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Direct numerical simulations of flows in cylinders subjected to both rapid rotation and
axial precession are presented and analysed in the context of a stability theory based
on the triadic resonance of Kelvin modes. For a case that was chosen to provide a
finely tuned resonant instability with a small nutation angle, the simulations are in
good agreement with the theory and previous experiments in terms of mode shapes
and dynamics, including long-time-scale regularization of the flow and recurrent
collapses. Cases not tuned to the most unstable triad, but with the nutation angle
still small, are also in quite good agreement with theoretical predictions, showing
that the presence of viscosity makes the physics of the triadic-resonance model
robust to detuning. Finally, for a case with 45° nutation angle for which it has been
suggested that resonance does not occur, the simulations show that a slowly growing
triadic resonance predicted by theory is in fact observed if sufficient evolution time
is allowed.
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1. Introduction

Inertial waves arise in rotating fluids due to the presence of Coriolis-type restoring
forces (Greenspan 1968). In the inviscid limit, the equations of motion for an
infinitesimal disturbance to a background solid-body rotation reduce to a linear partial
differential equation of hyperbolic type, provided that the disturbance frequency is less
than twice the background rotation frequency in an inertial reference frame. A set of
eigenmodes with associated frequencies was first shown by Kelvin (1880) to provide
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an orthogonal basis for the inviscid inertial waves in a rotating cylinder, and such
modes now bear his name. In contained bodies of either inviscid or viscous rotating
fluid, inertial waves may also arise, though the associated frequencies and eigenmodes
must then be tuned to satisfy boundary conditions at walls. When Reynolds numbers
are high enough, one may expect that Kelvin modes provide good approximations
to the viscous eigenmodes, and it is found experimentally that a rotating flow may
readily be excited near the frequencies predicted by Kelvin’s theory (Fultz 1959).
Experiments since the 1960s have revealed a rich variety of nonlinear phenomena
such as recurrent collapses and catastrophic transitions in rapidly rotating cylinder
flows that were excited in various different ways, including boundary perturbations
and axial precession (e.g. McEwan 1970; Manasseh 1992).

McEwan (1970) first suggested that a triadic-resonance model might help to explain
these phenomena. The concept of triadic interactions of modes resulting from the
quadratic nonlinearity in the Euler equations of motion, leading to resonant growth,
is well accepted in other applications (e.g. Craik 1988). Mahalov (1993) developed
the idea of triadic resonances of Kelvin modes in a precessing cylinder of unbounded
axial extent. Kerswell (1999) developed a stability model for triadic resonances in a
rotating cylinder of finite length. Although the focus was on elliptic instabilities where
the forced flow has azimuthal wavenumber m =2, he also pointed out that much the
same mechanism applies in precessing cylinders where the forced flow has m = 1
(Kerswell 2002). More recently, Lagrange et al. (2011) produced a weakly nonlinear
Kelvin-triad-interaction theory to predict the growth and saturation of instabilities in
precessing cylinder flows, and provided experimental results in support.

Successful comparison of resonant triad theory with experiment in a precessing
cylinder (Lagrange et al. 2008; Meunier et al. 2008; Lagrange et al. 2011) involved
a cylinder of aspect ratio precisely ‘tuned’ to make one triad exact. While the
theory can accommodate detuning from exact resonances, isolation of exact triads in
finite cylinders and calculation of predicted growth rates is non-trivial and requires
careful consideration, as we outline in §2. The theory was challenged in a recent
numerical study of precessing cylinder flow by Kong et al. (2015), which attempted
to examine the triadic-resonance mechanism, and concluded that it did not explain
the observed nonlinearities. Instead, it was suggested that the energy contained in the
precessionally forced mode is primarily transferred, through nonlinear effects in
the viscous boundary layers, to a geostrophic flow. Our principal objective here is to
demonstrate that weakly nonlinear models based on a triadic-resonance approximation
are indeed a robust descriptor of the flow in rapidly rotating precessing cylinders,
valid for a variety of both well and imperfectly tuned cases.

2. Background

2.1. Problem definition

A rotating and precessing cylinder flow is shown schematically in figure 1(a). An
incompressible fluid with kinematic viscosity v is contained in a cylinder of radius
R and height H, mounted on a turntable via a gimbal that allows the cylinder axis to
be tilted through nutation angle «. The cylinder rotates with an angular velocity £2,
that precesses at angular velocity £, with respect to the turntable axis z. Without loss
of generality, we take $2; = £, - Z > 0. Precession may be prograde (§£2, =2, -z > 0)
or retrograde (£2, < 0) with respect to $2,. The total angular rotation in an inertial
reference frame is $2, + $2,. The flow is governed by the incompressible Navier—
Stokes equations with no-slip boundary conditions on the cylinder walls. Using R as
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FIGURE 1. (a) Schematic of the precessing flow. (b) The dispersion relations (2.2a)
between the temporal frequencies @ and the axial wavenumbers k of two parasitic Kelvin
modes for azimuthal wavenumbers m; = 5 (blue lines) and m, = 6 (red lines) in the
gimbal frame of reference, where the frequency of the forced mode wr = 0. In each
set, upper/lower branches are for modes that co/counter-rotate with the cylinder in the
cylinder frame, and the lines successively represent /=1, 2, ..., which label the roots
of (2.2a). An exact resonant triad with the (1, 1, 1) mode is indicated by the circle: the
frequency of the —(n; =1, =1, m; =5) Kelvin mode is equal to the frequency of the
(n, =2,1, =1, my=6) Kelvin mode, and their axial wavenumbers differ by that of the
forced mode, as indicated by the arrow. In the gimbal frame, the two parasitic modes
counter-rotate.

the length scale and £2;' as the time scale, the non-dimensional governing equations
in a rotating reference frame are

ov/ot+v-Vv+22 xv+ (d2/dt) xr=—Vp +Re” 'V, V.v=0, 2.1

where v and r are velocity and position vectors and the Reynolds number Re =
©2,R?/v. The non-dimensional rotation vector 2 = (2, + £2,)/£2; can be written in
an inertial reference frame (X, y, Z) as (sin o cos(Pot), sin « sin(Por), Po + cos «),
with the Poincaré number Po = §2,/£2,. The term (df2/df) x r allows for changes in
direction and/or magnitude of the rotation vector. Body forces (e.g. centrifugal force)
that can be written as gradients of a scalar are included in the non-dimensional
reduced pressure p. Four independent non-dimensional governing parameters are
the cylinder aspect ratio I' = H/R, Reynolds number Re, Poincaré number Po and
nutation angle o. We note that Re time units is the viscous diffusion time scale
for the system. It is convenient to introduce the projection of the non-dimensional
rotation vector £2 in the inertial frame onto the cylinder axis, £2 =1+ Pocosc. In the
problem considered, initially the nutation angle @ =0 and the cylinder of fluid is in
solid-body rotation; « is then increased over a short time interval to a subsequently
fixed value.

2.2. Precessional forcing of Kelvin modes

For vanishing forcing amplitude and rapid rotation, we approach the linear inviscid
limit considered by Kelvin (1880) of small deviations from solid-body rotation. Kelvin
mode velocity and pressure fields are given by products of Bessel functions in the
radial direction with trigonometric functions exp(ikz + im¢ + iwt) + c.c., where k and
m are the axial and azimuthal wavenumbers and  is the dimensionless frequency
of the mode (Greenspan 1968). In the gimbal frame of reference, i.e. a frame aligned
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with the cylinder axis and in which the cylinder rotates, radial and axial no-penetration
boundary conditions are satisfied respectively by dispersion relations

22\’
c0_{—7’"/lnlm‘,;n(/lnlm) + 2m‘lm(/lnlm) = O’ () =1 + <
£2 w+m

/Lllm r
nw

2
) , (2.2a,b)

where J/ is the derivative of Bessel function J,, the radial wavenumber A, is the
Ith root of (2.2a) and n=kI" /7 is the number of axial half-wavelengths. Each mode
is characterized by three integer indices (n, [, m) corresponding to axial, radial and
azimuthal directions respectively.

In a precessing cylinder, precession forces an azimuthal wavenumber m = 1 flow
that is fixed in the gimbal frame of reference (i.e. at a frequency w =0). This forcing
can excite a Kelvin mode if §2 is sufficiently close to a value £2,, that satisfies both
dispersion relations of (2.2) with m =1 and w = 0. For each (n, [, m) combination,
there are two values £2,,,, with £2,;,, >0 and <0 corresponding to eigenmodes rotating
in the same or opposite sense to the cylinder in the cylinder frame. Each of the pair of
eigenmodes has distinct radial structure. Modes for £2 <0 will be denoted —(n, [, m).
When §2 (which is tuned by adjusting Po and «) is close to a resonant value £2,,,
a forced Kelvin mode can be strongly amplified even by weak precessional forcing
(small |Po sin r|). Viscosity limits the resonant growth to amplitudes of order Re'/?
(Gans 1970; Meunier et al. 2008). For the cases examined herein, £2 is chosen such
that the (1, 1, 1) mode resonance provides the largest contribution to the initial forced
response, and is referred to as the ‘forced mode’. However, other Kelvin modes also
satisfy the dispersion relations (2.2), and by appropriate choice of I", two such modes
may form a resonant triad with the forced mode.

2.3. Resonant triad principles

Quadratic nonlinearity in the equations of motion may couple a pair of modes to a
third mode. If one mode in the triad were forced, the other two would grow and
‘parasitically’ extract energy from it. In the weakly nonlinear model, the perturbation
velocity field is assumed to be an infinite sum of all the Kelvin modes, with each
mode multiplied by an arbitrarily time-varying amplitude. This sum is substituted
either into the Euler equations (Manasseh 1996) or into the order-above-leading order
in an asymptotic expansion (Lagrange et al. 2011). An energy inner product exploits
orthogonality of Kelvin eigenmodes to isolate evolution equations for the amplitude
of a given mode.

Since Kelvin modes are sinusoidal in the axial and azimuthal directions and
sinusoidal in time, the inner-product integrals of the axial and azimuthal factors
reduce to products of Dirac delta functions, giving the triad conditions

np=|tn £tn|, mp=|£m xtm| and owr=|%tw; xwl, (2.3a—c)

where n is the number of axial half-wavelengths, m is the azimuthal wavenumber and
w 1is the dimensionless temporal frequency. Subscripts 1 and 2 denote the two parasitic
modes nonlinearly interacting with the forced mode, denoted by subscript F. For a
Kelvin mode triadic resonance to occur in a finite precessing cylinder, the modes must
satisfy the dispersion relations (2.2) in addition to the triad conditions (2.3).
Lagrange et al. (2008) first showed that it is possible to find a triadic-resonance
instability of Kelvin modes provided that I and Po are carefully tuned, the latter
requirement due to the frequency constraints implied by the final relationship in (2.3).
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This resonance, for the aspect ratio I” = 1.62 they used, is depicted in figure 1(b),
where the dispersion relationships (2.2a) in the gimbal frame of reference are shown
for parasitic modes with m; = 5 (blue lines) and m, = 6 (red lines), with thick
lines showing their first radial branch (i.e. /=1). In the cylinder frame of reference,
all solid lines would start at the origin, and the upper (lower) branches would
have positive (negative) frequencies. However, in the gimbal frame, solid lines are
translated vertically by —m;,. One parasitic mode is also translated horizontally by
kr =npm/I". This ensures that any crossing of the two parasitic modes satisfies the
resonance condition, i.e. their frequencies are equal, and their axial wavenumbers add
up to np according to (2.3). Vertical dashed lines are spaced by nr and show axial
wavenumbers for which a Kelvin mode fits inside the cylinder, thus satisfying (2.2b).
If a crossing falls on such a vertical line, a tuned resonant triad of Kelvin modes
exists (the black circle in figure 15, where w;, =5.325).

Initial analysis and experiments (Lagrange et al. 2008) focused on the resonance
shown in figure 1(b), with m; = 5 and m, = 6. The range of resonances was
later expanded, and it was shown theoretically that this combination of azimuthal
wavenumbers is the easiest to excite for I" 2 1.3 (Lagrange et al. 2011, figure 9).

2.4. Weakly nonlinear stability model

By deriving amplitude evolution equations in an asymptotic framework (Lagrange
et al. 2011), the linear stability of the forced mode with respect to the parasitic
modes can be assessed by taking the time dependence to be of form exp(ot), leading
to

270 + 2pilo + 261 =e]*C1C,, 2.4)

where B, account for viscous and detuning effects on the parasitic modes, &
represents the magnitude of the forced mode and C;, account for the nonlinear
couplings between the parasitic modes; they are given in detail by the right-hand
sides of (4.14), (3.12) and (B1,2) respectively in Lagrange et al. (2011). The real
part of o gives the initial growth rates of various pairs of candidate parasitic modes
that may participate in a triadic instability of the forced mode.

3. Numerical method

A nodal spectral element—Fourier direct numerical simulation (DNS) code was used
to solve (2.1) in a reference frame rotating at angular velocity $2 using cylindrical
coordinates (r, ¢, 7). The meshes are time invariant, advection and frame acceleration
terms were evaluated pseudo-spectrally, and time integration was second-order semi-
implicit. Blackburn & Sherwin (2004) provide details regarding the treatment of the
axial coordinate singularity, the convergence properties of the method and the time
integration scheme.

The initial state is solid-body rotation and the tilt-over of the cylinder occurs
smoothly over one-tenth of a cylinder rotation period, mimicking the experimental
procedure in Lagrange et al. (2008). This is much shorter than the time required for
equilibration through nonlinear and viscous interactions, and one may expect that the
details of the tilt-over motion are not dynamically significant in the longer term. The
components of 2 may be chosen in either the gimbal frame of reference (where
the cylinder walls move with respect to the reference frame, and where d£2/dr — 0
as o — const.) or the cylinder frame of reference (where the walls are fixed and
d$2/dt # 0 always). Both implementations give the same flow dynamics, modulo a
solid-body rotation.
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FIGURE 2. Time series of modal kinetic energies in the first eight azimuthal Fourier
modes for I' = 1.62, « = 1° and Po = —0.153 with (a) Re = 5310, showing triadic
resonance of modes 1, 5 and 6 saturating to a periodic limit cycle state, and (b) Re =
7670, showing the quasi-periodic saturated state with a low-frequency oscillation of period
Tpns =~ 250. An animation of the recurrent long-time-scale behaviour over the interval
indicated in (b) is provided as supplementary movie 1, which shows isosurfaces of helicity
in physical space.

Our baseline case had 192 spectral elements at polynomial degree Np =6 in each
of the (r, z) directions and 64 azimuthal Fourier modes. Using 2048 time steps per
cylinder revolution, the run-time to integrate over 1000 time units with 16 processors
was approximately 20 h. A grid resolution study showed that the growth rates of the
Fourier mode energy reduce by 2% (0.1 %) when using half (twice) the resolution in
all dimensions. Doubling the temporal resolution reduced the growth rates by 0.1 %.

4. Results

In the following, azimuthal Fourier modal energies E,, represent contributions to the
domain-integral kinetic energy per unit mass, as measured in the cylinder frame of
reference (i.e. £y contains no contribution from solid-body rotation):

1

Emzi
24 J,

U, -u,rdA, 4.1
where A= TI'R? is the area of the meridional semi-plane and u,, is azimuthal mode m
of the Fourier transform of the velocity field in the cylinder frame of reference.

4.1. Modal dynamics and structure of a baseline case

The parameters of the initial DNS match those of Lagrange er al. (2008): I' = 1.62,
a=1°, Po=—0.153 and various Re. It should be noted that they used 2 rather than
2, to define Re; here we have converted their values of Re = $£2R?/v to our definition,
Re=$2,R*/v. These frequencies and aspect ratio match the case shown in figure 1(b),
and so theory predicts a resonant triad with (np =1, [p =1, mp = 1) as the forced
mode and —(1, 1,5) and (2, 1, 6) as the parasitic modes.

Figure 2 shows the evolution of Fourier modal energies for Re = 5310 and
Re = 7670. For both Re, an energy plateau is rapidly established in m = 1, and
energies in all higher Fourier modes represent harmonics of the flow in m = 1. This
basic state is directly forced by the precession. As indicated by the level of E,
(lower than E; by a factor of approximately 30), steady streaming flow also forms
a significant component of the basic state, a point we will revisit in §5. After a
time of order Re, exponential growth above the levels of the basic state is observed
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FIGURE 3. Contours of relative axial vorticity at z=0 for I'=1.62, a =1°, Po=—0.153
and Re =7670 from (a) PIV measurements (Lagrange et al. 2008), (b) DNS at r=2140
and (c¢) the Kelvin mode (2, 1, 6).

for Fourier modes m =5 and 6, and this growth nonlinearly feeds through to other
Fourier modes. Following a period of exponential growth during which there is no
perceptible decrease in energy at m = 1, the energy in the parasitic modes saturates
with an observable decrease in E,. For Re = 5310 (figure 2a), the saturated state
has modal energies with (unobservable) small-amplitude periodic oscillations. The
associated frequency 5.328 is very close to that predicted by the triadic resonance
shown in figure 1(b), w;,~5.325. At Re="7670 (figure 2b), the saturated flow settles
to a quasi-periodic state with both the w;, = 5.328 oscillation and a well-defined
low-frequency oscillation of period Tpys = 250. Theory developed in Lagrange et al.
(2011) predicts that at the larger Reynolds number there would be a low-frequency
oscillation with period 7 = 295. In experiments (Lagrange et al. 2008), this period
was determined to be in the range 243-342.

An examination of the spatial structure at the cylinder mid-height, z=0, at a time
when three-dimensional features were most evident, was presented by Lagrange et al.
(2008). Their data were obtained via particle image velocimetry (PIV), using a laser
sheet in a plane normal to the turntable axis at z = 0. The background solid-body
rotation was subtracted from their data prior to post-processing to obtain the relative
axial vorticity, reproduced in figure 3(a). Due to practical restrictions, they were
unable to resolve the boundary layer structure. The relative axial vorticity from DNS
at z=10 and at r = 2140 (i.e. corresponding to the energy peaks for m =5 and 6
in figure 2b) is shown in figure 3(b). At this axial location, both the experiment
and DNS show significant structure in the Fourier mode m = 6. This matches the
predictions of the resonant triad theory: as outlined in § 2.3, theory predicts parasitic
modes —(1, 1, 5) and (2, 1, 6), and at this axial location, relative axial vorticity
should only appear for the modes with even axial wavenumbers n. For comparison,
the axial vorticity for the (2, 1, 6) Kelvin mode at z=0 is shown in figure 3(c).

Direct numerical simulation allows examination of axial structure not easily
obtained in physical experiments. Figure 4(a,b) shows the axial velocity of the Fourier
modes m =5 and 6 for the case in figure 3(b). The axial shapes are dominated by
n=1 for m=5 and n=2 for m=6, in accord with the resonant triad prediction of
parasitic modes —(1, 1, 5) and (2, 1, 6) (§2.4): |ny — ny| =np = 1. The axial mode
shapes of the corresponding Kelvin modes are similar, as shown in figure 4(c,d).

Theory (§§2.2 and 2.3, figure 1b) predicts that the two parasitic modes involved
in the present resonant triad should counter-rotate in the cylinder frame of reference.
Animations of vorticity components filtered to azimuthal wavenumbers m=1, 5 and 6
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FIGURE 4. Contours of the axial velocity for the same parameters as in figure 3, at the
meridional semi-plane of maximum amplitude, showing (a) the Fourier component m =15
and (b) the Fourier component m = 6, both from DNS; (¢) the Kelvin mode —(1, 1, 5)
and (d) the Kelvin mode (2, 1, 6).

FIGURE 5. Contours of axial vorticity for parameters corresponding to figure 3, showing
(a) the Fourier component m =1 at z = —0.25I", (b) the Fourier component m =5 at
z=—0.25I" and (c) the Fourier component m = 6 at z = 0. In the cylinder frame of
reference, the mode m = 1 rotates at the precession frequency while the parasitic modes
m=>5 and m =6 counter-rotate, whereas in the gimbal frame of reference the mode m=1
is fixed while modes m =35 and 6 co-rotate (see supplementary movies 2 and 3).

have been prepared as supplementary movies shown in http://dx.doi.org/10.1017/jfm.
2015.377, and show the anticipated behaviour. One frame of such an animation is
shown in figure 5. Animations in the cylinder frame of reference clearly show the
—(1, 1, 5) mode rotating in the opposite sense to the (2, 1, 6) mode, as expected,
such that their product rotates at the same speed and sense as the driving (1, 1, 1)
mode, exactly as required for a resonant triad.

If energies are computed from the projection of velocity fields onto Kelvin modes
instead of Fourier modes, the temporal behaviour and energy levels of the leading
Kelvin modes with m > 0 are generally similar to what may be observed in figure 2.
For example, energies in m =5 and m = 6 are dominated by contributions from the
—(1,1,5) and (2, 1, 6) Kelvin modes. However, there is rather less energy in the
(1, 1, 1) Kelvin mode than in the Fourier mode m =1, as might be anticipated from
the axial vorticity observed in figure 5(a), which has a richer structure than that of
the (1, 1, 1) Kelvin mode.
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FIGURE 6. Growth rates for (a) tuned and (b) untuned aspect ratios I" obtained from
theory ((2.4), lines) and DNS (symbols), with o as a parameter at 2R?/v = 6500.

4.2. Modal dynamics and growth rates for other aspect ratios and at small o

Further DNS were carried out for I" = 1.620 (as in §4.1) and four other values
of I', with Po set to excite the forced (1, 1, 1) mode at its first resonance, and fixed
QR?/v = 6500, for variable a. Two aspect ratios (I" =3.600 and 0.758) were chosen
to provide exact triads according to the dispersion relation analysis, while the other
two (I" =2.667 and 0.923) were not so tuned. Triadic-resonance instability, similar
to that shown in figure 2, was observed for all cases when the nutation angle o was
sufficiently large. In figure 6, the growth rates of the triadic resonances extracted from
the DNS during the exponential growth phase are compared with those predicted by
(2.4). Tt is clear that the growth rates from the DNS match the theoretical values
well, particularly close to the stability threshold in «. Away from the threshold, theory
continues to capture the trend.

For I' = 2.667 and Po = 0.321 (investigated at o« = 1° in Manasseh 1992, for
which the instabilities were described as ‘Type B and C collapses’), a dispersion
relation analysis equivalent to figure 1(b) shows that the triad (1, 1, 1), —(1, 1, 5),
(2, 1, 6) is the closest to an exact resonance, and this set is found in the modal
dynamics. Visualizations equivalent to figure 3 also show the m =6 mode, as expected.
Furthermore, at o = 1°, this case exhibits long-time-scale quasi-periodic behaviour
(cf. figure 2b), suggestive of a Type C resonant collapse. For the other untuned aspect
ratio, I' =0.923 at « =0.27° and Po = —0.380, the DNS visualization shows m = 8.
This case is between two exact resonances (I" = 1.09 for modes m = 6 and 7 and
I' =0.886 for modes m =7 and 8, cf. table 1 in Lagrange et al. 2011). The dominant
modes are m =1, 7 and 8, suggesting a triadic resonance despite this untuned aspect
ratio. We have found that the same is true for the untuned aspect ratio I" = 1.297,
o = 0.36° and Po = —0.270 (not represented in figure 6), where we expect, and
observe, m=6 and 7.

4.3. Resonant triad behaviour for a ‘spherical-like’ aspect ratio and o =45°

In searching for a triadic resonance at o =45° for an aspect ratio of I'=H/R=1.990
(i.e. H/(2R) = 1.005) and an Ekman number of v/2,H* = 10~*, which corresponds
to Re = $2,R*/v =2482, Kong et al. (2015) varied Po over a range Po € [0.001, 0.1].
This aspect ratio has the resonance of the (1, 1, 1) Kelvin mode at vanishing
Poincaré number (or at o« — 90°), as in the case of a sphere (hence the classification
‘spherical-like’). They concluded that despite a large effort, the forced m=1 flow was
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FIGURE 7. Time series of modal kinetic energies in the first eight azimuthal Fourier
modes for I"'=1.990, « =45° and Po=0.01, with (a) Re =2482, as considered by Kong
et al. (2015), and (b) Re = 3475.

not unstable with respect to a triadic resonance. Their Po < 0.01 cases had the forced
m = 1 state saturate, whereas their Po = 0.1 case became nonlinearly complicated
through sidewall interactions. They expected the flow to equilibrate in a spin-up
time of order Re'/?. However, near onset an instability may take much longer to be
manifested. At Re =2482 and for Po=0.01, theory predicts a slightly positive growth
rate of 0 =1.90 x 10~ for a triadic resonance involving the (1,1, 1), —(1, 1, 5) and
(2, 1, 6) Kelvin modes, suggesting that in DNS it might take approximately 6 x 10*
time units (approximately 25 viscous times) for the disturbance energy to grow from
the double precision noise level, O(1073), to significant values of O(107°).

We re-examined this case (1" =1.990, Re =2482, Po=0.01, o =45°), evolving our
DNS for considerably longer than Kong et al. (2015).

Figure 7(a) shows the time series of the leading modal kinetic energies; they appear
to have quickly saturated to the forced (m = 1) flow, with the streaming (m = 0)
component and the harmonics of the m = 1 component essentially constant after a
spin-up time of ¢~ 140. More than two viscous times later, the modes m =35 and 6
grow at o =2.04 x 1073 until they saturate, accompanied by a small decline in E,
(not observable in the figure). It is clear that at this Re, the system is very close to
the triad-resonance-induced instability of the forced m =1 flow.

For larger Re = 3475, theory predicts instability with a growth rate of o =2.85 x
10~2. Direct numerical simulation at this Re (see figure 7b) shows that the parasitic
modes now grow at a faster rate and become visible earlier, by #~ 600, but this is still
an order of magnitude longer than the viscous spin-up time Re'/? =59. It should be
noted that the initial transient from solid-body rotation with o« =0 at t=0 does spin
up to the m=1 forced flow on the Re'/? time scale, but the subsequent instability of
the forced flow is manifested on the slow time scale. The m =35 and 6 modes become
energetic and quasi-periodic, and oscillate with a long-time-scale period of 133.5 4.
At this larger Reynolds number, the theoretical and observed growth rates differ by
only 6.6 %, clearly showing that the theory incorporating detuning and viscous effects
works very well in predicting the correct dynamics.

5. Conclusions

Our study of triadic-resonance instability in precessing cylinders with small nutation
angle suggests that the reduced weakly nonlinear model based on Kelvin modes
presented by Lagrange et al. (2011) works very well for a precisely tuned case,
providing good agreement with observed rotational frequencies, modal structure,
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onset of instability, growth rates, and, for quasi-periodic saturated states, a reasonable
estimate of the long-cycle oscillation period. The dispersion relation analysis identifies
potential triadic resonances, while the stability analysis predicts the growth rates of
the parasitic modes. The methodology is not restricted to precisely tuned cases. In
the absence of exact triadic resonance, detuning terms are included in the model
(Lagrange et al. 2011). Detuning decreases the inviscid growth rates, and for growth
to occur the amplitude of the forced Kelvin mode has to be large enough in order to
compensate the viscous damping.

The details of the model (Lagrange et al. 2011) incorporate estimates of the
streaming (m =0) flows associated with the parasitic Kelvin modes as parameters for
nonlinear coupling. However, our results clearly show that the largest streaming flow
present in the system is directly coupled to the precessionally driven flow, since the
energy in the axisymmetric flow component (E;) becomes large as soon as the driven
flow (E)) is established. This may help to explain some of the small discrepancies
between the growth rates predicted by the reduced model and those observed from
DNS of the full Navier—Stokes equations.

We have simulated an additional case from the literature (Kong et al. 2015), which
has small Poincaré number but large nutation angle («¢ = 45°), as opposed to small
angle and larger Poincaré number; either combination provides weak precessional
forcing suitable for the triadic-resonance model. At the Reynolds number used
by Kong et al., the model suggests marginally unstable behaviour, and DNS also
indicates instability occurring through triadic resonance. A long time (of the order of
several viscous time scales) elapses before the energy of the parasitic modes grows
to an appreciable level.

Finally, the quasi-periodic saturated states predicted by the model and observed
in the DNS are consistent with reported experiments (Manasseh 1992, 1994, 1996;
Lagrange et al. 2008; Meunier et al. 2008; Lagrange et al. 2011).
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