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Contained rotating flows subject to precessional forcing are well known to exhibit
rapid and energetic transitions to disorder. Triadic resonance of inertial modes has
been previously proposed as an instability mechanism in such flows, and that idea was
developed into a successful model for predicting instability in a cylindrical container
when departures from solid-body rotation are sufficiently small. Using direct numerical
simulation and dynamic mode decomposition, we analyse instabilities of precessing
cylinder flows whose three-dimensional basic states, steady in the gimbal frame of
reference, may depart substantially from solid-body rotation. In the gimbal frame,
the instability can be interpreted as resulting from a supercritical Hopf bifurcation
that results in a limit-cycle flow. In the cylinder frame of reference, the basic state
is a rotating wave with azimuthal wavenumber m = 1, and the instability satisfies
triadic-resonance conditions with the instability mode maintaining a fixed orientation
with respect to the basic state. Thus, we are able to demonstrate the existence of
two alternative but congruent explanations for the instability. Additionally, we show
that basic states may depart substantially from solid-body rotation even with modest
cylinder tilt angles, and growth rates for instabilities may be sufficiently large that
nonlinear saturation to disordered states can occur within approximately ten cylinder
revolutions, in agreement with experimental observations.
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Light
sheet

(a) (b) (c) (d)

FIGURE 1. (a) Schematic of precessing flow configuration, and (b–d) rheoscopic flow
visualizations of a ‘Type A collapse’ by Manasseh (1992, figure 5, see also supplementary
movie 1 of the present work) at Re = |Ω1|R2/ν = 21 120: commencing from solid-body
rotation about axis ẑ, the flow develops quasisteady three-dimensional structure (b) soon
after tilting through angle α = 3◦; unsteady wavy instabilities are observed (c); followed
by large-scale disorder (d).

1. Introduction

Large-scale collapse or transition to disorder of rapidly rotating contained flows with
low-level periodic mechanical forcing has been reported in many experimental studies.
Typically the forcing in such experiments has been created either by boundaries
which move at a differential rotation rate (e.g. McEwan 1970; Malkus 1989) or by
precession of the vessel about an axis other than the symmetry axis (e.g. Malkus
1968; Manasseh 1992; Lagrange et al. 2008). Transition may occur rapidly following
initiation of forcing.

In most cases of interest, the vessel rotation rate about a symmetry axis is less
than twice its total rotation rate in an inertial frame of reference. That is because,
in these circumstances, inertial waves whose restoring force can alternatively be
taken as caused by pressure gradients associated with solid-body rotation or by
Coriolis effects can be driven near to or at resonance to reach moderately large
amplitudes compared to the background rotation. The amplitudes of such forced
waves are limited by nonlinear energy transfers and viscous damping, and, if stable,
will saturate to outcomes which are stationary with respect to the forcing (and which
are temporally periodic with respect to the vessel). However, as suggested above,
these three-dimensional flows are themselves often unstable to further disturbances
which are able to extract energy from the system and which may saturate either
to even larger organized waves or make the transition to disordered states. This
behaviour was originally studied in some depth by McEwan (1970), who coined the
phrase ‘resonant collapse’ for the transition, and subsequently by Manasseh (1992),
whose observations of ‘Type A collapse’ in a precessing cylinder (see figure 1 and
supplementary movie 1 available at https://doi.org/10.1017/jfm.2018.145) motivated
the present work.

Two broad classes of instability in precessing cylinder flows have been noted,
depending largely on whether the forcing is weak or strong. For weak forcing and
near resonance of a low-order mode, behaviour consistent with weakly nonlinear
systems emerges, characterized by the gradual and persistent appearance of modes
of higher order that destabilize the forced mode, which Manasseh (1992) called a
‘Type B collapse’, and quasi-periodic recurrent instabilities with a similar appearance,
which Manasseh called a ‘Type C collapse’. These weakly unstable limit-cycle and
quasi-periodic behaviours have been reproduced numerically in our previous works
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Triadic resonance as an instability mechanism

(Albrecht et al. 2015; Giesecke et al. 2015; Marques & Lopez 2015), and shown to
result from triadic-resonance instability. However, for larger forcing, behaviour which
apparently differed qualitatively was observed in Manasseh’s experiments. As may be
seen in our accompanying supplementary movie 1 of rheoscopic flow visualization
recorded during the course of those experiments, growth of instability proceeded
rapidly from initial observation to very disordered states with fine-scale motions and
little discernible structure other than large-scale overturning. Manasseh (1992) referred
to this behaviour as a ‘Type A’ collapse. In the present work the geometry, frequency
ratios and tilt angles employed are the same as for the ‘Type A’ collapse examined
in § 4.3.2 of Manasseh (1992).

Our focus here is on the instability of a steady three-dimensional basic state (as
in figure 1b) on which unsteady three-dimensional features grow (figure 1c). Stability
analysis of such basic states is not straightforward, but as Kerswell (1993, 1999, 2002)
relates, combinations of wave instabilities can satisfy triadic-resonance conditions with
respect to the basic state, so that nonlinear product terms of the disturbance are able
to lock to it, enabling extraction of energy into the other components of the triad. If
the basic state has azimuthal wavenumber mF and angular frequency ωF, then any two
other modes which participate in a triadic resonance with it must satisfy

|±m1 ±m2| =mF, |±ω1 ±ω2| =ωF. (1.1a,b)

Another contribution of Kerswell (1993) was to show that for inviscid flows in
precessing spheroids, triadic-resonance instabilities associated both with mF = 1 and
mF = 2 as predicted in the vessel frame of reference could alternatively be identified
with Hopf bifurcations from a basic state that is steady in the gimbal/precessing
frame of reference. In what follows we demonstrate that a similar relationship exists
in instabilities of viscous flows contained in precessing cylinders.

While the real flows are viscous, Reynolds numbers are usually quite large at
instability, prompting modellers to draw on the large body of theory associated with
inviscid modes of rotating flows (Greenspan 1968); in the context of cylindrical
flows these are known as Kelvin modes, which have Fourier–Fourier–Bessel
azimuthal–axial–radial spatial structure. (It is common in experiments to tune the
geometry of the vessel and rotation rates to match resonance with a low-order Kelvin
mode so that a large-amplitude three-dimensional structure can be achieved with
a comparatively small forcing amplitude.) Using the concepts of triadic resonance,
Kelvin modal structure, simple nonlinear models to estimate the amplitude of a
low-order mode driven near resonance, and calibration to experiments, Eloy, Le Gal
& Le Dizés (2003) developed reduced-order models for inertial-wave-type instabilities
for periodically deformed rotating cylinders, while Meunier et al. (2008), Lagrange
et al. (2011) extended application to precessing cylindrical containers. In experiments
and direct numerical simulations (DNS) these models have been successful in
predicting onset and structure of instabilities (Eloy et al. 2003; Lagrange et al. 2008;
Albrecht et al. 2015; Marques & Lopez 2015). Since two underlying assumptions
of Kelvin-mode-based triadic instability models must be that the basic state, though
three-dimensional, is not a large departure from solid-body rotation and that Reynolds
numbers are large, it is not clear how well they will perform when these assumptions
are violated. Moreover, the mechanism of triadic resonance as a possible instability
mechanism for precessing cylinder flows remains controversial. On the basis of DNS
studies of flows in precessing cylinders, Zhang & Liao (2017) conclude their § 11.9
with the statement ‘It would seem reasonable to infer from the above result and
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argument that triadic resonance cannot take place in precessing cylinders at any
precession angle α and any aspect ratio Γ .’

In the present work we examine DNS of precessing cylinder flows whose geometry
and frequency ratios, tuned to closely coincide with resonance of the lowest-order
three-dimensional Kelvin mode, match those for the ‘Type A’ collapse experiments
of Manasseh (1992). As in that work, the system is not further tuned to satisfy any
particular triadic-resonance condition. The Reynolds number used here is the lowest
used in the experiments. First we compute unstable (steady, three-dimensional)
basic states via selective frequency damping (SFD, Åkervik et al. 2006), and
show that these depart significantly from solid-body rotation for quite modest
precessional nutation (tilt) angles. Allowing the flows to evolve from these basic
states, one observes significant periods of initially uniform exponential growth of
three-dimensional disturbances in all azimuthal Fourier modes in the simulation. The
growth rates give saturation time scales comparable to those observed in experiments,
despite the fact that Reynolds numbers of the DNS are typically smaller than those
in the experiments. We employ dynamic mode decomposition (DMD, Schmid 2010;
Jovanović, Schmid & Nichols 2014) to analyse DNS data and show that there are
two complementary ways of interpreting disturbance growth, either as a simple
Hopf bifurcation or as a triadic resonance with a single group velocity, depending
on which frame of reference is adopted. This strongly suggests that the instability
mechanism leading to Manasseh’s ‘Type A’ collapse was of triadic resonance type.
We examine how tilt angle (and hence departure from solid-body rotation) influences
the leading modes of the disturbance, and show that the model of Lagrange et al.
(2011) successfully predicts onset of instability, growth rates and the leading triadic
modes at small tilt angles, but overpredicts growth rates at larger tilt angles.

2. Problem definition and methodology

As represented in figure 1(a), we consider incompressible viscous flow of fluid that
fills a cylinder of height H and radius R. The cylinder rotates around its axis with
angular velocity Ω1 with respect to the gimbal that attaches it to a turntable which
in turn rotates with angular velocity Ω2 about axis ẑ, fixed in an inertial frame of
reference. The gimbal is tilted through nutation angle α so that the axis of the cylinder
precesses with respect to the inertial frame. We define the cylinder rotation rate Ω1=

|Ω1| sgn(Ω1 · ẑ) to be positive and Ω2 = |Ω2| sgn(Ω2 · ẑ).
Precession drives the flow away from the solid-body rotation which would exist for

α = 0. In the inertial frame, the forcing is created by periodic precessional motion
of the cylinder walls, but these flows are more readily considered in rotating frames
of reference in which the cylinder geometry appears fixed. We note that there are
two canonical such rotating frames. The first is the gimbal (or precessing) frame of
reference, in which the cylinder walls rotate steadily and in which the precessional
forcing is fixed with respect to the frame, making it possible to find a steady solution
to the Navier–Stokes equations. The second canonical case is the cylinder frame
of reference, in which the walls of the cylinder as well as its geometry appear
fixed, but the precessional forcing rotates steadily. Most of the previous theoretical
considerations of the fluid motion are cast in the cylinder frame, while most laboratory
measurements and visualizations of such flows are obtained from the gimbal frame.
In a numerical study one is free to consider the flow in either frame, and part of
our purpose here is to show what can be learned by examining the arising flow
instabilities in each frame.
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Triadic resonance as an instability mechanism

Similar to our earlier work (Albrecht et al. 2015), a cylindrical formulation of the
incompressible Navier–Stokes equations written for a rotating frame

∂u/∂t+ u · ∇u+ 2Ω × u+ (dΩ/dt)× r =−∇p+ Re−1
∇

2u− χ(u− u), ∇ · u= 0,
(2.1)

is solved using a spectral element–Fourier method (Blackburn & Sherwin 2004,
source code available at http://users.monash.edu.au/∼bburn/semtex.html), with no-slip
boundary conditions on all cylinder walls. One can compute (2.1) in either of the
two canonical frames and then if required transform between them by adding or
subtracting solid-body rotation. In the cylinder frame Ω = Ω1 + Ω2(t) varies with
time, whereas in the gimbal frame it is steady, Ω =Ω2. Hence, we focus on working
in the gimbal frame because there it is possible to find steady solutions to (2.1) since
dΩ/dt= 0.

To compute unstable steady solutions, we adopt the selective frequency damping
(SFD) approach of Åkervik et al. (2006), in which a penalty term of the form
−χ(u− u) appears in the momentum equation of (2.1) and where the estimate of the
time-mean flow u is updated using forwards-Euler integration as computation proceeds
towards a steady state, with χ = 0.1 and a filter width ∆= 25/π (c.f. Åkervik et al.
equation (6)). This penalization counteracts the ∂u/∂t term in (2.1), tending to
stabilize the solutions towards a steady outcome, though since the approximation to
∂u/∂t is inexact the outcomes are only an approximation to the steady version of
(2.1). When ∂u/∂t= 0 to within a small tolerance, u is saved as the basic state and
we change χ from 0.1→ 0 in order to allow potential instabilities to evolve. The
perturbation flow u′ = u− u is then computed in postprocessing.

A convenient diagnostic measure of solutions is the amount of kinetic energy in
each azimuthal Fourier mode,

Em = (2A)−1
∫

A
ûm · û

∗

m r dA, (2.2)

where A is the area of the meridional semiplane, r is radius and û∗m represents the
complex conjugate of azimuthal mode m of the Fourier transform of u. We use Em
when the velocity field is u, the steady-state solution of (2.1) and E′m when the velocity
field is the perturbation u′ = u− u, all as measured in the gimbal frame of reference.
To show relative significance, these energies are typically normalized by ESBR, the
kinetic energy of solid-body rotation at speed rΩ1.

There are four independent dimensionless control parameters, which we take as
the cylinder aspect ratio Γ = H/R, tilt angle α, Reynolds number Re = Ω1R2/ν
and dimensionless forcing frequency ωF. For the latter, we follow Meunier et al.
(2008) and Lagrange et al. (2011) and define ωF = Ω1/(Ω1 + Ω2 cos α), i.e. the
cylinder’s angular velocity with respect to the turntable, non-dimensionalized by
the total angular velocity with respect to the inertial frame. We note that another
dimensionless parameter, the Poincaré number Po = Ω1/Ω2, is sometimes employed.
This is useful because the strength of the precessional forcing is proportional to
|Po| sin α. Thus it is possible to have a large tilt angle yet a small precessional
forcing. In the present work, Po= 0.361.

As mentioned in § 1, the parameters Γ = 2.667, ωF = 2/2.72 = 0.735 have been
chosen to match work described in Manasseh (1992). The results reported here are
for Re= 4778, the lowest value used by Manasseh, and the tilt angle is varied up to
αmax = 3◦, which was found sufficient to produce a rapid ‘Type A’ collapse (§ 4.3.2,
Manasseh 1992).
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FIGURE 2. (a) Vortex core of the basic states visualized by isosurfaces of |u|/max(|u|)=
0.01. (b) The angle θ between the vortex core and the cylinder axis at the centroid of
the cylinder, and (2E1/ESBR)

1/2, measures of flow three-dimensionality, both as functions
of tilt angle α.

We have used 192 quadrilateral elements to mesh the meridional semiplane, with
significant refinement near the side and end walls (see figure 3 of Albrecht et al. 2016,
for a comparable mesh), and employed up to 64 azimuthal Fourier modes (128 planes
of real data) for the largest tilt angles. We will briefly describe resolution studies in
§ 4.

3. Basic states

Basic states u are fixed in the gimbal frame of reference but rotate steadily at
−Ω1 in the cylinder frame of reference. Outcomes are summarized in figure 2, where
figure 2(a) shows how vortex-core geometry (here defined as an isosurface of flow
speed that is 1% of the maximum) varies with tilt angle – these results may be
compared with the visualization of figure 1(b). Clearly the flow departs significantly
from solid-body rotation, becoming more three-dimensional with increasing tilt angle.
Also clear is that the flow remains well organized around a curvilinear vortex core.
Near the end walls, this core is displaced substantially from the axis of symmetry.
For the highest tilt angles, slight kinks may be observed in the vortex core near the
midheight of the cylinder, an effect which is associated with the presence of inertial
wave beams that emanate near the intersection of the cylinder’s side and end walls.
Note that in precessing cylinder flows, such beams are not conical owing to the m= 1
forcing. We refer the reader to Marques & Lopez (2015), Lopez & Marques (2018)
for more detail concerning such basic states.

Figure 2(b) shows quantitative measures of flow three-dimensionality extracted from
the basic states. The first measure is the angle θ made between the centreline of the
vortex-core extractions shown in figure 2(a) and the cylinder axis, at the centroid of
the cylinder. The angle increases monotonically with α, though the rate of increase
declines near α = 1◦, when kinks on the vortex core start to become significant. To
quantify the relative significance of the resonant three-dimensional flow compared to
the background solid-body flow component, the measure (2E1/ESBR)

1/2 is also shown
in figure 2(b); the leading factor of 2 owes to contributions in m = ±1. This ratio,
like θ , also increases monotonically with α, to reach a peak value of approximately
40% at α= 3◦, again indicating that the basic state is substantially three-dimensional.
The departure from solid-body rotation is dominated by azimuthal wavenumber
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FIGURE 3. History of Fourier modal energies in the disturbance flow u′ for α = 3◦,
Re = 4778. The thick black triangle indicates the period over which DMD analysis was
performed, as well as the growth rate. Ordering of leading Fourier modes during the
growth phase is shown in the zoomed-in region; at earlier times, the two leading modes
were m= 1 and m= 0.

mF = 1, and in the cylinder frame, by frequency ωF, thus setting the stage for triadic
resonances according to (1.1).

4. Instabilities of the basic state

Figure 3 shows the evolution of E′m/ESBR following removal at t = 0 of SFD
penalization for α = 3◦; additional simulations have been carried out for a range of
lower tilt angles, but are not represented in the figure, since they all, if unstable
(cf. figure 6a), exhibit the same qualitative behaviour. Initial modal energies, though
very small, are never exactly zero owing to the fact that, as explained in § 2,
the SFD-penalized Navier–Stokes equations are an approximation to the steady
Navier–Stokes equations. The paramount feature of figure 3(a) is that after some
elapsed time, associated with the time required for instabilities to grow above
background levels, disturbances in all Fourier modes grow exponentially at the
same rate until saturation is approached at t/T1 > 40, where T1 = 2π/Ω1. (Similar
behaviour, but with weaker growth owing to smaller values of |Po| sinα, was apparent
in our earlier work dealing with triadic-resonance instability – see figures 2 and 7
of Albrecht et al. (2015), although attention was there confined to only the leading
Fourier modes engaged in those instabilities, and to agreement with the reduced-order
model for growth of leading Kelvin modes by Lagrange et al. (2011)). Figure 3
shows that at α = 3◦, disturbance energies grow by 12 orders of magnitude to reach
saturation in approximately 20 cylinder revolutions.

We have computed flows using a variety of discretization levels, but always with
the same 192-spectral-element decomposition of the meridional semiplane. The basic
resolution used to obtain the presented results used spectral element shape functions
that were tensor products of sixth-order Lagrange interpolants and 64 azimuthal
Fourier modes. A reduction to fourth-order interpolants and 32 Fourier modes changed
the growth rates by at most 1%, leaving the overall dynamics otherwise the same.

Flow visualization and animation has been central to developing our understanding
of flow physics in this problem. Figure 4(a) shows a perspective view of isosurfaces of
axial vorticity in the perturbation flow u′ for α= 3◦ at t/T1= 35.738, after exponential
growth is established (cf. figure 3). This view suggests that the disturbance takes the
form of a three-dimensional wave that is aligned around the vortex-core base-flow
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(a) (b) (c) (d )

FIGURE 4. Structure of the instability for α = 3◦. (a) Instantaneous ± isosurfaces of
perturbation axial vorticity at t/T1 = 35.738 (figure 3); see also supplementary movies 2
and 3. (b) Translucent isosurface of time-average perturbation kinetic energy (after
de-trending for exponential growth), superimposed over the vortex core of the basic state.
Also shown are isosurfaces of axial vorticity for the leading DMD modes from (c)
gimbal-frame and (d) cylinder-frame analyses.

structure seen in figure 2(a), which is steady in the gimbal frame of reference. In
order to focus on wave structure, it has been helpful in preparing animations to
first normalize the velocity snapshots in order to remove the growth observed in
figure 3. Two such animations of axial vorticity for the α = 3◦ case are provided
as supplementary movies 2 and 3; movie 2 provides an animation as seen from the
gimbal frame of reference, while movie 3 is of the same data but visualized from the
cylinder frame of reference. In movie 2 it is evident that the wave envelope remains
steady with respect to the gimbal frame (and the basic state), but there is a dominant
frequency associated with progress of the wave; this is the phase frequency of the
wave in the gimbal frame. In movie 3, the whole wave as well as the basic state
revolve at circular frequency Ω1 with respect to the observer. From the normalized
snapshots used to create movie 2, the time-average kinetic energy has been computed;
an isosurface of this quantity shown in figure 4(b) illustrates how the wave envelope
coils around the vortex core of the basic state.

Dynamic mode decomposition (DMD, Schmid 2010) can be used to approximate a
temporally evolving flow field with a sum of spatial modes ψj(x) of constant shape;

u(x, t)≈
∑

j

aje(σj+iωj)tψj(x), (4.1)

each ψj being associated with a unique frequency ωj and growth rate σj (both real),
and complex amplitude aj. Since the original data are real, DMD modes occur
in complex-conjugate pairs at ±ωj. The procedure operates on uniformly sampled
snapshots vj of the flow field, which are assumed to form a Krylov sequence
V =

{
v1, Av1, A2v1, . . . , , AN−1v1

}
i.e. subsequent snapshots are connected by

a constant linear mapping A. We used the sparsity-promoting variant of DMD
(Jovanović et al. 2014; Horn & Schmid 2017), which minimizes the number of
modes required to recover the snapshot sequence to within a specified accuracy.
DMD may be based on snapshots of any flow variable; we have used perturbation
axial vorticity computed in postprocessing, as a scalar field derived from u′. We
note that DMD analysis makes no assumption regarding spatial structure of modes.
We have used it on snapshot sequences from time windows clearly associated with
exponential growth (see figure 3), so that one expects leading DMD modes – those
with largest |aj| – to have σj matching (one-half) the observed growth in E′m.
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(a) (b)

FIGURE 5. Amplitude–frequency spectra for DMD analyses at α = 3◦ carried out in (a)
the gimbal frame of reference and (b) the cylinder frame of reference. Each data point
represents a DMD mode, with numeric labels representing the azimuthal wavenumber m of
the mode shape, and its growth rate σ . Each DMD mode represented on (a) corresponds
to a ‘triad tree’ of modes on (b) that share the same symbol and growth rate. In (a) the
supplied values of m represent the dominant azimuthal wavenumber of the DMD mode,
while in (b) the values of m are precise for each mode. In order to reduce clutter, only
one-half of the complex-conjugate pairs of modes are represented in (b).

Analyses have been computed in both gimbal and cylinder frames of reference, and
we present in figure 5 information from the two leading sets of DMD modes in each
frame, as computed for α = 3◦. In each plot, the modal amplitudes are normalized
such that |aj|max = 1. Figure 5(a) shows outcomes for the gimbal-frame DMD; the
spectrum of |aj| versus dimensionless frequency ω/ωF shows four modes: two sets
of complex-conjugate pairs at ±ω/ωF. The growth rate σ±1 = 0.122 associated with
the leading pair of modes, a±1, matches (one-half) the energy growth rate for all
Fourier modes observed in figure 3. The other pair of instability modes represented in
figure 5(a) has a lower growth rate, σ±2 = 0.104, and amplitude |a±2| � |a±1|. Each
of these pairs of modes can be ascribed to a Hopf bifurcation from the basic state,
which is steady in the gimbal frame of reference. The frequency of each of these
Hopf modes corresponds to the motion of wavepacket features, seen in figure 4(a) and
supplementary movie 2, i.e. it is associated with the phase velocity of wavepackets as
observed in the gimbal frame (but since the frequencies are close, and |a±1| � |a±2|,
it is difficult to distinguish the two). Since the saturation levels of E′m in figure 3 are
approached with monotonically declining growth rates in the leading modes, the Hopf
bifurcations are supercritical.

Figure 5(b) presents outcomes of DMD analysis based on snapshots rotated into the
cylinder frame of reference. For clarity only one-half of the |aj| data are shown; for
each point shown, there is a corresponding point at the negative value of ω/ωF that
has been omitted. For each |aj| in the right-half-plane of figure 5(a), there is now a
‘triad tree’ of |aj| in figure 5(b). For each such tree, all DMD modes have the same
value of σ , which matches that of a corresponding Hopf mode in figure 5(a). For
each |aj|, a numeric label shows the dominant azimuthal wavenumber of the spatial
structure for the associated DMD mode ψj. For gimbal-frame DMD modes, a variety
of azimuthal wavenumbers contribute to each mode and its spectrum is somewhat
broad, but cylinder-frame analysis generates an azimuthal Fourier decomposition, and
each mode has a very sharp spectrum. This feature can be seen in the mode shapes
for the leading DMD modes in figures 4(c) and (d), respectively for gimbal-frame and
cylinder-frame analyses. The leading mode for the gimbal-frame analysis is visually
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FIGURE 6. (a) Growth rates σ of the two leading Hopf modes as functions of tilt angle
α (lines with symbols), with their dominant azimuthal wavenumbers m, together with
growth rates and triad wavenumbers obtained from the model of Lagrange et al. (2011).
(b) Leading triad trees from cylinder-frame analyses at α = 0.6◦ and 3◦, with azimuthal
wavenumbers and growth rates.

similar to the DNS snapshot in figure 4(a) and has a complicated azimuthal structure
dominated by m= 5, whereas the leading mode for the cylinder-frame analysis is very
clearly almost pure m = 5 (note also that it does not show any structural alignment
with the vortex core of the basic state).

Three key features emerge for the analysis represented in figure 5(b). First, the
frequency for each adjacent pair of modes in each tree differs by |∆(ω/ωF)| = 1.
Second, the azimuthal wavenumbers for each adjacent pair of modes in each tree
also differ by unity, thus all the adjacent modes in each tree satisfy the triad
conditions (1.1). Third, as a consequence, each tree of DMD modes is characterized
by ∆(ω/ωF)/∆(m) = 1, i.e. they share a common group velocity which is also the
value required to keep the wavepacket rotating at the cylinder rotation rate, i.e. at
a fixed orientation with respect to the basic state, which in the cylinder frame of
reference is a rotating feature. Since the modes in each tree share a common growth
rate and group velocity as well as satisfying (1.1), one may consider that a whole
tree represents a single ‘generalized triad’.

One may note an exact correspondence between the two Hopf mode frequencies
shown in the left-half-plane of figure 5(a) and the m = 0 frequencies in the two
triad trees of figure 5(b). Indeed (though not shown), the m = 0 projection of the
DMD modes found in the gimbal-frame analysis for figure 5(a) have the same spatial
distributions as the DMD modes labelled m= 0 for the two triad trees of figure 5(b).
This is a consequence of the change of reference frame between analyses; only m= 0
components can remain invariant in both frequency and shape under the rotational
transformation.

Figure 6(a) shows growth rates σ of the two leading sets of DMD modes as a
function of tilt angle α. This suggests that the progression of instability dynamics
in this system may be interpreted as a sequence of Hopf bifurcations from the basic
state, a first which occurs near α = 0.6◦ and a second near α = 1◦. At α = 1.7◦
the growth rate of the second-bifurcating branch exceeds that of the first. Also
shown on that figure are lines representing growth rates predicted by the model
of Lagrange et al. (2011) in this system (which as remarked in § 1 is not precisely
tuned to any particular triad) for two different triadic interactions with the lowest-order
three-dimensional Kelvin mode. While agreement is not perfect, the model performs
well in predicting critical α values, initial rise in growth rate with α, and the leading
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azimuthal wavenumbers for each solution branch, which according to figure 5(b) are
m = 4, 5 for the leading branch, and m = 5, 6 for the subdominant (at α = 3◦) but
first-bifurcating branch in figure 6(a).

Figure 6(b), comparing the leading triad trees for cylinder-frame analyses at α=0.6◦
and 3.0◦ (the latter reproduced from figure 5 b), shows the effect of tilt angle on the
structure of a triad tree. As tilt angle reduces towards the critical value (αc= 0.57◦, as
compared to 0.48◦ predicted by Lagrange et al. (2011)) a tree becomes increasingly
dominated by the fundamental triad modes (for α = 0.6◦ these have m= 5 and m=
6). This behaviour helps explain why the Lagrange et al. (2011) model, which only
considers the three fundamental Kelvin modes in a triad, is so successful at predicting
critical values and initial increase of growth rates with α.

5. Discussion and conclusions

As outlined in § 1, the present study has sought to examine the nature of resonant
collapse in a system whose geometry, frequencies and maximum tilt angles matched
those used in § 4.3.2 of Manasseh (1992). At α= 3◦, Re= 21 210, ‘Type A’ collapses
in Manasseh’s experiments proceeded rapidly to completion, and it would typically
take O(5) cylinder revolutions between visual observation of a wavy instability
and saturation. This is similar to the number of cylinder revolutions required for
energy of a disturbance to grow exponentially by three orders of magnitude in
the present corresponding DNS. While our Re = 4778 is lower, we note that the
initiation-to-saturation time scales recorded in figure 4 of Manasseh (1992) are
relatively insensitive to Ekman (inverse Reynolds) number.

From § 3 it is clear that the basic states obtained as α→ 3◦ are substantially three-
dimensional such that it might be ambitious to assume validity of triadic-resonance
models based on small departures from solid-body rotation (e.g. Lagrange et al. 2011).
Dynamics obtained from DNS suggest that the departure of observed growth rates
from those predicted by the Lagrange et al. model occurs smoothly with increasing
tilt angle and difference sets in once other Hopf modes (also predicted) bifurcate
from the basic state. The model is shown to be broadly successful in the present
circumstances (where the geometry and frequencies were not precisely tuned to a
particular triad) in that it well predicts the critical tilt angle for instability, the nature
of the modes involved, and the initial variation in growth rate with tilt angle. At
larger tilt angles however, the model substantially overpredicts growth rates compared
to observed values.

In summary, we suggest that this study demonstrates that the instability mechanism
associated with the violent ‘Type A’ resonant collapse observed by Manasseh (1992)
is of triadic type, in common with (at least) Types B and C, but that the dynamics
become richer, and growth rates larger, with increasing forcing amplitudes. We have
shown that, considered in an alternative frame of reference in which the basic state
is steady (here, the gimbal frame), such instabilities are of Hopf type. At α > 1.1◦
here, the basic state is unstable to two different Hopf modes, allowing more complex
behaviour; for α > 1.7◦ the second-bifurcating Hopf has larger growth rate than
the first. Fundamentally, the nature of the instability is exactly the same regardless
of the frame of reference used. The distinction between outcomes of, for example,
figures 5(a) and 5(b), and indeed between natures of the DMD modes of figures 4(c)
and 4(d), results precisely from a change of reference frame, so in one sense the
distinction is trivial. In the gimbal frame of reference, only a small number of
DMD modes are required to represent the instability, even well beyond the level of
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resonant forcing required for onset. However, clear identification of a triadic-resonance
mechanism as the underlying driver for instability relies on adoption of the cylinder
frame of reference. The unifying principle is that the instability wavepacket has to
maintain a fixed orientation with respect to the three-dimensional features of the basic
state from which it draws energy.
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