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mResults are presented for a two-dimensional numerical simulation of
vortex-induced vibration of a circular cylinder at a Reynolds number of
250. A spectral element spatial discretization and a stiffly stable time
integration scheme were employed to solve the Navier—Stokes equations in
an accelerating frame of reference attached to the cylinder. The response
envelope of the vibrating cylinder was simjlar to those previously obtained
in experiments, and lock-in (coalescence of cross-flow oscillation and
vortex-shedding frequencies at a frequency close to the cylinder natural
frequency) was observed. Chaotic cylinder responses were observed over a
range of cylinder natural frequencies. Simulations of flows past a cylinder
in forced cross-flow oscillation are also discussed, and a result showing an
asymmetric P + § vortex shedding mode is presented.
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INTRODUCTION

The problem of vortex-induced vibration of slender flexi-
ble structures in cross flow holds considerable theoretical
and practical interest. Partly as a response to the difficul-
ties of setting up and obtaining useful measurements from
an experimental investigation into the problem, we have
taken a computationally based approach. Although at
present the range of Reynolds numbers for direct numeri-
cal simulation is comparatively limited, especially for
three-dimensional computations, much useful information
concerning the physics of the body-wake interaction may
be obtained. The restriction may not be too important,
since, as has been noted many times, the physics of vortex
shedding and fluid-structure interaction seem to be
broadly similar over the observed range of Reynolds num-
bers above 100 despite the many Reynolds transitions that
may affect the details of the flow. It is also generally
accepted that near-wake flow structures become increas-
ingly two-dimensional as body vibration amplitudes in-
crease.

In a previous study [1], results were presented for forced
and free cylinder oscillation at Re = 200 and convergence
studies were discussed. The lock-in phenomenon and the
rapid change of phase of vortex shedding with change in
cylinder oscillation frequency [2] were both observed for
forced cross-flow oscillations. In addition, the approach to
a limiting maximum amplitude of oscillation in free vibra-
tion as Scruton’s mass-damping parameter 47{m /pD? —
0 was observed for the single value of cylinder natural
frequency investigated there, mimicking experimental be-
havior (e.g., Griffin [3]).

In the first part of this paper we concentrate on free
vibration behavior. The mean flow speed (i.e., Reynolds
number) was held constant, and the natural frequency of
the cylinder was varied between runs; each run was
restarted using cylinder state parameters and flow field
obtained at the end of the previous run. In most cases,
simulations were run for a dimensionless time tU/D = 300
or approximately 60 periods of vortex shedding for the
fixed cylinder (Strouhal number St = 0.2077). This was
usually sufficient to obtain a steady-state oscillation. The
cylinder damping ratio was held constant at ¢ = 0.01,
while the cylinder mass per unit length was also held
constant with m /pD? = 10, to give 4w{m/pD* = 1.2566.
For results presented here, cylinder natural frequency was
increased in small steps between successive runs.

In the latter part of the paper, attention is turned to
examination of wake modes in vortex-induced and forced
oscillation, since symmetrical and asymmetrical vortex in-
teraction in the near wake is an important feature of
cylinder-wake coupling [6, 7].

PROBLEM FORMULATION

The computational domain (0 employed for the two-
dimensional simulations is shown in Fig. 1; the domain
extended a distance of 12.5D upstream and cross-flow
from the cylinder centerline, and a distance of 25D down-
stream. A large cross-flow mesh dimension was employed
to minimize blockage effects. Prescribed-velocity bound-
ary conditions were used on the inflow, upper and lower
boundaries, while at the downstream end of the domain,
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Figure 1. Gauss—Legendre-Lobatto spectral element mesh
for domain Q employed in the free vibration calculations.
Each of the clements closest to the cylinder has thickness
0.1D.

outflow velocity and pressure boundary conditions were
used.

The numerical and physical treatment of the problem in
two and three dimensions has been previously described
by Blackburn and Karniadakis [1] and references therein.
The physical formulation is briefly re-presented below for
completeness.

Rather than arrange a method in which the computa-
tional grid deformed to allow cylinder motion, we have
used a fixed-configuration grid attached to the cylinder. By
applying appropriate boundary conditions and adding a
fictitious forcing term to the Navier—Stokes equations, the
flow simulation may be carried out in this accelerating
reference frame. The incompressible Navier—Stokes equa-
tions, written in rotational form for an inertial reference
frame, are

Ju

W=—VH+uXw+VV2u, )]

where [I =p/p+ u-u/2 and @ = V X u. If the refer-
ence frame in which the Navier-Stokes equations are
solved has a rectilinear acceleration a, then the equations
become

Ju

ot
The appropriate velocity boundary conditions at pre-
scribed-velocity boundaries are

= —v, 3
where v is the velocity of the reference frame. The corre-
sponding pressure boundary condition is obtained by tak-
ing the normal component of (2), generated by dotting the
unit normal boundary vector n into (2) to make

Il

— =n-[uXw—-rVXanl 4)
on

=-VIl+uXw+ rV?a — a. 2
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where the form of the viscous term follows the suggestion
of Orszag et al. [4]. On the body boundary,

all
— =n-[uXow—-»VXw—al (5
on

The force per unit length exerted by the pressure field
on the cylinder is given by

f, =96pn ds =§6pHn ds, 6)

where n is again the unit outward normal of the fluid
domain and the integration is performed around the cir-
cumference of the cylinder, while the viscous force per
unit length is

f, = —¢;Ln [Vu + (Vu)" ] ds. @)

If the cylinder undergoes forced oscillation, the velocity
and acceleration of the reference frame are given. How-
ever, in the case of free vibration the mass, stiffness, and
damping of the cylinder must be considered, and second-
order ODEs of the form

X+ 2{w,x + 02x = f/m 8)

must be solved for each axis of motion, where for two-
dimensional calculations m is the cylinder mass per unit
length and f=f, + f, is the total force per unit length
exerted by the fluid. Following normal practice, these are
decomposed into a set of first-order ODEs with v = x,
giving

v="_f/m-2{wy— olx,

9

X=v.
Here v is identical with the reference frame velocity, as it
is fixed to the cylinder.
Equations (2) are solved together with the incompress-
ibility constraint

Veu=20 in Q. (10)

As discussed in Blackburn and Karniadakis [1], a spec-
tral element spatial discretization with a conforming
Gauss—Legendre-Lobatto mesh was combined with a
stiffly stable time integration scheme based on backward
differencing to solve (2) and (10) using primitive variables.
The same stiffly stable scheme was used to integrate (9) to
obtain the motion of the cylinder. The domain was mod-
cled using 86 macroelements, each with eighth-order ten-
sor product Gauss—Legendre—Lobatto interpolants for the
velocity and pressure fields.

RESULTS: VORTEX-INDUCED
VIBRATION RESPONSE

A diagram showing the cylinder response amplitudes and
frequencies together with mean drag and fluctuating lift
forces is presented in Fig. 2, where the changes of cylinder
natural frequency in vacuo (f,) are characterized by the
ratio f, /f,, where f, is the vortex-shedding frequency for
the fixed cylinder.
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Figure 2. Cylinder response diagram. Values along the ab-
scissa represent the ratio of cylinder in vacuo natural fre-
quency f,, to Strouhal frequency for the fixed cylinder f,.(0)
Ratio of fluctuating lift coefficients Ci/C}; (O) ratio of
mean drag coefficients Cy/Cy 5 (4) ratio of oscillation fre-
quency to fixed-cylinder Stroufial frequency f_/f,; (—) stan-
dard deviation of cylinder cross-flow response amplitude
y'/D. Shaded region indicates chaotic regime.

An example showing transient cylinder response at the
onset of lock-in (f, /f, = 0.843) is shown in Fig. 3. Note
that the scale of along-flow response (x/D) is greatly
exaggerated compared to the cross-flow response.

Cylinder Oscillation Frequency and Amplitude

For all the simulations, cylinder cross-flow oscillation and
lift frequencies were found to coincide at steady state.
However, the lift /oscillation frequency f, was nearly the
same as f, away from f,/f, = 1. Near f,/f, = 1 both
frequencies changed together to fall near (but not exactly
on) f; exact coincidence with f, is indicated by the
slanted thin line near the center of Fig. 2. This change in
vortex-shedding frequency to nearly match the cylinder
natural frequency is the lock-in phenomenon. During
lock-in, amplitudes of cross-flow oscillation increased
markedly: the largest steady-state values correspond to
peak-to-peak oscillation amplitudes of approximately 0.9D
(standard deviation values of y/D are presented in Fig.
2). Note that while the cylinder was free to oscillate in the
along-flow direction, only cross-flow amplitudes are re-
ported here; typically the fluctuating along-flow response
was an order of magnitude smaller than for cross flow.
The lack of exact coincidence of f, with f,, during lock-in
can be accounted for by a phase difference between
cylinder motion and lift forces, which is known to be a
function of f,/f,.

/D |
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Figure 3. Transient cylinder response at the onset of lock-in,
f./f, = 0.843. C, increases into the page; x/D increases
down the page. The progression to large-amplitude lock-in
oscillations was accompanied by a decrease in the mean value
of x/D, corresponding to an increase in f, (increasing stiff-
ness).

Lift and Drag

For the fixed cylinder, Cy = 1.446, C; = 0.0452, and
Cj, = 0.581. Values for the' oscillating cylmder are pre-
sented in Fig. 2 as ratios of the values for the fixed
cylinder. Coinciding with the onset of lock-in at f, /f, =
0.825, mean drag coefficients began to rise above values
for the stationary cylinder. More notable were the large
drop in fluctuating lift coefficients and the steady drop at
frequencies below lock-in, emphasizing that even small
amplitudes of response can substantially affect the
vortex-shedding process. The behavior of lift and drag
coefficients during lock-in was similar to that observed in
the forced-vibration results presented in Fig. 3 of Black-
burn and Karniadakis [1].

Chaotic Response Regime

At frequency ratios of 1.11-1.20, above lock-in, chaotic
cylinder responses were observed, as shown, for example,
in Fig. 4 for frequency ratio f, /f, = 1.11; the autospec-
trum of the time series is presented in Fig. 5. The re-
sponses are described as chaotic because they are aperi-
odic (Fig. 4) and display noisy spectra (Fig. 5) with two
peaks that are not related in any simple way to the sum
and difference frequencies of the fixed-cylinder vortex
shedding frequency and the cylinder natural frequency.

1000
tU/D

1500

2000

Figure 4. Chaotic cross-flow response for f, /f, = 1.11.
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Figure 5. Autospectrum of cross-flow response for f, /f, =
1.11. Spectral peaks are incommensurate with the cylinder
natural frequency and the fixed-cylinder Strouhal frequency.

Both the cylinder response and the motion of the wake
are chaotic.

To ensure that these observations were not due to
transient effects, the simulation times were extended to
700 and then 2000 (400 vortex shedding cycles). The
chaotic responses were due to an intermittent lock-in
effect. Phase-space visualization of cylinder state variables
(as in Fig. 3) showed that during times when the cylinder
amplitudes were large, responses approached the typical
limit cycle for the lock-in regime (similar to a Lissajous
figure). Entry to the chaotic state also produced a substan-
tial increase in standard deviation lift coefficients to al-
most double the values for the fixed cylinder. We intend
to make a more detailed study of this regime, following
the suggestion of Van Atta and Gharib [5].

RESULTS: FLOW VISUALIZATION AND
WAKE MODES

It was of interest in the present simulations to examine
wake flow structures, particularly as they may affect the
lock-in process. The work of Brika and Laneville [6]
suggests that the lock-in regime might be associated with
a change in vortex shedding modes, for example from the
normal shedding of a single pair of vortices for each cycle
of cylinder motion away from lock-in to the shedding of
two pairs of vortices per cycle. This effect was first noted
in the forced-oscillation experiments of Williamson and
Roshko [7], where these two modes were called 28 and 2P,
respectively. Williamson and Roshko also noted asymmet-
ric wake modes, with paired vortices on one side of the
wake and single-signed vortices on the other; these were
called P + S modes. In the free-vibration experiments of
Brika and Laneville, the 2P mode was found to be associ-
ated with large-amplitude responses in the lock-in regime.
[Note the similarity between the response envelope for
y'/D in Fig. 2 here and the lower plateau in Fig. 19 of
Brika and Laneville (after accounting for the fact that the
senses of the abscissas are reversed).]

Since the presence of wake vortices should be indicated
in the solution vorticity field, we produced animations of
® contours derived from the simulation results for a cycle
of oscillation in the lock-in regime for different values of
the ratio f, /f,. In all the vortex-induced vibration results
we obtained at Re = 250, only the regular 2S mode was
observed. While there is some difficulty in directly com-
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paring flow structures obtained by visualization using in-
stantaneous streaklines (short time exposures of particle
paths; Williamson and Roshko), streaklines (smoke parti-
cles released from cylinder surface; Brika and Laneville),
and vorticity field /instantaneous streamlines, the present
results for the vorticity field should be able to differenti-
ate between the 2S and 2P modes. The implication is that
the 2P mode is not necessarily associated with the large-
amplitude response plateau in the lock-in regime.

Williamson and Roshko’s published results [7] were
obtained at Reynolds numbers generally in the range
500-1000, whereas the present set of results in vortex-
induced vibration were obtained at Re = 250. Hence it
was initially conjectured that the lack of 2P or P + S
modes in the simulation results might be attributed to
greater diffusivity of vorticity at the lower Reynolds num-
bers, and simulations are presently under way at Re = 500.
Subsequently, Williamson (1994, private communication)
provided a streakline photograph of the P + S mode in
forced cross-flow oscillations at Re = 140, with cross-flow
peak amplitude of +0.6D (y'/D = 0.42) and f /f, =
0.152. This result is shown here as Fig. 6. The flow is
assumed to be nearly two-dimensional, as it is for a fixed
cylinder at these Reynolds numbers, although the photo-
graph does provide some indication of three-dimensional
flow.

We were initially unable to obtain a P + S mode for
forced cross-flow oscillation at Re = 140, starting the os-
cillation at an amplitude of +0.6D in a flow field estab-
lished with a fixed cylinder. However, we found that at
higher amplitudes of oscillation the P + S mode ap-
peared, and we were able to maintain it at lower ampli-
tudes (thus far, down to +£0.75D or y'/D = 0.53). A plot
of vorticity field contours resulting from the simulation is
shown in Fig. 7; the similarity to the flow visualization of
Fig. 6 is striking. By changing initial conditions, it may be
possible to hold the P + S mode down to lower ampli-
tudes, matching those of Williamson. The presence of
wake modes other than the conventional 2S mode in
vortex-induced vibration (as opposed to forced oscillation)
at low Reynolds numbers is still an open question.

PRACTICAL SIGNIFICANCE

Vortex-induced vibration of slender circular-cylindrical
structural elements is an important consideration for the
fabrication, transport, and operational design phases of
many offshore structures. Despite the relatively funda-
mental nature of the problem, a comparatively small
amount is known about the nature of the fluid—-structure
interaction, and the design rules that exist (e.g., CIRIA
[8]) are based on a limited set of experimental results,
such as those reviewed by King [9]. Partly as a result of
the lack of understanding of the phenomenon, apparently
unrelated sets of design procgdures are available for
structures immersed in flows of water (e.g., CIRIA) and
air (e.g., ESDU [10]). The present, computational approach
to investigation of this fluid—structure interaction problem
should enhance understanding of ‘the phenomenon, lead-
ing to more rational design rules and suggesting new
approaches to its control.
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Figure 6. Dye-marked streaklines in forced cross-flow oscillation at Re = 140, y'/D = 0.42, f /f, = 0.152,
demonstrating the P + S wake mode. (Photograph courtesy of C. H. K. Williamson, Cornell University.)
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Figure 7. Vorticity contours in simulation of forced cross-flow oscillation at Re = 140, y'/D = 0.53, f,/f, = 0.152. Compare
with experimental flow visualization of Fig. 6.



CONCLUSIONS

The simulation results show that the numerical method is
able to reproduce many of the vortex-induced vibration
phenomena obtained in experiments. The ready availabil-
ity of detailed results such as lift and drag coefficients,
flow field, and body state variables, emphasizes the power
and utility of the computational approach to the problem
of vortex-induced vibration. We intend to pursue the
issues of low-dimensional modeling of the cylinder-wake
system and near-wake transport properties (as discussed
by Shariff et al. [11]), but a more pressing need is to
understand the physics that underlies lock-in behavior.

An important extension of the present simulation tech-
nique is to three-dimensional flows. Use of Fourier trans-
form techniques in the homogeneous (spanwise) direction
facilitates parallel computations, as outlined in [1]. We
have carried out a set of example three-dimensional calcu-
lations for a freely vibrating cylinder at Re = 250, and the
use of unstructured spectral element methods [12] should
enable us to expand the Reynolds number envelope of
direct numerical simulations to Re = 1000 with present
computational resources.

Part of this work was performed while H.B. was employed by Monash
University and on secondment to Princeton University. Additional
support was provided by the Australian Research Council and the
Office of Naval Research. We thank Professor George Karniadakis
for his continued interest and support.

NOMENCLATURE

a reference frame acceleration vector, m/s”

C, drag coefficient (= F,/0.5pU>D), dimensionless

C, lift coefficient (= F,/0.5pU*D), dimensionless

D cylinder diameter, m

F, drag force per unit length, kg /s>

F, lift force per unit length, kg /s>

f. cylinder in vacuo natural frequency, Hz

f, cylinder oscillation frequency, Hz

f, vortex shedding frequency for fixed cylinder, Hz

f force per unit length exerted on cylinder by fluid,

kg/s?

f, pressure force per unit length exerted on cylinder by
fluid, kg/s*

f, viscous force per unit length exerted on cylinder by
fluid, kg/s>

m cylinder mass per unit length, kg /m

unit outward normal vector, m

pressure, kg/m s’

Re Reynolds number (= UD /v), dimensionless

Strouhal number (= f, D/U), dimensionless

time, s

free-stream fluid speed, m/s

fluid velocity vector, m /s

cylinder velocity vector, m/s

N =

«em2 £
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x cylinder along-flow displacement, m
cylinder position vector, m
cylinder cross-flow displacement, m

Greek Symbols

»

S

fluid dynamic viscosity, kg/m s

fluid kinematic viscosity, m?/s

=p/p+u-u/2, m’/s’

fluid density, kg/m?

fluid vorticity vector, m/s m

= 2wuf,, rad/s

ratio of cylinder damping to critical, dimensionless

sbzut

g

y~ B

Superscripts and Subscripts

standard deviation value
0 fixed cylinder value
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