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The finite-amplitude space—time mean flows that are precessionally forced in rotating
finite circular cylinders are examined. The findings show that, in addition to conventional
Reynolds-stress-type source terms for streaming in oscillatory forced flows, a set of
Coriolis-type source terms due the background rotation also contribute. These terms
result from the interaction between the equatorial component of the total rotation
vector and the overturning flow that is forced by the precession, both of which have
azimuthal wavenumbers m = £1. The interaction is particular to precessing flows and
does not exist in rotating flows driven by libration (m = 0 forcing) or tides (m = £2
forcing). By examining typical example flows in the quasi-linear weakly forced streaming
regime, we are able to consider the contributions from the Reynolds-stress terms and
the equatorial-Coriolis terms separately, and find that they are of similar magnitude.
In the cases examined, the azimuthal component of streaming flow driven by the
equatorial-Coriolis terms is everywhere retrograde, whereas that driven by Reynolds
stresses may have both retrograde and prograde regions, but the total streaming flows
are everywhere retrograde. Even when the forcing frequency is larger than twice
the background rotation rate, we find that there is a streaming flow driven by both
the Reynolds-stress and the equatorial-Coriolis terms. For cases forced at precession
frequencies in near resonance with the eigenfrequencies of the intrinsic inertial modes
of the linear inviscid unforced rotating cylinder flow, we quantify theoretically how the
amplitude of streaming flow scales with respect to variations in Reynolds number, cylinder
tilt angle and aspect ratio, and compare these with numerical simulations.
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1. Introduction

Flows in rapidly rotating containers are of fundamental interest in a range of geophysical
and engineering applications (Kerswell 2002; Le Bars, Cebron & Le Gal 2015). Here, we
deal with incompressible flows in cylindrical containers. If, as well as rotating around its
symmetry axis, the cylinder is precessionally forced, i.e. the solid-body rotation vector
itself is rotating about another axis tilted at an angle o with respect to the first and
at a different frequency, an overturning flow is driven within the cylinder. This forced
overturning flow has azimuthal wavenumber m = %1; it is due to this component of the
velocity that the flow can cross the axis of the cylinder (Batchelor & Gill 1962). The
amplitude of the precessional forcing that drives the overturning flow is proportional
to the product of the ratio of precession and rotation frequencies (the Poincaré number
Po = §2,/52., where §2,, and §2. are respectively precessional and cylinder angular speeds,
see table 1) and the sine of the tilt angle, |Posinc«/|. The precessionally forced flow
can become relatively large even if |Posina| < 1, provided the dimensionless forcing
frequency wy = 1/(1 + Pocosa) is tuned to resonate with an intrinsic inertial mode.
These modes, known as Kelvin modes, are found via separation of variables in the linear
inviscid limits; they have Bessel function structure in the radial direction, are harmonic in
the axial and azimuthal directions, and are harmonic in time with frequencies greater than
zero and less than twice the background solid-body rotation frequency (Kelvin 1880; Fultz
1959; Greenspan 1968). The resulting large-amplitude forced response may then excite
other inertial modes via triadic resonance. These topics have been addressed in many past
studies (Manasseh 1992; Kobine 1996; Kerswell 1999; Lagrange et al. 2011; Albrecht et al.
2015; Marques & Lopez 2015; Herault et al. 2015; Kong et al. 2015; Lopez & Marques
2016; Albrecht et al. 2018; Lopez & Marques 2018; Giesecke et al. 2018; Herault et al.
2019).

Our primary focus in the present work rests not so much on these resonant effects, but
rather on the space—time mean flow which occurs in the cylinder, i.e. the steady streaming
(Riley 2001) forced by precession, and details of the source terms that drive it. Before
proceeding, it is worthwhile to define what we mean by the steady streaming flow in a
situation where, as here, the flow could be both temporally and spatially oscillatory. We
define steady streaming as the temporal and azimuthal average of the precessionally forced
flow in the rotating cylinder. It is assumed that the forced flows have reached statistically
steady states such that the concept of a long-time temporal average is meaningful. It
makes no difference to the outcome in which order these two averages are taken. We
note that this definition of steady streaming differs from the definition of (unsteady)
streaming used by Marques & Lopez (2015), who defined streaming to be the azimuthally
averaged flow, which could vary in time, i.e. the axisymmetric (m = 0) Fourier component
of the precessionally forced flow. If the flow is a steadily rotating wave in some frame
of reference, this azimuthal average is also the space—time average. Henceforth we will
just refer to the streaming flow (or simply, streaming) on the understanding that we
refer to the space—time average. The streaming is constant in both time and azimuthal
coordinate, but may vary radially and axially within the cylinder. Its magnitude squared
is a measure of the rate at which energy is taken from the viscous and pressure work
done at the boundary of the precessing cylinder. The streaming flow is axisymmetric,
but it is not purely azimuthal (so-called zonal); it may possess significant meridional (i.e.
radial and axial) velocity components. For the cases we have examined, the azimuthal
velocity component is strongest (and significantly non-uniform in the axial direction). The
azimuthal average of the streaming typically amounts to an azimuthal (zonal) flow that
is retrograde with respect to the mean rotation of the cylinder. Streaming is of interest
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not only in and of itself, but also because of the role it may play in the saturation of
the overturning flow through detuning effects (Meunier et al. 2008). That detuning may
in turn dampen triadic-resonance instabilities, leading to finite-amplitude saturation or
intermittency of unstable modes, rather than a fully developed transition to turbulence
(Lagrange et al. 2011; Herault et al. 2019). Finally, streaming is a very efficient source of
dynamo action (Giesecke et al. 2018, 2019).

It is natural to consider the source terms for the streaming to derive from Reynolds
stresses, and that has been the assumption in many previous discussions since the
considered flows from which the streaming derives were wavy in some sense. A key goal
of this work is to demonstrate that for the precessing flow considered an additional source
derives from a direct Coriolis-type interaction with the overturning flow (rather than
self-interactions inherent in Reynolds stresses), and that streaming due to this source may
be the dominant component. By direct Coriolis-type interaction, we mean the non-zero
time- and azimuthally averaged source term arising from the Coriolis term. This contains
the product of a time-varying m = &1 flow, such as that driven at leading order by
precession, and a time-varying component of the rotation rate, which in precession also
has m = +£1. Just as with the Reynolds stresses, time averaging the product of these two
fluctuating quantities leads to a non-zero source term capable of driving a streaming flow.
Naturally, any Navier—Stokes, or even Euler, equations simulation would automatically
capture this term, so that streaming flows have featured in very many simulations of
precessing flows, (e.g. Kong, Liao & Zhang 2014; Jiang et al. 2015; Kong et al. 2015;
Marques & Lopez 2015; Lopez & Marques 2016; Wu, Welfert & Lopez 2020). However,
the contribution of this Coriolis-type term to the streaming flow has been unrecognised.
In studies that have a more analytical rather than simulation basis (Busse 1968; Tilgner
2007), interactions in viscous boundary layers were investigated without examining the
direct Coriolis-type interaction. In other studies (Greenspan 1969; Kerswell 1999), the flow
was presumed to have a basis of inertial modes, and their interactions were investigated
as a source of the streaming, again ignoring the direct Coriolis-type term. Importantly, the
direct Coriolis-type interaction requires only the existence of a time-varying flow and a
time-varying rotation rate with the same azimuthal structure. This will occur generically
in precessing fluids, irrespective of whether or not inertial oscillations are present.

In §2 we develop equations for the viscous streaming flow in precessing vessels,
showing in detail how the two types of source terms arise. In § 3 we analyse three example
flows which fall within the weak streaming regime, i.e. where the overturning flow is
weak enough that the equations for the streaming flow are very close to linear and so we
can examine separately the streaming that results from the Coriolis and Reynolds-stress
mechanisms. In all cases, the azimuthal component of streaming is dominant over the
meridional components, and has significant axial structure. The first of these examples
(§3.1) is a case in which the forcing frequency is larger than twice the background
solid-body rotation frequency, no inertial modes are resonantly excited and so the forced
overturning flow does not become large, while the second case (§ 3.2) is resonantly tuned
resulting in a forced overturning flow that is relatively much larger than in the first case,
even though the imposed forcing amplitude, | Po sin «|, is smaller. In the third example case
(§ 3.3), the forced overturning flow, which is also tuned to resonantly excite the m = +£1
intrinsic Kelvin mode, becomes large enough to support a saturated triadic-resonance
instability with two free Kelvin modes with azimuthal wavenumbers m = +5 and m = £6
whose frequencies also meet the conditions for triadic resonance. While the structure
of the resulting streaming is broadly similar to that for the lower-amplitude case of
§ 3.2, the analysis of this case is (in § A.3) expanded in order to examine separately the
contributions of Reynolds stresses associated with the two free Kelvin modes involved in
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Gimbal
tilt axis

Figure 1. (a) Schematic of the precessing flow configuration, (b) top view of cylinder with gimbal axis system
and (¢) cylindrical coordinate system (7, ¢, z) and orientation of the meridional semi-plane shown in subsequent
figures.

the triadic resonance. Section 4 provides a parametric examination of how the magnitude
of streaming varies with the magnitude of the overturning flow, Reynolds number, tilt
angle, Poincaré number and cylinder aspect ratio, predominantly for cases where the
overturning flow is resonant but not subject to instability. This examination facilitates
a rational modification to a quasi-analytical model equation for the amplitude of the
axisymmetric flow (Meunier et al. 2008) in order to accommodate Coriolis forcing terms.
Those terms were originally neglected in the original model because they arise at a higher
order than the nonlinear terms in the asymptotic theory. That equation, in turn, forms a
key element of weakly nonlinear amplitude equations used for the prediction of triadic
resonance instability in precessing cylinders; see § 6.3 of Lagrange et al. (2011).

2. Problem description and methodology

As shown schematically in figure 1(a), we consider an incompressible viscous flow in a
cylinder of height H and radius R that is mounted on a turntable via a gimbal which allows
the cylinder axis to be tilted through angle «. The cylinder rotates with an angular velocity
2. that precesses at angular velocity $2;, with respect to the turntable axis. In a Cartesian
coordinate system fixed to the gimbal, the unit vector aligned along the cylinder axis is
denoted e, the unit basis vector aligned with the gimbal tilt axis is denoted e, = £, x
2,/|182. x £2p|, and the remaining orthogonal unit vector is ey; see figure 1(b). Without
loss of generality, £2. = £2. - e; is taken to be positive and £2, = [$2,| sgn($2, - e;). Both
§2. and §2,, are constant since the cylinder and turntable each rotate steadily. Precession is
prograde (retrograde) with respect to 82, if £2, > 0 (< 0). The Poincaré number,

Po=—, (21)

is thus positive for prograde and negative for retrograde precession. The non-dimensional
frequency of precessional forcing is

2.
Q2.+ R,cosa 1+ Pocosa’

wr (2.2)
and the magnitude of precessional forcing is proportional to |Po sin «|.

The total rotation-rate vector, $2. + £, can be decomposed into an axial component £2
aligned with e; and an equatorial-plane component §2 ; aligned with e,. Their magnitudes
are || = |2, + 2, cosa| and |2 | = |2, sinc|. Ultimately, it is §£2 | that drives the
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2. Angular velocity of cylinder about its symmetry axis.
2, Precessional angular velocity of cylinder axis about turntable axis, inertial frame.
2 Signed size of 2.
2p Signed size of £2,,.
o Angle of misalignment between cylinder symmetry axis and turntable axis.
o Dimensionless frequency of precessional forcing £2./(§2. + §2, cos ).

2, Component of cylinder’s total angular velocity 2. + $2, aligned with symmetry axis.
2 Equatorial-plane component of cylinder’s total angular velocity.
Angular velocity of solution reference frame.

2; Jjth azimuthal Fourier coefficient of $2.

Table 1. Definitions of angular velocity terms; also see figure 1.

overturning flow inside the cylinder. A simple but important point in what follows is that
when expressed in cylindrical coordinates (r, ¢, z) (see figure 1c), 2 has only radial
and azimuthal components, which are 2m-periodic in azimuth ¢, whereas £ has only
a constant axial component. For reference, the nomenclature for various angular velocity
terms adopted herein is summarised in table 1.

2.1. Equations for and sources of streaming flow in rotating cylindrical coordinates

The flow is governed by the incompressible Navier—Stokes equations in a rotating frame
of reference (typically, either the cylinder or the gimbal frame), non-dimensionalised with
length scale R and time scale 1/]$2|; these are

u de I,
— + Vi) + 22 xu+|—xr|+Vp——Vu=0, V.u=0, (23)
at dr Re

where the Reynolds number (or inverse Ekman number) is

R? R?

2:| R
=|2.(1 +Pocosa)| — = |—
v wy

R2 2
Re=|ﬂ|‘|7=|96+9pcosa| — 24

v
The flow is governed by four independent dimensionless groups, which we take as Re,
wy, o and H/R. Unlike what holds for many other forced rotating systems, it is not
straightforward to independently vary either the forcing amplitude or the forcing frequency
while maintaining all other governing parameters constant.

The position vector r gives the location of any point with respect to the origin of
the chosen reference frame, u is the associated fluid velocity and $2 is the associated
rotation vector. The terms 282 x u and (d$2 /d¢) x r are the Coriolis and Euler force terms.
Potential terms associated with centripetal acceleration are, along with the fluid density,
absorbed into the reduced pressure p, and the velocity boundary conditions are no slip on
the walls of the cylinder.

The rotating frame of reference may be taken as attached to either the gimbal or the
cylinder. In the gimbal frame, the rotation vector is 2 = (£2, cosa)e, + |£2 | |ey; itis fixed
and the cylinder walls rotate about the axis at rate §2.. In the cylinder frame of reference,
the rotation vector is 2 = 2. + 2, = | + £ 1, which is identical to the inertial-frame
rotation vector, and only the axial component of rotation 2| = (§2. + £2), cos a)e; is fixed,
while the equatorial component, of constant magnitude |§2 | |, rotates steadily about the
cylinder axis at rate —2.. The magnitude of the equatorial component, |2 | |, is the same
in either of these two frames. In the gimbal frame of reference, there is no Euler force
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since d§2 /dr = 0 and the cylinder walls rotate with respect to the observer, whereas in the
cylinder frame there is an Euler force associated with the continuous change in direction of
£2 | and the cylinder walls appear stationary. For simplicity, we will henceforth principally
restrict attention to the cylinder frame of reference, but include in appendix A further
considerations of streaming in the gimbal frame of reference.

Our focus is on the azimuthally and temporally averaged flow, i.e. the steady and
axisymmetric streaming flow in azimuthal Fourier mode m = 0. Fourier transforming the
momentum equation of (2.3) in azimuth and taking m = 0 gives

i de a 1
a_to +[V. (uu)]a +2[2 x u]g + [E X r:|0 + Vpo — R—eV2f40 =0, (2.5)
where numeric subscripts denote the azimuthal wavenumber m of a Fourier-transformed
variable, indicated by *. The axisymmetric (m = 0) component of the Euler force term,
[(d$2/dr) x r]j =0 since in the cylinder frame the temporal variation only makes
contributions in m = %1, and so the Euler force will only appear indirectly in the equation
for m = 0 (via forcing terms involving #41). Applying the convolution theorem to (2.5)
gives
dity DOV (@) +2 ) 2 x g+ Vp ~LV=0 jkelL @6
oz . iUk . J k Po Re o=Y, . .
J+k=0 J+k=0

Since all the terms are real in physical space, in Fourier space all the complex vector fields
for non-zero azimuthal wavenumbers have conjugate symmetry, e.g. &y = &* |, where *
denotes complex conjugation. For m = 0, all fields are real. As should be apparent from
the discussion immediately preceding § 2.1, the only non-zero §2; occur in wavenumbers
m=0, %1.
Rearranging (2.6) to separate between m = 0 and m # 0 contributions,
dug . A R R I . A N A N
W + V - (upug) + 2820 x ug + Vpo — EV uy=-22_ 1 xu+ 821 xu_)
=YV - (i) (2.7)

m#£=0

In the cylinder frame Q= 2 = (82; + §2, cosa)e; is steady and 2. are temporally

harmonic. fzo is purely axial and real, while flil (the Fourier projection of £2) are
purely equatorial and complex.

On the right-hand side of (2.7), there are, in addition to the conventional
Reynolds-stress-type driving terms for the azimuthally averaged flow (such as would
appear for an unsteady flow in a non-rotating frame), new terms involving cross-products
of the equatorial-plane component of reference-frame rotation and flow velocity in
azimuthal wavenumbers m = 1. These terms are particular to flows in axisymmetric
precessing vessels. In physical space, these terms can be regarded as resulting from
the cross-product of the equatorial component of the total rotation vector with the
three-dimensional velocity field. Only terms involving Fourier modes m = £1 are
involved in C" because £ projects exactly onto these wavenumbers, and because (2.7)
is the equation for m = 0. One can also consider C’ in physical space as resulting from the
cross-product of §2; with the restriction of u to components with 2x-cyclic variation in
azimuthal coordinate ¢. Since they do not appear to have an accepted name, we will adopt
the phrase ‘equatorial-Coriolis forcing’ for these cross-product terms. Also of note is the
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fact that owing to symmetry and parity conditions at the axis, only flows with z4; #0
can cross the axis (Batchelor & Gill 1962; Marques & Lopez 2001; Blackburn & Sherwin
2004). As a result, they involve large-scale overturning flows which extend throughout the
whole cylinder. Indeed, for all the cases considered, the overturning flow is dominated by
contributions in m = +£1.

Equation (2.7) describes the evolution of the azimuthally averaged flow. To obtain
the streaming flow further requires temporal averaging. Introducing the Reynolds
decompositions

ur,t) =ar) +u'(r,1), prt)=pr)+p @) and K@, 1) =RF) + ', 1)
(2.8a—c)

into (2.7), and time averaging, leads to the equation for the streaming flow i,

— - _ _ 1 _
V - (o) + 2820 x it + Vo — -V = =V - (i) +C + R, (2.9)

where, in the cylinder frame

C'==2(@L, xi+ @ xi ) ad R'=-YV-(ii,) @loab
m#0

are respectively equatorial-Coriolis and Reynolds-stress source terms generating the
streaming flow (corresponding relations for the gimbal frame of reference are
provided in appendix A). In (2.9), all terms but one are steady, two-dimensional

and three-component real vector fields. The exception is V;)O, which is a steady
two-dimensional, two-component real vector field since p is a scalar; this term has no

azimuthal component. In all cases examined here, u is steady and so %% =0.

2.2. Solution methodology

A two-pronged approach is used to obtain the results we present below. First, we use
three-dimensional direct numerical simulation (DNS, detailed in § 2.3) to obtain the full
solution to (2.3), integrating sufficiently long in time that the first- and second-order
statistics converge, thus providing the source terms for (2.10a,b). We then use these to
drive a two-dimensional (axisymmetric) restriction of (2.3) — i.e. the unsteady equivalent
of (2.9), with terms C" and R’ obtained by post-processing full DNS results — to steady
state and confirm that this solution is at better than single-precision accuracy identical
to the azimuthal and temporal average of the full DNS. Our approach thus enables us to
firmly establish the sources of the streaming flow.

For the cases examined, the total streaming is also, to within visual plotting accuracy,
the superposition of the flows driven by the terms in (2.10a,b) taken individually, which

implies that the nonlinear term V - (5050) is negligibly small, and all cases thus fall in the

weak streaming regime, for which (2.9) is nearly linear. As already remarked, #i, = 0
for the flows examined here. Thus, to a good approximation (2.9) can be simplified to

- _ S
2 (20 x il()) + Vo — Vi =C + R, (2.11)
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Figure 2. Spectral element mesh for the meridional semi-plane, with 628 elements. For three-dimensional
DNS, 128 planes of data are used in azimuth.

whose radial, azimuthal and axial components are

po 1[99 18 1= ., ==
1798 8 19 17= , ;A=
— [a_ZZ e 72} 50 = C, +R), — 280, (2.12b)

py 19> 3 1971~
———|—==+—=+-=—|w=C+TR, 2.12¢
9z  Re|dz2 92 ror] 0T % < ( )
where in the forcing terms we observe the standard rotating-frame coupling between radial
and azimuthal components (i.e. a positive azimuthal velocity drives an increase in radial
velocity, while a positive radial velocity drives a decrease in azimuthal velocity), and there
is no pressure gradient term in the equation for the azimuthal streaming, (2.12b).

2.3. Numerical methods

The numerical methods employed, which use spectral elements to discretise the meridional
semi-plane and Fourier expansions in azimuth, have been previously described in
Blackburn & Sherwin (2004), Blackburn ef al. (2019) and Albrecht et al. (2015, 2016,
2018); the latter references also provide comparisons to experimental results for precessing
cylinder flows with triadic resonance instabilities. For the example cases presented in
§ 3, and as in Lagrange ef al. (2008) and §4.1 of Albrecht et al. (2015), we consider
H/R = 1.62. A representative spectral element mesh employed for the simulations in
§3 is shown in figure 2: each element has shape functions with tensor products of
sixth-order Lagrange interpolants through the Gauss—Lobatto—Legendre points. The total
number of mesh degrees of freedom for two-dimensional solutions is 27 985, while for
three-dimensional solutions, which have 128 azimuthal planes (64 Fourier modes) of
data, the total number of mesh degrees of freedom is approximately 3.5 x 10°. For the
cases examined in § 3, we fix Re = 6500 (comparable to that used in the experiments of
Lagrange et al. (2008)), and vary wy and «. In § 4, we consider simulations at other aspect
ratios and Reynolds numbers, and with comparable resolutions.
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Figure 3. Isosurfaces of axial velocity at levels w = +0.01 for case 1: @y = 2.5, o = 0.4, showing the nature
of the overturning flow when resonant effects are absent. The dashed line represents the gimbal tilt axis
(cf. figure 1b). Flow is steady in the gimbal frame of reference.

3. Results
3.1. Case l: wf = 2.5, a = 0.4°, Re = 6500 and H/R = 1.62

We commence by considering a case at forcing frequency wy = 2.5, which is larger than
twice the background solid-body rotation frequency, so that inertial wave-type phenomena
such as Kelvin-related eigenmodes or wave beams are not expected to be present. The
tilt angle o = 0.4° is small and the three-dimensional flow is a rotating wave in the
cylinder frame (steady in the gimbal frame). The Poincaré number is Po = —0.6, so the
precessional forcing, proportional to [Posina| = 4.19 x 1073, is small. In the gimbal
frame, the flow can be conceptualised as a combination of solid-body rotation (with
azimuthal wavenumber m = 0) and a steady overturning flow, dominated by contributions
in azimuthal wavenumber m = %1, driven by precession.

A perspective view of the flow is represented in figure 3 by two isosurfaces of axial
velocity of equal magnitude and opposite sign. (The axial velocity component is a useful
diagnostic since it is the same in cylinder and gimbal frames.) It should be apparent that
this flow is dominated by overturning with contributions in azimuthal wavenumbers m =
+1. The axial velocities are small since the precessional forcing is small, inertial waves are
not excited, and the Reynolds number is only moderately large. Apart from thin boundary
layers near the walls, the shape and magnitude of the isosurfaces suggest a slow and
structurally simple overturning flow that fills the whole container and whose streamlines
have the form of closed loops that lie orthogonal to 2, so that equatorial-Coriolis
accelerations 2, x u are close to zero in the gimbal frame of reference; this
is the equilibrium azimuthal orientation of a steady non-resonant overturning
flow.

In order to gauge the overall strength of the flow driven by precessional forcing
compared to solid-body rotation of the basic flow in an inertial frame of reference
(ugp = 2. X r) one may compute a Rossby number Rosp = [E(u)/E(ug)]'/? where E
is flow kinetic energy integrated over the volume of the cylinder. For the present case,
Rozp = 1.70 x 1072,
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We next consider the streaming flow and source terms for this case. These are shown in
figure 4, whose upper panels, (a—i), show source terms, while lower panels, (j-u), show
the resulting streaming flow. Recalling § 2.2, we re-iterate that our methodology is first to
use three-dimensional DNS in order to collect statistics for source terms (C’, R/, etc.),
while we can compute the streaming flow &g in a variety of ways: (i) as the temporal
and azimuthal average of the three-dimensional DNS; (ii) using two-dimensional DNS
driven by the sum of source terms e.g. C' + R; (iii) as the sum of two-dimensional DNS
computations driven independently by the equatorial-Coriolis source terms (C’) and the
Reynolds-stress source terms (R'). This means that the results shown in figure 4(j—m)
in could equally well be obtained via methods (i) or (ii), whereas the results in panels
(n—q) and (r—u) were obtained using two-dimensional DNS restrictions driven respectively
by C’ and R’. The fact that the resulting flows are the same for (i) and (ii) serves
as a cross-check on the methodology, while the fact that these results agree to within
plotting accuracy with those obtained using method (iii) shows that the streaming is
weak, i.e. V - (wotg) ~ 0, which is of course also clear from the magnitudes shown
in the figure. The Rossby number for the streaming flow Rop = [E (&) /E(usb)]l/ 2
for this case is Royp = 2.88 x 10~4, which is small, as one would expect for weak
streaming, and approximately one-sixth of the value for the full three-dimensional flow,
Rosp.

In figure 4 it is evident that the azimuthal components of the source terms C" and R’ (in
frames e,h) are all weak compared to the radial and axial terms whereas conversely, it is the
azimuthal component of the streaming flow g, shown in (k, o and s), which is dominant
and everywhere negative. The near-zero value of the azimuthal component of C’, shown in
figure 4(e) corresponds to our earlier observation, made with respect to figure 3, that the
overturning flow is in quadrature with the direction of £2 | . We note that in this case, the
magnitudes of the Reynolds-stress and Coriolis source terms are comparable, as are those
of the associated contributions to the azimuthal streaming.

While the meridional streaming (figure 4m) at first appears simple, it has some
fine-scale boundary layer structure. For example, in the upper half of the meridional
semi-plane the dominant sense of rotation is counter-clockwise, although there are thin
regions near the side and endwalls that have clockwise circulation. We also note that the
meridional streaming is principally driven by Reynolds-stress terms (compare figures 4m,
4g and 4u). The azimuthal streaming flow is considerably stronger than the meridional
streaming flow; since the integrated kinetic energy of the azimuthal flow is approximately
250 times that of the meridional flow, the azimuthal streaming is approximately 16
times stronger than the meridional streaming. The azimuthal velocity component of the
streaming flow is everywhere negative i.e. retrograde with respect to the sense of cylinder
rotation. B

Examining the azimuthal streaming v in the context of (2.12b), we find that the two
source components C{p and R;D (figure 4e,h) are both small and dominantly negative, while
in the endwall boundary layers of the streaming, there is weak positive radial streaming
in figure 4(n) and predominantly negative radial streaming in figure 4(r). The influence of
all these terms is apparent in the dissection of figure 4(k) into contributions figure 4(o,s).
We will return to a more detailed examination of the relative contributions of source and
Coriolis coupling terms to the overall azimuthal forcing in § 3.4.

The overall magnitudes of the streaming and overturning flows are given respectively by
ap, which is the square root of the (dimensionless) kinetic energy in the axisymmetric
restriction, and aj, which is the square root of kinetic energy residing in azimuthal
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Figure 4. Source terms and streaming flow for case 1; wy = 2.5, o = 0.4°. Each panel shows the meridional
semi-plane; the left edge lies on the axis of the cylinder and the right on its outer radius. Total, C" and R’
source terms (a—c, d—f, g—i respectively) and corresponding component responses (j—I, n—q and r—t). Panels
(a,d,g,j,n,r) represent radial components, (b,e,h,k,0,s) represent azimuthal components and (c,f,i,/,p,t) represent
axial components. Sectional streamlines of flows in the meridional semi-plane (resulting from the axial and
radial components of &) are represented by (m), (¢) and (u); solid lines denote flows with counter-clockwise
sense of circulation.
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wavenumbers 1, i.e. in physical space the component of the flow which is 2m-periodic
in azimuth. For case 1 we obtain ag = 3.25 x 107> and a; = 1.85 x 1073.

3.2. Case2: wr = 1.181, a« = 0.4°, Re = 6500 and H/R = 1.62

We now add more complexity to the flow by choosing a dimensionless perturbation
frequency that is tuned to resonate with an m = 1 Kelvin mode. The Reynolds number
Re = 6500 and tilt angle o = 0.4° are maintained the same as in §3.1, but the
perturbation frequency is set to wy = 1.181, giving Po = —0.1533 and a precessional
forcing proportional to Posina = —1.07 x 1073, i.e. approximately four times smaller
than in the previous case. With the present geometry, the forcing frequency exactly
resonates with the fundamental (1, 1, 1) Kelvin mode in the inviscid setting; this case
has been investigated in earlier studies (Lagrange et al. 2008, 2011; Albrecht et al. 2015;
Marques & Lopez 2015). Theory presented in Lagrange et al. (2011) predicts a bifurcation
to a triadic resonant state for ¢ > 0.63°, but for « = 0.4°, below this threshold, we expect
to find a saturated overturning flow, dominated by the m = 1 dynamics, which is steady
in the gimbal frame of reference.

The observed flow corresponds closely to this expectation, but we note that wave
beams, another consequence of hyperbolic partial differential equation behaviour, are also
present. The angle made by these beams with the equatorial plane is (Greenspan 1968,
§4.2) B = cosfl(a)f/ 2) = 53.8°, and we note that the container geometry is not tuned
to make the wave beams retrace themselves. Wave beams for this flow are not simple
axisymmetric conical structures (unlike e.g. those for the axisymmetrically forced cases
examined by Lopez & Marques (2014)); owing to the m = =1 precessional forcing in the
present cases, the container possesses no edge feature that is uniformly orthogonal to the
forcing, disrupting the geometric simplicity of wave beams, which nonetheless are evident
in our results. Visualisations of the presence of wave beams in precessing cylinder flows in
parameter regimes similar to those considered here are found in Marques & Lopez (2015,
figure 3a), Lopez & Marques (2016, figure 2a) and Lopez & Marques (2018, figure 2a,b).

Figure 5 shows isosurfaces of axial velocity for this case. We observe a number of
distinctions compared to figure 3. First, while again the overturning flow is dominated
by contributions in m = =1, the orientation of the flow is here almost in quadrature
with that of figure 3, and the overturning fluid motion occurs along a path around the
gimbal axis rather than crossing it, so that the overturning flow is almost aligned with
£2 . Second, despite the fact that the precessional forcing is here approximately four
times smaller than in case 1, the overturning flow is of order twice as fast (cf. isosurface
levels in the two figures). Both of these differences are accounted for by the fact that
the precessional forcing is chosen to resonate with the (1, 1, 1) Kelvin mode, which the
overturning flow approximates. Third, the isosurfaces here possess a somewhat knobbly
appearance compared to those in figure 3, which is attributable to the contributions of
wave beams.

The streaming flow and its source terms for case 2 are presented in figure 6. A number
of interesting similarities and distinctions compared to figure 4 may be noted. Just as the
overturning flow is much larger for this case than for the previous case 1, so too is the
streaming, here by more than an order of magnitude. Again, the azimuthal streaming is
much larger than the meridional streaming, here by a factor of approximately 9. While the
equatorial-Coriolis and Reynolds-stress driven components of the azimuthal streaming are
comparable in magnitude (cf. figure 60,s), the meridional streaming is again principally
attributable to Reynolds-stress forcing. Note the apparent influence of wave beams on the
structure of meridional streaming (see dashed lines in figure 6m) and that (cf. figure 4m)
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Figure 5. Isosurfaces of axial velocity at levels w = £0.02 for case 2: wr = 1.181, a = 0.4°. Dashed line
represents gimbal tilt axis, and, as in figure 3, flow is steady in the gimbal frame of reference.

the dominant sense of meridional streaming circulation in each half of the meridional
semi-plane is here reversed compared to case 1.

Whereas in figure 4 the amplitudes of the Reynolds-stress and equatorial-Coriolis
forcings (R’ and C") were comparable, here the Reynolds-stress terms are approximately
two orders of magnitude greater than the equatorial-Coriolis terms, while the magnitudes
of the azimuthal streaming from the two sources are comparable. This outcome can
be related to the analysis by Greenspan (1969) which shows that at leading order,
self-interaction of inviscid Kelvin modes produces no geostrophic flow. In case 1, the
azimuthal forcing was small, and almost zero for C’ (the latter owing to the fact that
the overturning flow and $2; were almost in exact quadrature), while in case 2 the
equatorial-Coriolis forcing in azimuth (figure 6e) is the largest contributor of the three
components, and directly reflects the structure of the overturning flow in modes m = +1.
Again the equatorial Coriolis source terms are small overall compared to those from
Reynolds stresses, while the relative magnitudes of streaming which result from the two
sources are comparable. Examining (2.12b) we see that the negative equatorial-Coriolis
forcing (figure 6¢) and the positive radial streaming near vessel endwalls linked to C’
(figure 6n) will both contribute directly to driving the retrograde azimuthal streaming
(figure 60) associated with C'.

The component of azimuthal streaming associated with R’ has greater variation than
the component associated with C’ and indeed becomes prograde near the outer radius
and mid-height (figure 6s). It appears that the radial outflows near the endwalls seen in
figure 6(r) is likely to be the chief contributor to the regions of retrograde azimuthal
streaming near those locations, though it acts in opposition to the prograde R’ forcing
also near the endwalls (figure 64). The region of prograde azimuthal streaming near
mid-height and near the outer radius seen in figure 6(s) is associated with a large and
diffuse radial inflow in the same region (cf. streamlines of figure 6u). Again, we note the
apparent evidence of structural features associated with wave beams (see figure 6m) in
various aspects of the forcing and on the meridional streaming.

For case 2 we obtain ag = 3.40 x 1073 and a; = 5.64 x 1072,
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Figure 6. As for figure 4, but for wy = 1.181, 0.4°. Note that contour levels for C " are approximately two orders
of magnitude smaller than those for R'. The dashed lines in () represent the orientation of wave beams which
originate at the intersection of the side and endwalls.
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Figure 7. Instantaneous isosurfaces of axial velocity at levels w = 4-0.02 for case 3: wy = 1.181, a = 0.7°.
Dashed line represents gimbal tilt axis, flow is unsteady.

3.3. Case 3: wf = 1.181, a = 0.7°, Re = 6500 and H/R = 6.2

For the final specimen case, we keep the forcing frequency at wy = 1.181 as in § 3.2 but
increase the tilt angle beyond the threshold of triadic resonance (which here occurs at
o = 0.63° according to the theory of Lagrange et al. (2011)) to « = 0.7°. The dynamics
for this flow is very similar to that for a case reported in Albrecht ef al. (2015, figure 2a)
and in Marques & Lopez (2015, figures 6 and 8): as predicted, a triadic resonance arises
involving the primary inertial wave in azimuthal wavenumbers m = £1 that is pinned in
the gimbal frame with two free modes in azimuthal wavenumbers m = £5 and %6 that
counter-rotate when viewed in the cylinder frame; the triad saturates to a limit cycle state
but one with fixed total kinetic energy. The kinetic energies of the two free modes are
each approximately an order of magnitude lower than that of the resonant overturning
flow u41. The flow is examined long after the initial transient dynamics has ceased. As
for case 2, wave beams can again arise and at the same angle from the equatorial plane,
B = 53.8°. The Poincaré number is again Po = —0.1533 but here the precessional forcing,
Posina = —1.87 x 1073, is nearly double that for the previous case.

Figure 7 shows instantaneous isosurfaces of axial velocity component for this case,
whose shape, while dominated by the overturning flow in azimuthal wavenumbers m =
+1, also gives clear evidence of the presence of the free modes in m = £5 and £6. While
the overturning flow is pinned relative to the gimbal frame, the two free modes rotate
relative to it, and at different rates but in such a manner that their product is also fixed
in the gimbal frame (as required of a resonant triad). Hence, the isosurfaces (unlike those
shown in figures 3 and 5 for cases 1 and 2) will vary in time, when viewed in any frame
of reference. The overturning component of the flow is larger for case 3 than it was for
case 2, since the forcing is larger.

The streaming flow, and source terms as considered in the cylinder frame of reference
for case 3 are shown in figure 8. Compared to case 2 (figure 6), many of the features are
similar, though contour levels are higher. Particularly for the R’ forcing and its associated
streaming, there are some significant differences, many of which are associated with
Reynolds stresses caused by the free triad modes as we will further discuss below. The
azimuthal streaming v associated with C’ (figure 80) is again almost axially invariant,
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Figure 9. Forcing for azimuthal streaming for cases 1-3, considering the contribution of radial streaming.
Panels (a—c) show contours of C;, — 2(}050(6’) for cases 1-3, while panels (d—f) show contours of pr —
22000(R).

and the spatial distributions of its source terms (C;, and up) are very similar to those for
case 2. Again, we see that the azimuthal streaming associated with R’ (figure 8s) has
both retrograde and prograde regions, but the overall azimuthal streaming (figure 8%k) is
everywhere retrograde and with significant axial variation.

For case 3 we obtain (magnitude of streaming) ap = 7.26 x 10~3 and (magnitude of

overturning flow) a; = 7.64 x 1072

3.4. Azimuthal streaming

We now turn to a more detailed consideration of azimuthal streaming, v, since it is on
average much larger than the meridional streaming. In all cases considered, the azimuthal
streaming is everywhere retrograde, as is expected since the streaming works to extract
mechanical energy from the system, converting it to heat via viscosity. In the foregoing, we
examined both the source terms for streaming, and the streaming components individually,
both in total, and as split into parts related to equatorial-Coriolis and Reynolds-stress
forcing (e.g. C' and R’). However, as previously observed in relation to (2.12)(b), since
azimuthal and radial components of streaming are coupled in a rotating reference frame,

it is useful to consider the forcing for azimuthal streaming (vg) C(; + pr — 2.(}050, where

il is the radial component of streaming. Naturally, the sources for the streaming are still C’
and R/, since it would not exist in their absence, but our goal here is to better understand
the observed distributions of the azimuthal streaming vy, so the coupling to 7y must be
taken into account. That information is presented for our three specimen cases in figure 9.
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Figure 10. Profiles of the axially averaged azimuthal streaming for the three cases. Case 1, red lines; case 2,
blue lines; case 3, black lines. Solid lines represent the total flow (with sources C’' + R), dashed lines represent
the flow driven solely by C'.

Examining first the forcing terms for the equatorial-Coriolis component of azimuthal
streaming as shown in figure 9(a—c) we observe that this is tightly confined to boundary
layer regions. In figure 9(a) forcing exists near the outer side wall as well as the endwalls,
while in figures 9(b) and 9(c) the forcing appears only near the endwalls. This distinction
helps explain the differences in distributions between figure 4(0) on the one hand and
figures 6(0) and 8(o0) on the other: in the latter cases the azimuthal streaming associated
with equatorial-Coriolis forcing is almost axially invariant, while in the former it has more
structure. In turn the distinctions in forcing near the outer curved wall can be related back
to the properties of cross-products and the different orientations of the overturning flow
with respect to the direction of §2 | in case 1 and cases 2 and 3, respectively.

Next considering the forcing terms for the Reynolds-stress components of azimuthal
streaming (figure 9d—f) we observe that this forcing is also largely confined to
boundary layer regions, but with somewhat more structure than was the case for the
equatorial-Coriolis forcing. The sign of the forcing near the upper and lower ends of the
circular walls is positive for case 1 but is negative for cases 2 and 3. For cases 2 and 3 there
are also changes of sign of this forcing along radial traverses near the upper and lower
endwalls, something that is not true for case 1. These variations must partially account
for the significantly more complicated spatial structure of the azimuthal flow component
which can be observed in figures 6(s) and 8(s) as compared to figure 4(s), but we have not
yet found a firmer physical explanation.

A comparatively simple way to summarise the relative contributions of equatorial-
Coriolis and Reynolds-stress driving terms to the streaming is to extract axial averages
of its azimuthal component, as illustrated in figure 10. Such axial averages would
represent the geostrophic component of the flow (Greenspan 1968), but we note that
for all our cases, there is significant axial variation in the fields from which the
profiles derive, though, interestingly, most of this variation in the hyperbolic cases (2
and 3) results from Reynolds-stress forcing. In figure 10, solid lines are profiles of
the axially averaged azimuthal streaming flow (i.e. as derived from three-dimensional
DNS or from axisymmetric flows driven by equatorial-Coriolis and Reynolds-stress
forcing), while dashed lines represent the same for the axisymmetric flow driven just
by equatorial-Coriolis forcing. Since all the cases considered satisfy conditions for weak
streaming, the difference between the two profiles for each case represents the streaming
driven only by Reynolds-stress forcing. It should be clear that in all cases, the dominant
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Figure 11. Amplitude ag of the axisymmetric flow, as functions of Re and «, for an aspect ratio H/R = 1. Tilt
angles are « = 0.1° (@, black), « = 0.2° (@, red), « = 0.5° (@, blue), « = 1° (O, black), « = 2° (O, red) and
o = 5° (O, blue). In (a), amplitudes ag for different tilt angles are shown as functions of Re; (b—d) show the
data of (@), normalised in different ways. In (b) ag is normalised by sinfa; in (c) it is normalised by a% (the

magnitude of R'); in (d), aoRe~'/2 is normalised by ay|Po sin «| (the magnitude of C’). In (b), the dashed line
corresponds to a power law with Re3/2-dependence and the solid line corresponds to one with Re-dependence.

contribution to the retrograde azimuthal streaming flow comes from equatorial-Coriolis
sources.

4. Scalings of the streaming flow

This section describes how the amplitude of streaming varies with Reynolds number Re,
tilt angle « and cylinder aspect ratio H/R. All the results were obtained in a regime where
primary inertial waves exist (similar to case 2) and precession frequencies wy were chosen
at the resonance of the inviscid Kelvin mode (1, 1, 1) for each H/R and «. It should
be noted that some of the simulations considered here would exhibit triadic resonance
instability at large times but those simulations were stopped before the appearance of
any significant instability in order to focus on streaming induced by the overturning flow,
which in all cases here considered is similar to the (1, 1, 1) Kelvin mode, modified by the
presence of boundary layers. Scalings are considered in terms of ag and a1, respectively
the magnitudes of the streaming and overturning flow components (see the discussion at
the end of § 3.1).
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4.1. Scaling with tilt angle and Reynolds number

The amplitude of streaming, ay, is plotted in figure 11(a) as a function of Reynolds number
for various tilt angles. At a given Re, there is a large variation of the amplitude, by three
orders of magnitude when « varies from 0.1° to 5°. This is due to the fact that the
amplitude scales as the square of the tilt angle o at small tilt angles. Indeed, figure 11(b)
demonstrates an excellent collapse of the data when the amplitude is rescaled by sin” .
The scalings in Reynolds number switch from ag ~ Re*/> at low Reynolds numbers
(dashed line) to ap ~ Re at large Reynolds number (solid line). Though further large-Re
results are needed to unambiguously confirm it, the latter scaling can be explained by the
amplitude equation for the axisymmetric flow, as introduced by Meunier et al. (2008) in
their (4.200), but with an additional term related to the equatorial-Coriolis effect
940 _ _ oR/H)Re 12 2Re=1/2 Po si 41

= /H)Re ap + xajRe + «kay|Po sin«|, 4.1)
where x and « are coefficients depending on H /R and wy.

The first term following the equality in (4.1) corresponds to the Ekman viscous damping
of the axisymmetric flow. The second term corresponds to the term R’ in (2.9), i.e. the
nonlinear interaction of the overturning flow with itself. This forcing is expected to be
proportional to a%Re‘l/ 2 rather than a% because the self-interaction of an inviscid Kelvin
mode (which the overturning flow somewhat approximates) does not generate an axially
invariant axisymmetric flow (Greenspan 1969) on slow time scales. Here, the overturning
flow is the sum of an inviscid Kelvin mode together with Ekman boundary layers of
thickness scaling as Re~!/2. The axially invariant axisymmetric flow is thus expected
to arise at next order in Re~!/? thanks to Ekman pumping inside the boundary layers.
The final term in (4.1) corresponds to the equatorial-Coriolis source term C of (2.9).
This term comes from the cross-product between the equatorial-plane component 2 of
the inertial-frame rotation vector and the overturning flow. The equatorial component of
the rotation vector has magnitude proportional to |Po sin | and the overturning flow has
magnitude ap, hence the Coriolis term is expected to scale as aj |Po sin«/|.

In the viscous regime, the amplitude a; is saturated by Ekman damping, which implies

a; = fRe'?sina, 4.2)

where f is a coefficient that depends only on aspect ratio H/R. As a consequence, the
nonlinear Reynolds-stress term R’ scales as Re!/? sin? a.. Surprisingly, the Coriolis term

C' also scales as Re!/? sin? & such that both terms are expected to be of the same order
of magnitude whatever the tilt angle and Reynolds number, but as yet we do not have an
explanation for this outcome.

In the stationary regime, the amplitude aq of the axisymmetric flow is thus given by a
balance between the nonlinear and the Coriolis terms. This assumption is well confirmed
numerically since the ratio between the viscous term and the nonlinear term remains
constant (within 10 %) when the Reynolds number increases from 100 to 6000, as shown
in figure 11(c). The ratio between the viscous term of (4.1) and the Coriolis term remains
also approximately constant (within 30 %), as shown in figure 11(d). These results indicate
that (4.1) predicts the correct scalings between the different terms.

Consequently, the scaling of the streaming flow ag is expected to be linear in Reynolds
number and quadratic with respect to the tilt angle ag ~ Re sin” «, as the high-Re results of
figure 11(b) suggest. However, the exponent seems to be slightly larger (between unity and
3/2) for smaller Reynolds numbers. This is probably due to the volumic viscous damping
of the overturning flow, which is not considered in (4.1).
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Figure 12. Amplitude ag of the streaming flow as a function of cylinder aspect ratio H/R, at Re = 1000. In
(a), ap is normalised by a% (the magnitude of R'), and in (b), agRe=1/2 is normalised by aj |Posina| (the
magnitude of C’). Symbols are as in figure 11.

As previously mentioned, the quadratic dependence on the tilt angle is very well
confirmed numerically except at the largest tilt angle where the amplitude saturates
above Re = 2000. This is due to the fact that the overturning flow is saturated by the
axisymmetric flow rather than by viscous effects (as proposed by Meunier ez al. (2008)).
In this nonlinear regime, ag scales as «>/3 and a; scales as «!/3, as predicted by Meunier
et al. (2008). The amplitude (4.1) seems to be correct since the ratio between the viscous
term and the nonlinear term (figure 11¢) remains constant even in the nonlinearly saturated
regime. The results of Marques & Lopez (2015) (figure 5a) are consistent with present
scalings once adjusted to account for the fact that they non-dimensionalised outcomes
using viscous timescale R?/v, whereas we have used the convective timescale 1/|£2 -

4.2. Variation with cylinder aspect ratio H/R

In §4.1, it has been shown that the ratio between the viscous damping of the streaming
flow and the nonlinear term R’ is independent of the tilt angle and Reynolds number. This
ratio, ap/ a%, is plotted in figure 12(a) as a function of cylinder aspect ratio H/R. The ratio
decreases by a factor of two when the aspect ratio increases from H/R = 0.45to H/R = 2.
It then almost doubles when the aspect ratio increases from H/R = 2to H/R = 5.

The ratio between the viscous term and the Coriolis term C’ ~ a;|Posin«| is also
independent of the tilt angle and the Reynolds number. This ratio is plotted in figure 12(b)
as a function of the aspect ratio. It scales like (H/R)? for H/R < 1 and like (H/R)~'/? for
H/R > 1.

The ratios presented above are sufficient to predict the amplitude ag of the streaming
flow whatever the Reynolds number, the tilt angle and the aspect ratio in the viscous regime
where the amplitude a; is known analytically. However, this is limited to cases without
triadic resonances and where the streaming flow is small compared to the total solid-body
rotation.

5. Conclusions

Some general trends of how the streaming flow in precessing cylinders varies with
parameters have been previously reported (Marques & Lopez 2015; Lopez & Marques
2016), but without direct identification of mechanisms. The Navier—Stokes equations for
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incompressible streaming flows within rotating and precessing vessels with rotational
symmetry were developed in § 2. A significant feature of the equations is that source terms
associated with an apparently novel interaction arise; these are Coriolis terms associated
with the equatorial component of the total rotation vector, which is oscillatory in azimuth
when considered in cylindrical coordinates, and the overturning flow component driven
by precession, which again is wavy in azimuth. Since both those waves occur in azimuthal
Fourier modes £1, they generate source terms for the axisymmetric flow (Fourier mode 0).
Naturally, more conventional Reynolds-stress-type source terms also exist. We considered
in some depth the forms that these two sets of terms may take in arbitrarily rotating
frames of reference and simplifications that occur when either of the two canonical frames
(cylinder and gimbal) are chosen.

In § 3 we gave a detailed examination of three example flows in a precessing cylinder of
fixed aspect ratio. Those flows all lay in the weak streaming regime where the nonlinear
terms of the streaming itself are negligible and the momentum equations are effectively
linear, enabling separate examination of streaming resulting from equatorial-Coriolis and
Reynolds-stress source terms. The first of these example flows (§ 3.1) had parameters that
precluded inertial-type resonance of the primary overturning flow, while the second and
third cases (§§ 3.2 and 3.3) involved resonance of the overturning flow; the second without,
the third with a saturated triadic-resonance instability. These choices regarding resonant
effects were made partly in order to underline the fact that the source terms considered are
not contingent on the detailed dynamics of the precessing flows but are quite general.

However, we note that the spatial details of the source terms varied significantly
between cases. For each of the examples, the component of streaming flow driven
by the equatorial-Coriolis source terms was comparable in magnitude to that driven
by Reynolds-stress source terms. In all cases the azimuthal component of streaming
was larger than the meridional components, and the total azimuthal component of
streaming was always retrograde. The spatial distributions of streaming resulting from
equatorial-Coriolis source terms were typically less complex than those resulting
from Reynolds-stress source terms, as might be expected from consideration of the
comparatively simple spatial structure of the two wave-like terms which contribute to the
former as opposed to the possibility of more complex spatial structure in the latter. Indeed,
for the two cases with resonant inertial waves, the azimuthal component of streaming
driven solely by Reynolds-stress terms was prograde in some regions and retrograde in
others, while the associated meridional flows showed evidence of wave beams emanating
from the intersections of the cylindrical and endwalls. In the third example case, which
supported a saturated triadic resonance instability, separate consideration was given to
the streaming resulting just from Reynolds stresses associated with the two primary free
modes involved in the triad (at azimuthal wavenumbers +5 and +6). That component of
streaming was comparable in magnitude to the component caused by Reynolds stresses
of the flow that is steady in the gimbal frame of reference. For all cases considered,
the meridional components of streaming were dominated by contributions made through
Reynolds-stress terms, while those due to equatorial-Coriolis source terms were relatively
small. Compare e.g. figures 4(g) and 4(u). All the mechanisms described in this work are
valid for small forcing Po sin «. Here, we focused on the case of small o and large Po, but
the same mechanism is expected to hold for large & and small Po.

One of the reasons for our interest in the streaming flow is the possible role it could play
in the amplitude equations for the prediction of triadic resonance instability in precessing
cylindrical vessels (see e.g. Lagrange et al. 2011). In the absence of a triadic resonance
instability but at resonance of the overturning flow, the amplitude of the streaming flow
was found in §4 to be proportional to the square of the amplitude of the overturning
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flow for a wide range of Reynolds numbers, tilt angles and cylinder aspect ratios. This is
in agreement with a direct forcing by the nonlinear Reynolds-stress term. However, the
mean streaming flow was also found to be proportional to the equatorial-Coriolis term
since both terms have the same scaling at the resonance of the forced mode. Indeed,
the Coriolis term is proportional to Po sin« times the amplitude of the overturning flow,
which itself is proportional to Po sin « in the viscous regime. This is another proof that the
equatorial-Coriolis term cannot be neglected with respect to the Reynolds-stress term in
precession.
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Appendix A. Gimbal-frame relations and results

In most of the analysis above, we confined consideration of Reynolds stresses and
equatorial Coriolis terms to the cylinder frame of reference. In the cylinder frame of
reference for a precessionally forced rotating cylinder, all of the flow’s non-axisymmetric
Fourier modes are unsteady, as the rotation vector is time harmonic. This all leads to
the form of source terms for the streaming flow given in (2.10a,b). However, in the
gimbal frame, the rotation vector is fixed (steady), and the directly driven overturning
flow in Fourier modes m = £1 may also be steady. As such, the Reynolds stresses
and equatorial-Coriolis source terms are different in detail than in the cylinder frame,
and when triadic resonances occur (such as in our case 3), one can separately examine
Reynolds stresses associated with the overturning flow and the two free modes of the
triad. Naturally, the steady streaming which results is the same (modulo the underlying
background solid-body rotation) in either frame of reference, and indeed we have checked
that the steady streaming obtained is exactly the same when computed in either frame
(modulo solid-body rotation). The motivation for this appendix is to provide completeness
by giving more depth to explaining the differences and treatment of Reynolds-stress
and equatorial-Coriolis source terms in the two frames of reference, and to show the
Reynolds-stress source terms as considered in the gimbal frame for case 3, which involved
a saturated triadic resonance instability.

A.l. Rotation-rate vectors and their components

The difference in frame rotation vector, 2, between the cylinder and gimbal frames of
reference is that in the cylinder frame it includes the solid-body rotation component,
so that the cylinder walls appear fixed, whereas in the gimbal frame the walls rotate at
the solid-body rate §2.. As such, the radial and azimuthal components of the equatorial
component of rotation, §2 |, rotate uniformly in the cylinder frame and are stationary in
the gimbal frame, but its magnitude |$2 | | is the same for both frames.
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In the gimbal frame, Fourier transformation leads to flo = (£2, cosa)e; and flil,
which are all steady. As remarked in §2, in the cylinder frame £ = £ = (2. +
§2, cosa)e; is steady and 2 are temporally harmonic. In both frames, 20 is purely axial

and 2. are purely equatorial. In the gimbal frame, the components of £ are real and
constant in the radial direction and imaginary and constant in the azimuthal direction. In
the cylinder frame, both the radial and azimuthal components are complex with harmonic
temporal variation stemming from the rotation of §2 | in the inertial frame.

A.2. Source terms in the gimbal frame

In (2.10a,b) we gave the equatorial-Coriolis and Reynolds-stress source terms for
streaming flows in the cylinder frame of reference, where all Fourier components of
non-axisymmetric flow and equatorial rotation rate were unsteady. In the gimbal frame,
the components of the equatorial rotation rates are steady, while the non-axisymmetric
Fourier modes of the flow could be steady, or unsteady (in which case they could have a
non-zero temporal mean as well as fluctuating components). In the gimbal frame, for cases
1 and 2, the overturning flow is a standing wave, whereas in case 3, the overturning flow
is a standing wave, while the free modes that are engaged in triadic resonance with it take
the form of rotating waves. As a result, the equatorial-Coriolis source terms now derive
from an interaction of standing waves, while Reynolds stress source terms could derive
either from an interaction of standing waves (e.g. the overturning flow), or rotating waves
(free triad modes). Using Reynolds decomposition, source terms for the streaming flow
considered in the gimbal frame expand to become C + C’ + R + R’ where

C=—2(fz_lx§1+§1x5_1), ¢ =—2<sz VX i+ @) x i) =0, (Ala)

Y v. (umu_m), --Yv. (m _m). (Alb)

m#0 m#0

We see that there are new terms C and R involving products of time averages, whereas
in (2.10a,b) we had only terms C" and R’ which involve the time averages of products of
fluctuation terms. In (2.10a,b), C = R = 0 since all non-axisymmetric flow components
have zero means in the cylinder frame. In (A1), C’ = 0 since flil are steady in the gimbal
frame, while the contributions to R derive from the overturning flow, which is steady in
the gimbal frame for all the cases we consider, and dominated by G111 The contributions
to R’ derive from components that are unsteady in the gimbal frame; for case 3, which
involved a triadic-resonance instability, these derive from free modes that couple to extract
energy from the overturning flow (see e.g. Albrecht et al. 2015; Marques & Lopez 2015;
Albrecht et al. 2018).

A.3. Reynolds-stress source terms for streaming, case 3
If, as was true for cases 1 and 2 of §§3.1 and 3.2, the flow is steady in the gimbal
frame of reference, then it is of little consequence which frame of reference we select
for examination of source terms since C in the gimbal frame is identical to C’ in the
cylinder frame and R in the gimbal frame is identical to R’ in the cylinder frame, while
the remaining terms are zero in each frame. In case 3, the dominant component of the
overturning flow #1; is also steady in the gimbal frame, so again C in the gimbal frame
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Figure 13. As for figure 8, wy = 1.181, @ = 0.7°, but considered in the gimbal frame of reference.

is identical to C’ in the cylinder frame. What remains to consider for case 3 is the source
terms and related streaming contributed by R and R/, as shown in figure 13.

A key feature is the presence and nature of R’ and @o(R'); for both cases 1 and 2, these
would be identically zero, whereas here they arise from Reynolds stresses of the two free
modes that participate in a triad interaction with z. Both the stresses and the streaming
are largest towards the outer radius and have relatively large axial variation; like the modes
themselves, e.g. see figure 5 of Albrecht et al. (2015) and figure 9 of Marques & Lopez
(2015) for more detail. It can be noted that the axial wavenumber for R is twice larger than
for R because the m = 1 Kelvin mode has k; = 1t/H whereas the m = 6 Kelvin mode has
ke = 27/H. The azimuthal streaming caused by R’ (figure 13/) is prograde on average,
and its variation over the meridional semi-plane helps explain the complicated variation in
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the total streaming due to Reynolds stresses for case 3 (figure 8k). The remaining terms in
figure 13, R and i19(R), derive primarily from the overturning flow.
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