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Bluff-body propulsion produced by combined rotary
and translational oscillation
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Flows produced by combined oscillatory translation and rotation of a circular cylinder in quiescent
fluid have been studied using a two-dimensional direct numerical simulation technique. Results are
presented for one set of the five dimensionless groups which characterize these flows, for which it
is found that a streaming flow normal to the axis of translation is generated. The consequent reaction
force is then used to propel the cylinder in the direction opposite to the jet, thus demonstrating a
novel propulsion mechanism for bluff bodies. ©1999 American Institute of Physics.
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In general, bluff-body flows are poorly understood, w
our present knowledge being based almost exclusively
experiment, both physical and numerical. Consequently
still possible for new phenomena to be discovered as n
classes of investigation are initiated. The present work d
with a numerical investigation of a new class of bluff-bo
flows created by combining rectilinear and rotational osci
tion of a circular cylinder, the prototypical bluff body.

Two canonical flows associated with an infinitely lon
circular cylinder are those produced by steady and sim
harmonic rectilinear motion of the surrounding fluid past t
cylinder. For steady flow of fluid, velocityU, past a cylinder,
diameterD, the resulting wake can be uniquely charact
ized by a single dimensionless parameter, the Reynolds n
ber Re5UD/n. The flow that results for all but the lowes
Reynolds numbers is the well-known Ka´rmán vortex street,
which has an associated vortex shedding frequencyf v , di-
mensionlessly quantified as the Strouhal number
5 f vD/U, and a wake that possesses an alternating asym
try about its centerline. For the second case of simple h
monic rectilinear motion of the surrounding fluid~or, equiva-
lently, simple harmonic translation of the cylinder in a bo
of quiescent fluid!, two dimensionless groups are required
characterize the flows, typically the Keulegan–Carpen
number KC5U/ f tD52pAt /D and the Reynolds numbe
Re5UD/n, whereU now is the peak translational velocit
and f t , At are, respectively, the frequency and amplitude
simple harmonic motion. For moderately low KC value
oscillating a cylinder in quiescent fluid results in a stream
flow along the translation axis, with reflectional symme
about this line.1 At higher KC, a variety of two-dimensiona
symmetry-breaking bifurcations are observed in the resul
flow patterns.1,2

In the case of steady flow past a circular cylinder, t
Kármán street wake can be greatly influenced by impos
oscillatory motion of the cylinder, either rectilinear or rot
tional. In addition to Re, dimensionless groups describing
41070-6631/99/11(1)/4/3/$15.00
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motion amplitude~such as KC in the case of translation
oscillation! and the ratio of imposed motion frequency to t
fixed cylinder vortex shedding frequency,f t / f v , are also
required to characterize the flow. The greatest interacti
between imposed cylinder motion and the wake flow occu
oscillation frequencies close to the Strouhal frequency, w
it is found that the shedding frequency can be entrained
the motion frequency. For the case of translational osci
tion, the phase relationship between cylinder motion and v
tex shedding is observed to vary rapidly with the frequen
of imposed motion within the entrainment regime.3 In addi-
tion, a variety of vortex shedding modes have be
observed,4 including classes which break the Ka´rmán street
alternating asymmetry. These changes in the wake flows
reflected in variations in the lift and drag forces experienc
by the cylinder. In the case of rotational oscillation about t
cylinder axis, a substantial effect has been observed on
wake flows, which in turn results in comparatively large e
fects on lift and drag forces.5

These results point to the sensitivity of bluff-body flow
to imposed oscillatory motion of the body, both translation
and rotational. A class of flows which has not received
tention until now is that created by a circular cylinder mo
ing with combined oscillatory translation and rotation in qu
escent fluid. If both motions are simple harmonic, the flo
are characterized by five dimensionless groups, which co
spond to two sets of Reynolds and Keulegan–Carpe
numbers~one set for translational and the other for rota
motion!, and the phase anglef between these two motions
We have assigned the imposed translational motion to b
the vertical direction, so that

y~ t !5At cos~2p f tt !, ~1!

while the rotational motion of the cylinder about its axis
described by

u~ t !5Au cos~2p f ut1f!, ~2!
© 1999 American Institute of Physics
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with counterclockwise rotation corresponding to positiveu.
We have used two-dimensional numerical simulations in
der to carry out an exploratory study of the resulting flo
for a small subset of the five dimensionless groups.

The numerical technique used for this study employ
spectral element spatial discretization in conjunction with
second-order time integration scheme based on ope
splitting and backwards differencing.6,7 To provide for cyl-
inder translational motion, but with low computational ove
head, the incompressible Navier–Stokes equations are so
in an accelerating reference frame attached to the cylinde
that the mesh does not deform with time, but the bound
conditions and distributed forcing are continually adjus
during the simulation. The technique has previously be
described and applied to simulations of both flows past
cillating cylinders and vortex-induced vibration.8 The same
method has been used in the present work with little mo
fication except as required to introduce tangential rotatio
motion at the cylinder surface. The method uses a veloc
pressure formulation, and vorticity~used in presentation o
results below! was computed in postprocessing via colloc
tion differentiation. Tracking of fluid particles was accom
plished using a third-order-in-time predictor–correc
scheme.

In checks carried out with the cylinder oscillating wi
translational motion in quiescent fluid, KC5p, it was found
that the peak forces exerted on the cylinder were conver
to four significant figures when eight-order tensor-prod
Gauss–Lobatto–Legendre polynomial shape functions w
used in each element. Temporal convergence checks sho
the peak forces to be the same to four-figure accuracy
both DtU/D50.005 andDtU/D50.0025. For the results
presented here, tenth-order polynomials andDtU/D
50.0025 were used.

For our study, the Keulegan–Carpenter and Reyno
numbers for the translational motion were held fixed at v
ues ofp and 200321/2, respectively. The frequency of th
rotational oscillation was the same as for the translatio
oscillation, i.e.,f t5 f u , while the amplitude of the rotationa
motion was set so as to make the peak tangential spee
the surface of the cylinder the same as the peak translati
speed, i.e.,Au51 rad. These choices fix four of the fiv
dimensionless groups. The remaining group, the phase a
f between the two motions, was then changed in step
p/8 between simulations. The full set of these results will
reported elsewhere, but here we concentrate and expan
the case where the rotational and translational motions
out of phase, i.e.,f5p.

Vorticity contours for the resulting flow are illustrated
Fig. 1~a!. Contours of positive~counterclockwise! vorticity
are shown in black, with negative values shown in gr
Contours are drawn only up to an arbitrary maximum m
nitude, so that the regions of most intense vorticity adjac
to the cylinder are left unmarked. Only a small subset of
144-element, 20D320D biperiodic computational domain
is shown, and the time is chosen such that the cylinder i
the maximum point in its vertical motion cycle. Sufficie
simulation time~50 motion periods! has elapsed for the flow
to approach an asymptotic state.
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It is immediately apparent that while the cylinder tran
lation axis is vertical, vorticity transport is predominantly
the horizontal direction. This transport is associated w
fluid motion, as illustrated in Fig. 1~b!, where the positions
of fluid particles released near the cylinder surface
shown. In Fig. 2, a time-mean velocity profile for thex com-
ponent of the velocity at a location 2D to the right of the
translation axis illustrates the double-peaked nature of the
flow suggested by the particle transport map. Here the fl
velocity is normalized using the peak translational veloc
U.

The streaming flow normal to the axis of imposed cyli
der translation produces an associated time-mean leftw
reaction force on the cylinder. This makes it possible for
cylinder to be propelled in the horizontal direction, som
thing that is comparatively simple to arrange in a compu
tional setting by coupling an ordinary differential equatio
for the cylinder motion in the horizontal direction~i.e., Fx

5max) to the Navier–Stokes equations, as described in p
vious work.8 With this done, it was found that the cylinde
accelerated to the left~with fluctuations stemming from the
comparatively large alternating components of horizon
force!, eventually reaching an average terminal speed of 3
of the peak vertical translational speed of the cylinder. F
ure 3 illustrates vorticity contours and particle transport
the cylinder ‘‘swimming’’ at terminal speed. Figure 4 show
the time-meanx-component velocity profile~in a frame of

FIG. 1. Flow produced by cylinder with combined oscillatory translati
and rotation:~a! instantaneous vorticity contours;~b! fluid particle transport.
The cylinder is at its maximum vertical position and most negative ang
displacement at the instant shown. The rest position of the cylinder is i
cated by cross-hairs, and the radial line shows the rotational displaceme
the cylinder.

FIG. 2. Meanx-component velocity profile atx/D52.0 for the flow in
Fig. 1.
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reference traveling to the left with the cylinder, but fixed
the vertical direction! at x/D52.

The mechanism by which the cylinder produces thrus
the subject of continuing investigation. Studying Fig. 1~a! it
is clear that the majority of vorticity production occurs o
the left face of the cylinder, consistent with the fact that t
surface-tangential component of cylinder acceleration is
ways larger in magnitude on that face.9 At the instant shown,
fluid that has acquired upwards and clockwise momentum
the left-upper face of the cylinder during the motion ha
cycle just concluded streams to the right around the up
surface of the cylinder, while below and to the left of th
cylinder a detached vortex with counterclockwise rotat
has formed. The high-speed rightwards pulsatile flow t
occurs above and below the cylinder in each half-mot
cycle is reflected in the particle-transport map of Fig. 1~b!
and the velocity profile of Fig. 2. With the swimming cylin
der, this pulsatile motion is very clearly reflected in t
‘‘puff’’ structures shown in Fig. 3~b!.

It is interesting to compare the cylinder motion describ
here to the carangiform motion employed in fish and b
propulsion.10 Carangiform motion also consists of a com
bined phase-locked translation and rotation, but for
rightwards-moving jet flow those motions are typically

FIG. 3. Propelled cylinder swimming at terminal speed in thex direction:
~a! instantaneous vorticity contours;~b! fluid particle transport.
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phase with one another, while for the bluff-body motion w
have described, the translation and rotation are out of ph
This may be linked to the position of the features which
most strongly to influence and control the resulting flow
For flapping foils, it is the Kutta condition at the trailin
edge which has the controlling influence, while for the swi
ming cylinder it would appear instead that the motion of t
leading edge is most important.
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