

Now, V*is a function of W/S. It is appropriate to use an average value of (W/S)avg = 0.8 x 3.67 kPa = 2.94 kPa.

2 (W 1 1z 9 1 1/2
Ve = | 5 g = 2940 x —— = 1788
an (P ( S )m Cz) (0.3640 x x 0.505) m/s m/s

We note V(C.2/Cp)max = 1.316 V* = 235.4 m/s. This is a Mach number of 235.4/295.2 @ 11 km, M = 0.80.

B 1.140
T 981 x18 x 10-6

1
x 178.8 x 16.8 x In gm = 9.906 x 10%m = 9906 km = 5347 nm

Manufacturer’s specification gives R = 7815 km.

We have not allowed for takeoff, climb, landing, and reserves. Certainly we are in the right ballpark.
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Range and endurance as areas on a graph

Recall the differential equations we developed for endurance and range.

Endurance; based on weight of fuel consumed per unit time.

dw dw . de. 1
- dm where E is endurance. Hence a7

mg:—W:— _

Range; based on weight of fuel consumed per unit distance.
W dwdt AW _ AW dr _V

= = ~——— =_-"_"_ where Risrange.
dx Vv dt dzx dx dR 9 Hence

aw mg

g

We made various idealisations so that we could develop simple first-pass estimates (the Breguet
equations), but in general — and probably more accurately — the equations can be seen as the basis for
integral estimates (either graphical or numerical). For this approach the idealisations are not needed.

—p> W

(a) Endurance (b) Range
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Steady climbing flight

h T .
vV T - D
Returning to g
_ yat G_Tsine—i—L cos 0
dh g VW %
Simil with VZO, =0 and e=0
D \ tri;r:g;gs ( Vv
&= wl = —— 0 YW The central difference to the steady level
w =me Vir flight case is that now 6 # 0.
p
= The two equations of equilibrium reduce to A sinf and L = W cosf
< From the first equation there are two related parameters Rate of
:_“ climb-Vy
Angle of climb sinf = Y —1-D_P-DV 3 etan Best rate of climb
angie ol cimb - v - - est angle
(;2 (T g;v PWEV of climb ///
Rate of climb W = i W =

Their maxima occur at different airspeeds.
(T-D)
w

(T - D)V
W

called the specific excess thrust, gives climb angle.

called the specific excess power, is climb speed.

7N

/
7
7

Raymer

* Vy=V
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Pow

V =
(VV)max ( 3/)CD,O

Climb rate and climb angle

Anale of clim sing — 7 T-p P-DV T D T D T 1
= — = = = e N e = —— —
Angle oLCIMD - St = =, W WV W w W L W Cp/Cp
. _dh (T-D)V _P-DV
Rate of climb VV_E_ W = T

The greatest angle of climb will occur for a flight speed where the specific excess thrust is largest.

For a jet-propelled aircraft where the thrust is almost independent of speed, this occurs when we fly near
the minimum drag speed, i.e. at (C./Cp)max = (CL/Cp)*. Result becomes exact if we assume cosf — 1.

The greatest rate of climb will occur for a flight speed where the specific excess power is largest.

For a piston/prop aircraft where the power is almost independent of speed, this occurs when we fly near
the minimum power speed, i.e. at (C.32/Cp)max. Again, result becomes exact if we assume cosf — 1.

These are the two easiest cases to analyse. Also possible to analytically solve for maximum climb rate
for a jet. Problem of maximum climb angle for a piston+prop must be solved graphically or numerically.

Jet: thrust approx. independent of speed. Piston+prop: power approx. independent of speed.
94 /
\ /
D V F
’ maximum /0< v? P DV maximum // VP
excess excess /
thrust )
power /
maximises angle of climb / maximises rate of climb
\ /
\ /4
AN Pz - /
N |- ~_/
- -1
// \\\\ O(V_2 e \~~\EK\‘
o — —— -
Minimum drag 1/ * Vv Minimum 0.760V* v
r power .
airspeed m CL=Cp = Cpo airspeed m Cr, = 1.732C;,

K

Jet aircraft maximum rate of climb.

_ VOO(T — D) _ T D _ T 1 2 w -1 W 2K [-‘xcgss
W = i Voo {W W} o | 377 144% g Cpo S V2 power
AVy T 3 ., (W\ W 2K o 2AT/W)(W/S) AK(W/S)* _
TL= - 2oV2 () Opot gy = V2 - R LI
dVoo w 2 S S pVoo BpCD,() 3p CD,OVoo
Recall (L/D)max = 1/1/4KCp o, multiply through by V2.
2
;—2<T/W)<W/S>V;— 5 gW/S) — =0 Let Q= w/s , x=V2.
3pCp o 3p%C% o(L/D)3ax 3pCp o
o oL 3@ 2T/W)Q AT/WIQY T 12QY (LD
W L/ D) o 2
T 3 L
= WQ 1£4/1+ (L/DV2..(T/W)? Only ‘+’ gives a real result.
(/W) (W/s) . 3
T/W) (W, 3
Vv - 1 1 Let Z=1+,/1+ .
(D ( 30Cn0 +\/ " <L/D>3nax<T/W>2|> \/ (/D) (T/W)?

T AN _ .
(/VV)(W/S)> This is a flight speed, Now go back and substitute this into *

not rate of climb itself.

Eventually (Vi )max = {%—?ﬂ - (%)3/2 [1 - % a 2(T/W)2(3L/D)?naxZ]
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Example — Grumman Gulfstream IV business jet
Wo =324 kN, S =88.3 m2, b =23.7 m, Wo/S = 3.67 kPa.
\ g geal Engines 2x R-R turbofan, SL static thrust To = 65 kN each.

0.7
— Thrust model Ta =0.5 (p> =0.506"7 Cpo=0.015
Ty PSL

Previously derived C.* = 0.505 and (C./Cp)* = 16.8.

Estimate maximum angle and rate of climb at SL, T4 = 65kN.

1. Max climb angle at SL

1174 _ Ta —Thmin 65—19.3
Thowmin = ——— = 19.3kN 0 = min —0.141 0 =8.1°
o (CL/Cp)* 93 S W 324

2. Max climb rate at SL

Ta 65 3 \/ 3
A 20 0201 Z=1+/1 | (R S—— LV
W 324 +\/ T awE - TV T ez <0201
Voo = W/S)z1Y? (T \*? _Z_ 3
VIme T  3pCh g w 6  2(T/W)*(L/D);x”
3670 x 2.124 /2 s 2.124 3
_ 20132 % |1 _ ~19.8
{3 x 1.225 x 0.015] X 020177 {1 6 2% 02012 x 1682 x 2.124) ™/° m/s

Anderson chapter 6

Turning flight
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Steady coordinated turn

NE: Lift > Weight L=nW In turning manoeuvres, we seek to change the
heading of the aircraft, and a commonly-used basis
l_%/ for analysis is to assume that the aircraft executes a

// Ry // coordinated horizontal banked turn of constant

radius R+ and at constant speed V. A component of
lift has to balance the centrifugal force to allow this.

For now we will also assume that « = 0, and hence
that the thrust makes no direct contribution to turning.
W@ It is simple enough to restore this term if required.

Note the use of the load factor n to describe the lift.

) \Vg This corresponds to the increased wing lift (and
Horizontal Lsing =m—— =mVw bending load).
Ry
1 1
Vertical Lcos¢p =nWceosp =W, ncosp=1, cosp=—, ¢=cos ' <>
n n
1 1 21 21
cos’p+sin?p =1, sin®¢+— =1, sin®p=1-—="—"" sing="
n n n n

Substitute into horizontal component equation:

nWv/n? — 1 gvn? —1
n

=mVw, mgyn?2—-1=mVw, w=

-
V2
Equivalently: Ry = 5
gvn® —1
48
Horizontal turning performance
2
/ L =nWW Horizontal equilibrium L sin ¢ = mg =mVw
H

Vertical equilibrium Lcosp=nWcosp=W

J/Rujf

Leading to ! . v
"= cos ¢ sin¢ = n
@ \ The lift required to turn is greater than in level flight.
w
D — V2
We obtained the following for rate and radius of turn: w= gn—l Ry = —F——
v gvn® —1

Typically we wish to either maximise the turn rate or minimise the turn radius. The first usually more important.

To consider the thrust requirement, we use force equilibrium in the tangential direction, whichis T' = D,

the same as in steady level flight. However, we no longer have L = W, but L = nW, instead.
Force/acceleration equilibrium I
in aircraft’s symmetry plane:

Now, L =nW = 1pV?SCy,

o= < _ 21
Cr =

or S
p S V2




Horizontal turning performance

Because the turn is coordinated (and assumed to be of comparatively large radius) we can continue to
use the drag polar relationship already developed: Cp = Cp o + KC?

o onW Cpo . T Cbo (same as steady level flight
r=b= Cp/Cp nW < Cr + KOL) LS. =n ( Cr +KCL) bt with nW replacing W.)

Working similarly to steady level flight: <T> - n+/4Cp o K
min  (CL/CD)* ’

Vinin drag = V' V* where V* is for steady level flight.

o i n=4 Min drag
ed
5t spe .
Turning makes n > 1, resulting 5ol
in more induced drag at a =
given speed and hence |3k
requiring more thrust. %
R, 10
~
Q
1 -
0
0 0.5 1.0 1.5 2.0 25 3.0

u=V/V*

Also, turning increases the structural load on the aircraft.

The V—n diagram
The load factor n is derived from L = nW, i.e. n = L/W, and describes how much load the aircraft
structure carries compared to the case in level flight (which has n = 1).

The V-n diagram expresses the speed/load-factor envelope of the aircraft as determined by
aerodynamic constraints (e.g. stall) and structural strength.

8
Positive Structural Limit 753t NB: anofher (co"oquial) name for
: H ({9 0]
6  3VCrnm load factor is “g-force”
stall 7W/S
g 4 (Aerodynamic) ; . Typical structural limit load factors.
s Positive Stall Limit . Cruise speed Lt T —
E ) N Corner speed ‘ . ircraft Type ad Factor
- Steady level flight Ve ‘\ - Akas General Aviation (normal) -125<n<3.1
g \ : VnEe, Vb General Aviation (utility) ~-18<n<44
o 0 - t i | General Aviation (acrobatic) -30<n<6.0
150 200 250 3¢0 Homebuilt -2<n<$
2 Commercial Transport -1.5<n <35
S Negative Stall Limit Fighter -45<n<1.75
(Aerodynamic) Negative Structural Limit
4

Calibrated Airspeed, V., knots 1 V2 S0
. . L 5P I
At low speeds, Nmax is a function of Crmax: 7 = W %

So at low speeds, there is a maximum magnitude of n that the aircraft can attain before it stalls.

CL max
i.e. a stall limit: Pmax = 2pV2 W/S

At higher speeds, there is a maximum magnitude of n that the aircraft can attain before it fails structurally.

Finally there may be an upper speed limit (or g limit) derived either from shock wave effects,
structural flutter (a structural dynamic/aerodynamic interaction), or by consideration of transient
loads that could be imposed by sudden control inputs.

2W niimis
1% S C1L max

At corner speed, aerodynamic and structural limits are simultaneously met. V. =

(This gives the maximum turn rate.)
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Example

Fighter aircraft with wing loading W/S = 5.2 kPa
} and mass 30 t.

AL/\ Wing aspect ratio A = 3.5.
/

o > 5 (Subsonic) airplane efficiency factor e = 0.9.
: : Zero-lift drag coefficient Cp,o = 0.015.
K =1/(mAe) = 0.1011
(CL/Cp)" =1/4/4Cpo K =12.84

[ W—mg=2043kN S =W/(W/S)=56.60 m?
|
s ‘_‘flb;_/_" What is minimum amount of thrust required to fly level?
>l M8 Eoliv T ﬂ‘_‘:;:""
R J W
o 6_\ T . p— _ o
min, level flight (CL/CD)* Tmm = 22.9 kN.

Ct; =1/Cp,o/K =0.3583

What is coefficient of lift required for a sustained level turn of n = 5, M = 0.8, at altitude h = 9km?

From tables a/ag = 0.8929 L=nW
o =0.3813 a=303.9 m/s
3 2nW 1
p=opy = 04671 kg/m V =DMa=243.1m/s Cr = fTW=1.884 C. =1.88.
p

What is the amount of thrust required for a sustained level turn of n =5, M = 0.8, at altitude h = 9km?

Cp = Cp,o+ KC} =0.3737 T =D = 1pV2SCp =291.9 kN T =292 kN.
52
Turning in the vertical plane
1. Two central examples are pull-up and pull-down from level flight.
V2
T 2. AtPull-up m-—==L-W
'ii/__\ Pull-Down R
k. - mV2 _K |78 _ V2 _ V2
- L-W g L-W gL/W-1) gn-1)
TR Ve

2
3. At Pull-down m‘;;o =L+W

_ Ve )
g(n+1) Vo
72=0

Pull-Up V2

n=1- g;?

// B \\\
4. One result is that looping manoeuvres typically do wniit U '-,‘ -
not have a true circular fight path, unless action is A V2 4 i V2
taken to ensure it. "=\ of: T
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1.

Limiting cases for large load factor

Radius R
Level turn Pull up
R = —VOZO R = —V°2°
gvn? —1 g(n—1)
Turn rate w
Level turn Pull up
gvn? — 1 g(n—1)
w=——————— _ =7
Voo Voo
Dependence on aircraft and flight parameters
2L
L=1,12 2 =
QpV()oSCIM VOO pSCL
V2 2L 2L 2 W

R=-2= = p— — _
gn  pSCrgn  pSCrg(L/W) pCrg S

gn gn gn

Ve VRLJ(pSC1) /R (pCoIW/S)

w =

Conclusion: best turn performance is obtained by aircraft with (a) low win

Pull down
V3

Pull down

gin+1)

Voo

npCl,
2(W/S)

gin+1)

Large-n limit (n>1)
Rl V2
gn

Large-n limit (n>1)

gn
w= -
Voo
2 w
Bt = ==
pg(CL)max S
_ p(CL)maxnmax
loading W/S;

(b) large maximum lift coefficient Cimax; () greatest structural strength Nmax;

and — for sustained turns (d) large thrust loading T/W.
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Normal take-off

A normal takeoff is made with all engines operating.

V.
V=0 VR VLOF %

| I
N { | = Y2

i : L ,
e 3 Smn S Sair 3
|

Sto

|

1. During the ground run the aircraft rolls from standstill with nosewheel on the ground so that the
angle of attack is nearly constant (and typically a value that makes aerodynamic drag small).

2. Rotation is initiated at speed Vr. When L = W, the aircraft becomes airborne at speed V. or.

3. During the initial airborne phase L > W and there is acceleration normal to the flight path, but soon
afterwards the angle of climb settles to a constant value and the undercarriage is retracted to
reduce drag. The aircraft accelerates to “safety speed” V2 which is at least ki (usually a factor of
1.2) times the stall speed.

4. Takeoff is said to be completed after the aircraft reaches a “screen height” ht, which is 35 ft for
commercial aircraft and 50 ft for military aircraft.

5. The total runway length must exceed the ground roll plus the distance required to clear the screen.

Sto = Srun T Sair

2w 1
Vo > kto‘/stall =12y/-— CLz < CL,rnax/l-44
P S C'L,rnaux

Normal take-off

Simplified analysis assumes Vior = V2 and that a steady climb with speed V> and angle Y2 starts at lift-off.

V.
Voo Ve Vi %

|
| |
N ‘ { | Y2
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iy m (
o Smn ‘_>1€‘_,SL_4
Sto |

2
~ Vé hto
Sto ~ o=

2a  tanvy,

where a is the average acceleration over the ground.

Kl pol S S A more complete analysis has to account for a drop in engine thrust with

—————————————————————— » speed, the friction of the tyres on the ground, and the fact that the vertical
I reaction force (hence friction force) falls as the aircraft starts to produce lift

7 (for a jer) | even while on the ground.
|

| For now we take these complexities into account by applying a simple
r-+nw-01| reduction factor on thrust and say that

Force

|
i g = rplw o a—rpig
| —'r— =TT
pamW-D____Jd——= / m w
2 2 m(W- ) | where for a jet aircraft 77 ~ 0.8 - 0.9 but is lower again for propeller aircraft

where thrust falls with speed.

0 Distance along ground s Sy
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Normal take-off

S == V_22 h‘tO (1 = &
7 24 " tanye “=TTyy e
Srun Sair
. . T—-D T D 2W 1
Recall for steady climb  sinv,; = W W W where W — L= 1pVZSCr, or Vi= PYRon
) T Cp
Sl Y2 = <W - CVL)Q CL2 ~ CL,max/thO and CD = CD70 —+ KC%Q
and sin~yy — tan-ys
finall ) 1 1 WWw o hto
ina N
y ™ pgrr Cr, 8 Ty ' To/W — (Cp/CrL)a
Srun Sair

Typically an additional 15% safety margin is added to this value (or any better estimate).
Note that T> may be significantly smaller than T, especially so for a propeller aircraft.

1. Ground run swn increases quadratically with weight W and is reduced by either decreasing the wing
loading W/S or increasing the thrust/weight ratio Ti/W, or both. Increasing weight also increases the
air distance Ssair.

2. Air density+temperature may have a significant effect on both p and T. High, hot take-offs are worst.

3. Increasing flap deflections will increase Crmax and hence Ci2, which reduces the first term but
increases Cp/C. and hence the second term. There is an optimum flap deflection which is typically
less than the value used at landing, and hence Cr maxto < CL,maxland.
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Engine failure during take-off

Engine failure (fortunately rare) will obviously lead to an aborted takeoff in a single-engine aircraft.
Multi-engined aircraft are designed so that they will still be able to climb with one engine inoperative (OEI).

If an engine fails then obviously total thrust is reduced but also the unpowered engine may contribute
significant drag. There is typically a lateral asymmetry of thrust (and associated yawing moment) and the
available control surface authority (as well as the pilot!) must be able to cope with this.

If engine failure is recognised at a sufficiently low speed (on the ground) then all engines are throttled
back and all available braking (excluding thrust reversal) is used to de-accelerate the aircraft to a halt.
The associated total distance on the runway is called the accelerate-stop distance.

After a certain speed is reached it takes less runway distance to continue the takeoff and climb to screen
height ht than it does to brake to a halt. This speed, less than the rotation speed VR, is called the
decision speed V1. Above V4 the pilot will continue to take-off regardless of the runway length available.

For any given engine failure speed, the total distance
required required to accelerate to it and stop can be

continued take-off | found, as can the distance required to continue and
. A climb over screen height. The first increases with speed
AEEnce hile th dd The dist t which
5 e 0 while the second decreases. The distance at whic

I T RSt all e aniras talon e S  —— they are equal is called the balanced field length (BFL)
""""""""" \ and the associated speed is V4.

The required runway length is the minimum of the BFL
and 1.15 times the value estimated for the all-engines-
operative case.

accelerate-stop

Because the aircraft’s climbing capacity is reduced,
there is typically also a regulated minimum climb
gradient at V2 with OEL. This is 2.4% for two engines,
2.7% for 3 engines and 3.0% for four engines.

> engine failure speed Vi Ve
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A i
e Landing
o
Nvapp
Vio V=0
h Y | \
land app N —
\\\ } X‘" =t \J‘
R R R RN R R RERER LY HlHHHHHIHHH;NUu;u:ll/nrxi::nn,-:u;;ﬁ-!nx».x!lnh?!un:?L
P— SairAr B srun )l

| Sland |

| |

1. During landing approach the aircraft flies at a steady speed Vapp > kapp Vstal = 1.3 Vstar. The gradient
Yapp is typically around 2.5° to 3° for commercial aircraft.

2. Once the runway threshold height hiand (typically 50 ft or 15 m) is reached the engines are throttled

back and the pilot executes a landing flare or round-out to touch-down at Viq, typically 1.15 Vstan.

3. After touch-down of all the undercarriage elements the aircraft is slowed by wheel brakes (and

perhaps airbrakes) until it comes to rest. While engine thrust reversal may be applied this is
typically not included in an analysis designed to compute the minimum runway length required.

hland Va2 2w 1
For a simplified analysis and = Sair T Srun R = where Vapp = 1.3/~
p YSIS,  Sland = Sair 1 Sru tan Yapp * 2|al wr P S CLomax

hland W/S
. e 1.69—
leading to e & Yapp * p|@|CL, max

Note that the wing loading W/S may be much less than the maximum takeoff value, owing to fuel use.
Typical value of de-acceleration possible on a dry concrete runway is |a|/g = 0.3 to 0.5.
Note also that, unlike the case for take-off, the thrust loading T/W does not come into account here.



