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Bluff-body propulsion produced by combined rotary
and translational oscillation
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Flows produced by combined oscillatory translation and rotation of a circular cylinder in quiescent
fluid have been studied using a two-dimensional direct numerical simulation technique. Results are
presented for one set of the five dimensionless groups which characterize these flows, for which it
is found that a streaming flow normal to the axis of translation is generated. The consequent reaction
force is then used to propel the cylinder in the direction opposite to the jet, thus demonstrating a
novel propulsion mechanism for bluff bodies. 99 American Institute of Physics.
[S1070-663(199)02301-9

In general, bluff-body flows are poorly understood, with motion amplitude(such as KC in the case of translational
our present knowledge being based almost exclusively opscillation) and the ratio of imposed motion frequency to the
experiment, both physical and numerical. Consequently it ifixed cylinder vortex shedding frequenc,/f,, are also
still possible for new phenomena to be discovered as newequired to characterize the flow. The greatest interactions
classes of investigation are initiated. The present work dealsetween imposed cylinder motion and the wake flow occur at
with a numerical investigation of a new class of bluff-body oscillation frequencies close to the Strouhal frequency, when
flows created by combining rectilinear and rotational oscilla-it is found that the shedding frequency can be entrained by
tion of a circular cylinder, the prototypical bluff body. the motion frequency. For the case of translational oscilla-

Two canonical flows associated with an infinitely long tion, the phase relationship between cylinder motion and vor-
circular cylinder are those produced by steady and simpléex shedding is observed to vary rapidly with the frequency
harmonic rectilinear motion of the surrounding fluid past theof imposed motion within the entrainment regithin addi-
cylinder. For steady flow of fluid, velocity, past a cylinder, tion, a variety of vortex shedding modes have been
diameterD, the resulting wake can be uniquely character-observed, including classes which break the itaen street
ized by a single dimensionless parameter, the Reynolds nunalternating asymmetry. These changes in the wake flows are
ber Re=UD/v. The flow that results for all but the lowest reflected in variations in the lift and drag forces experienced
Reynolds numbers is the well-known Kaéan vortex street, by the cylinder. In the case of rotational oscillation about the
which has an associated vortex shedding frequengydi-  cylinder axis, a substantial effect has been observed on the
mensionlessly quantified as the Strouhal number Swake flows, which in turn results in comparatively large ef-
=f,D/U, and a wake that possesses an alternating asymméscts on lift and drag forces.
try about its centerline. For the second case of simple har- These results point to the sensitivity of bluff-body flows
monic rectilinear motion of the surrounding fluidr, equiva-  to imposed oscillatory motion of the body, both translational
lently, simple harmonic translation of the cylinder in a body and rotational. A class of flows which has not received at-
of quiescent fluig, two dimensionless groups are required totention until now is that created by a circular cylinder mov-
characterize the flows, typically the Keulegan—Carpenteing with combined oscillatory translation and rotation in qui-
number KG=U/f.D=2=7A,/D and the Reynolds number escent fluid. If both motions are simple harmonic, the flows
Re=UD/», whereU now is the peak translational velocity are characterized by five dimensionless groups, which corre-
andf,, A, are, respectively, the frequency and amplitude ofspond to two sets of Reynolds and Keulegan—Carpenter
simple harmonic motion. For moderately low KC values,numbers(one set for translational and the other for rotary
oscillating a cylinder in quiescent fluid results in a streamingmotion), and the phase anglg between these two motions.
flow along the translation axis, with reflectional symmetry We have assigned the imposed translational motion to be in
about this line: At higher KC, a variety of two-dimensional the vertical direction, so that
symmetry-breaking bifurcations are observed in the resulting
flow patterns-? y(t)=Acos 27 1), @)

. In the case of steady flow past a circular cylinder, theyhile the rotational motion of the cylinder about its axis is
Karmm street .Wake can be_ greatly mfluencg_d by imposeqjescribed by
oscillatory motion of the cylinder, either rectilinear or rota-
tional. In addition to Re, dimensionless groups describing the  6(t)=A,cod 27 f t+ ), 2
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with counterclockwise rotation corresponding to positize
We have used two-dimensional numerical simulations in or-
der to carry out an exploratory study of the resulting flows (a)
for a small subset of the five dimensionless groups.

The numerical technique used for this study employs a
spectral element spatial discretization in conjunction with a ‘ ‘ ‘
second-order time integration scheme based on operator T
splitting and backwards differencifid. To provide for cyl-
inder translational motion, but with low computational over- (b)
head, the incompressible Navier—Stokes equations are solved
in an accelerating reference frame attached to the cylinder, so
that the mesh does not deform with time, but the boundary
conditions and distributed forcing are continually adjusted
curing the simulation The technique has previously beef5 L Loy posutes o e i orbies bty Fsir
d_esc_”bed a_nd applied to S'mF"a“O”S Of bOt_h flows past OSthe cylinder is at its maximum vertic)fatl position and n’?ost negativepanéular
cillating cylinders and vortex-induced vibrati8rithe same displacement at the instant shown. The rest position of the cylinder is indi-
method has been used in the present work with little modi<ated by cross-hairs, and the radial line shows the rotational displacement of
fication except as required to introduce tangential rotationai cylinder.
motion at the cylinder surface. The method uses a velocity—
pressure formulation, and vorticitjused in presentation of
results below was computed in postprocessing via colloca- |t is immediately apparent that while the cylinder trans-
tion differentiation. Tracking of fluid particles was accom- |ation axis is vertical, vorticity transport is predominantly in
plished using a third-order-in-time predictor—correctorthe horizontal direction. This transport is associated with
scheme. fluid motion, as illustrated in Fig. (b), where the positions

In checks carried out with the cylinder oscillating with of fluid particles released near the cylinder surface are
translational motion in quiescent fluid, K&, it was found  shown. In Fig. 2, a time-mean velocity profile for theom-
that the peak forces exerted on the cylinder were convergegonent of the velocity at a location[2 to the right of the
to four significant figures when eight-order tensor-productranslation axis illustrates the double-peaked nature of the jet
Gauss—Lobatto-Legendre polynomial shape functions werow suggested by the particle transport map. Here the fluid
used in each element. Temporal convergence checks showgdlocity is normalized using the peak translational velocity
the peak forces to be the same to four-figure accuracy foy.
both AtU/D=0.005 andAtU/D=0.0025. For the results The streaming flow normal to the axis of imposed cylin-
presented here, tenth-order polynomials amdU/D  der translation produces an associated time-mean leftwards
=0.0025 were used. reaction force on the cylinder. This makes it possible for the

For our study, the Keulegan—Carpenter and Reynoldgylinder to be propelled in the horizontal direction, some-
numbers for the translational motion were held fixed at valthing that is comparatively simple to arrange in a computa-
ues of 7 and 200 22, respectively. The frequency of the tional setting by coupling an ordinary differential equation
rotational oscillation was the same as for the translationajor the cylinder motion in the horizontal directidine., F,
oscillation, i.e.,ft= fﬁ, while the amplitude of the rotational = max) to the Navier—Stokes equations, as described in pre-
motion was set so as to make the peak tangential speed @fbus work® With this done, it was found that the cylinder
the surface of the cylinder the same as the peak translationgtcelerated to the lefwith fluctuations stemming from the
speed, i.e.A,=1 rad. These choices fix four of the five comparatively large alternating components of horizontal
dimensionless groups. The remaining group, the phase angigrce), eventually reaching an average terminal speed of 33%
¢ between the two motions, was then changed in steps aif the peak vertical translational speed of the cylinder. Fig-
/8 between simulations. The full set of these results will beyre 3 illustrates vorticity contours and particle transport for
reported elsewhere, but here we concentrate and expand e cylinder “swimming” at terminal speed. Figure 4 shows
the case where the rotational and translational motions arge time-mearx-component velocity profildin a frame of
out of phase, i.e.¢p= 7.

Vorticity contours for the resulting flow are illustrated in
Fig. 1(a). Contours of positivgcounterclockwisg vorticity

are shown in black, with negative values shown in gray. 2 ! '

Contours are drawn only up to an arbitrary maximum mag- -

nitude, so that the regions of most intense vorticity adjacent i or

to the cylinder are left unmarked. Only a small subset of the 7//)

144-element, 20 X 20D biperiodic computational domain T
is shown, and the time is chosen such that the cylinder is at 0 0.1 0.2 0.3 0.4
the maximum point in its vertical motion cycle. Sufficient w/u

simulation time(50 mOtion_ periodshas elapsed for the flow g 2. Meanx-component velocity profile ax/D=2.0 for the flow in
to approach an asymptotic state. Fig. 1.
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FIG. 3. Propelled cylinder swimming at terminal speed in xhgirection:
(a) instantaneous vorticity contouréy) fluid particle transport.

phase with one another, while for the bluff-body motion we

have described, the translation and rotation are out of phase.

This may be linked to the position of the features which act

most strongly to influence and control the resulting flows.

_ _ _ _ ~ For flapping foils, it is the Kutta condition at the trailing

reference traveling to the left with the cylinder, but fixed in edge which has the controlling influence, while for the swim-

the vertical directionat x/D =2. ming cylinder it would appear instead that the motion of the
The mechanism by which the cylinder produces thrust ieading edge is most important.

the subject of continuing investigation. Studying Figa)lit

is clear that the majority of vorticity production occurs on

the left face of the cylinder, consistent with the fact that thea)l'i/'IeCTt“;”iC ma”idng‘gc\-/B'ngb”r”@dAbce.'CS"IO"';‘“ ' of the f §
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