
Design as inversion of performance analysis
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Recommended reading:

Mattingly et al.: Chapter 2
Brandt el al: Chapter 9
Torenbeek: Chapter 5
Jenkinson & Marchman: Chapter 2
Loftin, NASA RP-1060: Chapters 6 and 7

Design for performance

from invert to obtain 

and then find the overall ratio of final to initial weights as  

1. To carry out design, we have to invert the performance equations to enable the key sizing variables 
W, T and S to be estimated from the requirements.


2. For example, to calculate overall weight of fuel required for a mission with a number of segments, 
we could invert the range equation for specified R, V, L/D: 

3. Next, most of the performance requirements can be expressed in terms of W/S and T/W (or P/W) 
at various points in the flight (when the thrust or weight may be different from the takeoff values).  
We have already used T = αT0 (or P = αP0) for de-rating of thrust/power, where e.g. T0 is the rated 
SL static thrust.  Now we also introduce weight reduction factor β. i.e. W = βW0 where W0 is the 
maximum takeoff weight.


4. The basis for most performance-related design turns out to be the Fundamental Performance 
Equation based on path-tangential energy considerations.  Again, we in invert it for use in design:

Now and

so

Finally

expresses a design constraint between (takeoff) 
thrust loading and wing loading.

Mission analysis

Constraint analysis
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(weight-specific) 
excess power Ps.



Constraint analysis
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Constraints based on performance requirements
1. At this point we have established an initial weight estimate W0 based on fuel use and expendable 

payload, and, if required, we used preliminary/historical values of β and W0 together with some of the 
(non-Breguet-based) performance requirements that might require using a significant weight of fuel.  


2. We now turn attention to finding sensible choices for T0/W0 (or P0/W0 in the case of piston/prop) and 
W0/S, based on the performance requirements (those which just involve these ratios).  This stage is 
called constraint analysis.


3. Constraint analysis requires us to plot all significant requirements that directly involve wing and/or thrust 
loading on a single graph.  We always need to use α and β to relate the performance requirements back 
to take-off values (since that’s what we want) in the standard atmosphere.


4. Note that the empty weight fraction correlations for We/W0 used up to this point did not explicitly 
involve T0/W0 or W0/S, so that weight estimation was independent of performance analysis.  More 
generally, the empty weight fraction does involve these parameters, and so the two sets of analyses 
would be no longer independent.  The initial analysis we do here is “first-order”, without coupling.


5. Just as the performance requirements could intrude into the weight estimation stage, so the mission-
phase weight estimates (in the form of fractions βi = Wi/W0) typically intrude into the constraint analysis.  
Hence, again, as we refine the design we may need to iterate.


6. We generally wish to have small values of T0/W0 and large values of W0/S to minimize cost (size).

T0/W0

W0/S

Jenkinson & Marchman
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“Rubber-engine” vs “fixed-engine” sizing
1. Unlike wing areas and aircraft weights, powerplants come in a restricted number of sizes.

2. In recognition of this fact, there are two ways to proceed with constraint analysis: 


a. “Rubber-engine” sizing, where we make our plot in terms of the ratios W0/S and T0/W0 and either 
assume we can buy off the shelf or stretch an existing engine to give a required value of T0, and;


b. “Fixed-engine” sizing, where we take existing engines (perhaps a few alternatives) and their 
values of T0, and for each engine alternative produce a constraint plot with W0 and S as the axes.


3. Either of these options is fine, and has its strengths.  In the first iteration at least it is probably best to 
stay with “rubber-engine” sizing and show available engines as lines of constant T0/W0 on the plot.
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rubber-engine sizing

Torenbeek

fixed-engine sizing

Schaufele

Constraint examples — 1
Most (but not all) performance analysis can be stated in terms of the master constraint equation, 
which is simply a re-arrangement of the fundamental performance equation.

Since we want a relationship between T0/W0 and W0/S, we must have all the other values given, 
or be able to derive them.

We note that and

If appropriate (e.g. when external stores are carried) we should increase CD,0.   Similarly, if the aircraft 
is in take-off or landing configuration, CD,0 should be increased to take account of landing gear and 
flap deployment.  The coefficient K should also be re-assessed for different flight conditions.
The examples below are generally similar but in places somewhat simpler than those presented in 
Mattingly et al. Ch. 2.  They are based around a thrust-related propulsion model.
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We find that T0/W0 becomes very large either for small or large values of W0/S, with a minimum at 

and i.e. at (L/D)*.

1. Constant Altitude/Speed Cruise (Ps = 0)  Given dh/dt = 0, dV/dt = 0, n = 1 (L = W), values of h and V 
(i.e. q) and with α, β.

or



Constraint examples — 2

Like case 1, we find that T0/W0 becomes very large either for small or large values of W0/S, with a 
minimum at 

and

3. Constant Speed, Constant Altitude Turn (Ps=0)  Given dV/dt = 0, dh/dt = 0, values of n > 1, h, 
and V (i.e. q) and with α, β.

Another curve with a turning point, now at

and

If instead given either rate ω or radius of turn RH instead, compute n from 

or
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Note that for the cruise constraint it is advisable to plot CL as a parameter along the curve (so we can 
assess if we are near to one of the optimum values we desire, e.g. that will give (CL1/2/CD)max.

2. Constant Speed Climb  Given dV/dt = 0, n≈1 (L ≈ W), values of h, dh/dt > 0 and V (i.e. q) and with α, β:

Constraint examples — 3
4. Horizontal Acceleration (Ps = (V/g)(dV/dt))  Given dV/dt > 0, n=1 (L=W), values of h, dh/dt = 0 and V 

(i.e. q) and with α, β.  Similar to case 2:

If instead of dV/dt, we are given an initial and final speed and a minimum time allowed for the change 
in speed, the analysis becomes more complex, requiring iterative solution.  See Mattingly et al.

5. Take-Off Ground Roll sG  Given dh/dt = 0, CL,max, VTO = kTOVstall, μTO.  Here we have to change the 
notation slightly to allow for tyre drag and the fact that this will vary with lift (see our earlier analysis of 
ground roll).  Note that also as noted previously, CD,0 should be increased owing to landing gear and 
flap deployment.
Given a value of sG, we have to solve the following equation for each W0/S:

where

See Mattingly et al. for case where in addition an obstacle of specified height must be cleared.

6. Landing Ground Roll sG  Given dh/dt = 0, CL,max, VTD = kTDVstall, and μB.  Similar to the previous case but, 
if there is no allowance for thrust reversal, simpler.  Note that CD,0 and CL,max should be assessed in 
landing configuration.

where

See Mattingly et al. for cases with thrust reversal and obstacle of specified height.
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Constraint examples — 4
7. Service Ceiling (Ps = dh/dt)  Given dV/dt = 0, n=1 (L = W), values of h, dh/dt > 0 and CL, with α, β.  

Note that this analysis assumes that CL is given (say cruise value) whereas in general it could be 
varied in order to maximise rate of climb or reduce the required thrust.  In that case the analysis 
would be more complicated.

First then

8. Take-off Climb Angle  Given θ, n = 1, dV/dt = 0 and CL,max (in take-off configuration), kTO, with α, β.

where is used to find α. 

9. Approach Speed  Given Vapp, dh/dt ≈ 0 and CL,max (in landing configuration), kapp, with β.

Note that thrust is assumed small.  This constraint gives a vertical line on the plot.
The above is by no means a complete set of possible performance constraints but it is sufficient as a 
starting point for further examination.  In general one must examine carefully all the requirements to 
consider how they can either be framed as performance constraints or how they contribute to mission 
analysis.
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If we have a propeller-powered aircraft, then the appropriate form of the master constraint equation is

Constraint examples — 5

It is good practice to also plot the values of T0/W0 
vs W0/S obtained for comparable designs.  While 
their design constraints may have been different, 
the comparison is revealing and we may be able 
to guess how these differed from what we have 
used.  Also  this is a useful ‘sanity check’.  Finally, 
we can at this stage select the determining 
constraints for further analysis, allowing us to 
concentrate on the most important cases.

Finally, after all the constraints have been obtained, they 
are plotted on a single diagram of T0/W0 vs W0/S.  
Taking account of the fact that the constraints generally 
amount to inequalities rather than equations, there is a 
space of feasible solutions (the solution space)  
Generally we pick low feasible values of T0/W0 and high 
feasible values of W0/S in order to minimise size and 
cost.  At this point, recognizing that our values of β are 
rather imprecise, it is best to be slightly conservative.

Mattingly et al.

We now have estimates for W0, T0 and S.
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Targetting best Range/Endurance — 1
1. So far our performance constraint analysis has been uncoupled from range/endurance 

requirements, but these too can imply a target wing loading if a cruise/loiter (height, speed) pair are 
given (i.e. q).   The target wing loading will be associated with an optimal point on the drag polar and 
hence will depend on aerodynamic parameters CD,0 and K. 

Maximise Jet Prop

Range (CL1/2/CD)max (CL/CD)max

Endurance (CL/CD)max (CL3/2/CD)max

Maximise Jet Prop

Range

Endurance

2. The amount of thrust/power required to fly steady and level at the optimal wing loading can also be 
determined, producing a single point on the constraint line for cruise (a.k.a. “payload-range”) constraint.

Maximise Jet Prop

Range

Endurance

3. A reasonable way to proceed is to note the value of CL at the required optimum point on the drag polar 
and then to plot CL as a parameter along the cruise constraint curve.  If we are fortunate, then this optimal 
CL will be in the feasible region on the constraint plot and we could aim for the corresponding location as 
our (T0/W0, W0/S) pair.  If not, we may be free to choose a different altitude (the ‘best cruise altitude’ or 
BCA) at which to cruise (which will influence CL along the curve).  If neither is true then we will have to re-
compute the fuel usage based on achievable values of CL, rather than the assumed optimal values.
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Targetting best Range/Endurance — 2
4. We note that the above tabulated values of wing and thrust loading (in particular, the location on 

the drag polar for which they are computed) are made without regard to compressibility effects.  
For most applications except perhaps the most practically significant, i.e. range of transonic jet 
aircraft, this is typically not important. 

5. However, in the case of subsonic jet aircraft, there is a rapid rise in CD near MDD, if enough thrust is 
available to approach this speed (as is often the case).  This effectively limits efficient cruise speed 
to MDD.  With M limited to this value, ML/D can only be increased by increasing CL towards CL* and 
L/D towards (L/D)*. 
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6. A key jet aircraft design objective is to arrange the aerodynamics and wing loading such that cruise 
at  MDD corresponds to the point on the drag polar that maximises ML/D.  This may require 
changing the cruise altitude but care must be taken to also minimise fuel consumption (ct).

Asselin



Constant altitude, constant speed cruise – revisited
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Effects of altitude, speed, drag polar parameters.

JET

PROP

Turning point at:

Generally:

T.P. moves to higher W/S
for larger q, A, CD,0.

T.P. moves to higher T/W
for larger CD,0 and smaller A,
no altitude or speed effect.

For minimum power, 

Turning point at:

T.P. moves to higher W/S
for larger q, A, CD,0.
T.P. moves to higher P/W
for larger CD,0 and smaller A,
both altitude and speed effect.


