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Time-periodic flows with spatio-temporal symmetry Z, X O(2) — invariance in the
spanwise direction generating the O(2) symmetry group and a half-period-reflection
symmetry in the streamwise direction generating a spatio-temporal Z, symmetry
group — are of interest largely because this is the symmetry group of periodic
laminar two-dimensional wakes of symmetric bodies. Such flows are the base states
for various three-dimensional instabilities; the periodically shedding two-dimensional
circular cylinder wake with three-dimensional modes A and B being the generic
example. However, it is not easy to physically realize the ideal flows owing to
the presence of end effects and finite spanwise geometries. Flows past rings are
sometimes advanced as providing a relevant idealization, but in fact these have
symmetry group O(2) and only approach Z, x O(2) symmetry in the infinite aspect
ratio limit. The present work examines physically realizable periodically driven
annular cavity flows that possess Z, x O(2) spatio-temporal symmetry. The flows
have three distinct codimension-1 instabilities: two synchronous modes (A and
B), and two manifestations of a quasi-periodic (QP) mode, either as modulated
standing waves or modulated travelling waves. It is found that the curvature of
the system can determine which of these modes is the first to become unstable
with increasing Reynolds number, and that even in the nonlinear regime near onset
of three-dimensional instabilities the dynamics are dominated by mixed modes
with complicated spatio-temporal structure. Supplementary movies illustrating the
spatio-temporal dynamics are available at journals.cambridge.org/flm.
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1. Introduction

Typically, spatial patterns in non-equilibrium hydrodynamic systems have been
classified according to the linear instabilities of an infinite spatially uniform system,
or at least a system which is infinite in a direction in which a pattern forms,
as a control parameter exceeds a critical value (Cross & Hohenberg 1993). While
this approach has worked extremely well for stationary patterns (such as rolls in
Rayleigh—-Bénard convection and Taylor vortex cells), when the pattern propagates in
the model problem, its physical manifestation is often compromised by the pattern-
forming direction not being truly translation-invariant. One of the major problems
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with this modelling approach is that for a system with an infinite direction the usual
linear stability analysis in terms of normal modes cannot be performed directly, as
the associated spectrum is continuous. To remedy this, an arbitrary periodicity is
imposed in the infinite direction, which renders the spectrum discrete and allows for
a normal mode analysis, but then the resultant pattern depends on the arbitrarily
imposed periodicity. When the pattern-forming direction is physically periodic, e.g.
an angular direction, then the modal approach is directly applicable.

Also, there has been much interest in pattern formation from non-trivial states. A
classic example is the transition to three-dimensional flow from the two-dimensional
periodic wake of bluff bodies; the von Karman vortex street wake of a circular cylinder
being the prototypical case. It was early recognized that weak three-dimensional
effects induced by the cylinder ends are important, even for very large length-to-
diameter aspect ratio cylinders, in nominally two-dimensional low-Reynolds-number
wakes (Williamson 1989). Nevertheless, the nominally two-dimensional experiments
of Williamson (1996) identified two synchronous three-dimensional modes (modes A
and B) which were captured by the Floquet analysis of the two-dimensional cylinder
wake flow (Barkley & Henderson 1996; Henderson & Barkley 1996). Blackburn &
Lopez (2003a) showed that there is a third pattern-forming instability of the two-
dimensional wake, first alluded to in Barkley & Henderson (1996), which results in
a quasi-periodic three-dimensional flow, mode QP (quasi-periodic solutions possess
two, generally incommensurate, distinct temporal periods). Other flows with the
same symmetries (invariance in the spanwise direction generating the O(2) symmetry
group and a half-period-reflection symmetry in the streamwise direction generating a
spatio-temporal Z, symmetry group) have also been found to produce synchronous
three-dimensional patterns with the same characteristics as those of the cylinder wake
(Meiburg & Lasheras 1988; Lasheras & Meiburg 1990; Julien, Lasheras & Chomaz
2003; Vogel, Hirsa & Lopez 2003). The physical mechanisms underlying various
instability modes, especially synchronous ones, have been the subject of ongoing
debate, as outlined by Blackburn & Lopez (2003b) and references therein. However,
our main focus here is on the dynamics of quasi-periodic modes in these systems.

Blackburn & Lopez (2003b) analysed the three-dimensional instabilities of a
periodically driven infinite rectangular cavity flow. As for the cylinder wake flows,
the cavity flow has two synchronous modes (named A and B as a result of visual
similarities to the equivalent cylinder wake modes), in addition to a quasi-periodic
mode. The symmetry group of the problem is spatio-temporal Z, x O(2), just as in the
periodically shedding circular cylinder wake problem, but the driven cavity is a non-
autonomous flow, and this provides one of the attractions of adopting such a system
as a vehicle with which to study bifurcations in flows with this symmetry. Different
combinations of the amplitude and frequency of motion of the oscillating wall lead
to variation in which the three types of instability modes can be made to bifurcate
directly from the base state — the system has two dynamic control parameters which
allow this freedom of choice. In contrast, autonomous time-periodic flows, such as
two-dimensional circular and square cylinder wakes, typically possess only one control
parameter (the free-stream velocity as characterized by the Reynolds number), and
consequently, the three modes bifurcate from the base state sequentially as this single
control parameter is varied.

Blackburn, Marques & Lopez (2005) explored the relationship between the three-
dimensional instabilities of the idealized two-dimensional cylinder wake and driven
cavity flows, and Marques, Lopez & Blackburn (2004) provided a detailed centre
manifold and normal form analysis of the bifurcations involved. An experimental
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test of the theoretical predictions from Marques et al. (2004) was presented in Leung
et al. (2005), where the physical periodically driven cavity problem with finite span
had Z, x Z, spatio-temporal symmetry (the spanwise translation/reflection invariance
0O(2) in the model problem being reduced to a spanwise reflection Z, in the physical
experiment). The synchronous modes A and B were captured well (as they are in
the cylinder wake experiments), but the QP mode, which the model predicted to be
a (modulated) travelling wave state, was not. A quasi-periodic state was observed
experimentally for the parameter ranges predicted, with its two frequencies and the
spanwise wavelength of the three-dimensional instability in good agreement with
the model predictions, but its spatio-temporal form was not that of a (modulated)
travelling wave.

In this paper, we examine a continuous deformation of the idealized planar driven
cavity flow such that the infinite spanwise direction becomes a periodic angular
direction. The transformation preserves the Z, x O(2) symmetry of the original
system owing to the fact that the direction in which the flow is driven through
oscillation lies normal to the direction of distortion. The motivation for this was
to identify parameter regimes where the (modulated) travelling waves predicted by
Blackburn & Lopez (2003b) and Marques et al. (2004) continue to be the primary
three-dimensional mode of instability in the modified, but now physically realizable,
annular problem. In our driven cavity problem, the planar version has a well-defined
supercritical bifurcation for the onset of (modulated) travelling waves, and we find
that this mode of instability can be continued into the annular version by smooth
variations in curvature. The ability to produce primary bifurcations to synchronous
modes A and B is also retained in this system, but here the main focus is on control
parameter combinations that determine mode QP to be the primary instability.

We note that other physically realizable fluid-mechanical systems with Z, x O(2)
symmetry are possible. One simple case is obtained by removing the inner annulus
of the present geometry, so that there is a cylindrical cavity with fixed endwalls and
only an axially sliding oscillatory outer wall. The annular geometry adopted in the
present work, however, allows the original rectangular geometry studied in Blackburn
& Lopez (2003b) to be obtained in the zero-curvature limit. Before leaving this point,
we also note that the same type of deformation (infinite planar direction deformed
into a circular direction) may not preserve the original symmetry in other systems
if the direction of oscillation is not orthogonal to the direction of deformation.
An example that has received considerable attention is flow past rings of circular
cross-section, taken as a model of an infinite circular cylinder (Leweke & Provansal
1995; Sheard, Thompson & Hourigan 2003). When the free-stream flow is directed
along the ring axis and Reynolds numbers are high enough for vortex shedding
to occur, the instability generates an oscillatory velocity component normal to the
axis, which is in the direction of deformation. As a result, deformation destroys the
Z, symmetry group characteristic of the two-dimensional von Karman wake and
central to the class of flows treated here. Breaking this symmetry can change the
nature of three-dimensional bifurcations that are possible from the two-dimensional
basic state. Of particular significance in relation to the present work is the fact
that subharmonic modes which can arise in systems with broken Z, symmetry (as
shown by Sheard et al. 2003, Carmo et al. 2008, Sheard, Fitzgerald & Ryan 2009,
respectively, for wakes of rings, of a staggered pair of circular cylinders, and of a
rotated square cylinder) are suppressed as generic bifurcations in symmetric systems.
This outcome is a direct consequence of Z, spatio-temporal symmetry, as originally
explained for simple systems by Swift & Wiesenfeld (1984), and in depth for Z, x O(2)
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FIGURE 1. (Colour online) (a) Schematic of the flow geometry (the oscillatory outer wall case
is shown). (b) Cutaway perspective view of a typical basic state visualized as + isosurfaces of
azimuthal vorticity of equal magnitude at one instant in the wall motion cycle, for ¥ =4/3,
St =100 and Re =1200 (see supplementary movie 1 for an animation). Snapshot contours
of base flow azimuthal vorticity (black, positive; grey, negative) half a period apart for (c)
¥ =9/10 (inner-wall-driven) and (d) ¥ = 10/9 (outer-wall-driven), both at St = 100, Re = 1200.

systems by Marques et al. (2004). Recently, Blackburn & Sheard (2010) demonstrated
the connection: a finite amount of deformation, which breaks the Z, symmetry to
leave only O(2), typically transforms a quasi-periodic instability mode into a pair of
subharmonic instability modes.

2. Problem definition, dimensionless groups and symmetries

Consider the flow in a finite annular channel driven by the harmonic oscillation
in the axial direction z of either the inner or the outer cylindrical wall. The radius
of the driven wall is r;, and that of the stationary cylindrical wall is r,; their ratio
¥ =r,/r, is greater or less than unity depending on which wall oscillates. The infinite
rectangular channel with zero curvature (Blackburn & Lopez 2003b) is recovered
in the limit ¥ — 1. The geometry and coordinate system used for the problem are
illustrated in figure 1. The rectangular cross-section of the annulus has radial gap, A,
and axial length, .

Taking the radial gap, 4, as the length scale and the maximum wall velocity, Wiy,
as a velocity scale (so that the time scale is i/ Wy,.y), the non-dimensional governing
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equations and boundary conditions are:

Navier—Stokes du-+u-Vu=—VP + Re 'Vu, (2.1a)

incompressibility V-u=0, (2.1b)
u(r,6, £ I/2)=0,

boundary conditions u(rg,0,2) =0, (2.1¢)

u(ry,9,z) = [0, 0, sin(2nr /7)],

where u = (u, v, w) is the velocity field in polar coordinates (r,6,z) and P is
the kinematic pressure. The vorticity is V x u = (£,1,¢) = (r 9w — 0,v, d.u —
dw, r71o.(rv) — r'9yu).

There are four governing parameters:

the length-to-gap aspect ratio I=1/h, (2.2a)
the radius ratio U =ry/r, (2.2b)
the Reynolds number Re = Whaxh/v, (2.2¢)
the Stokes number St =h*/Tv, (2.2d)

where T is the driven wall’s dimensional forcing period; the dimensionless values of
wall motion period and maximum displacement are T = Re/St and t/2m, respectively.

The system (2.1a)—(2.1¢) is invariant to a number of symmetry operations: rotations
about the axis, R,, whose action on velocity and vorticity is

Ry(u, v, w)(r,0,z) = (u, v, w)(r,0 + «, z), (2.3a)

Ro(§,n,8)(r,0,2) = (&, 1, 0)(r, 0 +a,2), (2.3b)
reflections about any meridional plane, Ky, whose action is

Ky(u, v, w)(r, 0, z) = (u, —v, w)(r, —0, z), (2.3¢)

Ko(&,n,8)(r,0,2) = (=&, 1, —=¢)(r, =0, 2), (2.3d)

and a spatio-temporal symmetry H, composed of a reflection about z = 0 and a
temporal evolution of a half-period, whose action is

H(u,v,w)r,0,z,t) = (u,v, —w)r,0,—z,t +1/2), (2.3¢)
H(E’ n, {)(7‘, 9’ Z, l) = (_g’ -, {)(r, 9, —z,t + 1/2) (23f)

The symmetries R, and K, do not commute and together they generate the spatial
group O(2); H generates a Z, group which commutes with the O(2) group, and so
the complete symmetry group of the system is Z, x O(2). As discussed in § 1, other
fluid-mechanical systems such as axisymmetric vortex-street ring wakes (e.g. Leweke
& Provansal 1995) that may initially seem closely related to the present case, allow
the spatio-temporal symmetry H to be obtained only in the zero-curvature limit.
Consequently, for any finite deformation/curvature, such flows have O(2) symmetry
group, generated by R, and Ky, as opposed to Z, x O(2).

In the present study, as in Blackburn & Lopez (2003b), the aspect ratio is fixed at
I' =2, while the remaining geometric parameter, radius ratio ¥, which gives a measure
of the curvature in the problem, is varied. This generalizes the previous work, which
corresponded to the limit ¥ = 1. Note that as ¥ — 1 from below, there is a switch
from inner cylindrical wall to outer cylindrical wall oscillations. At ¥ =1 the system
is invariant to which wall oscillates. Since our original motivation lay in studying the
modulated travelling wave states, we also fixed the Stokes number, St = 100, as it was
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established in the Cartesian case that this value was near the middle of the range of
Stokes numbers (St € [87.5, 132]) over which the quasi-periodic modes were first to
bifurcate from the two-dimensional basic states. In the Cartesian case at St = 100, the
quasi-periodic mode bifurcates from the two-dimensional base state at Re.=1212,
while the synchronous mode A is the second to bifurcate at Re. =1371. The other
synchronous mode, B, bifurcates at a considerably higher value, which we have not
conclusively established but is at least Re = 1500 for St = 100.

Thus, of the four control parameters shown in (2.2), we fix I"=2 and St =100,
and examine the effect of variations in ¥ and Re, with focus principally on quasi-
periodic instability modes. A further point regarding the nomenclature for these
quasi-periodic modes is in order here. When considering linear instability (e.g. in
§5), we generally refer simply to mode QP, which encompasses both modulated
azimuthally travelling wave (TW) and modulated standing wave (SW) states. Of
the three symmetries possessed by the basic state, TW states break K,, while SW
states (symmetric combinations of TWs) break R,. Both TW and SW states bifurcate
linearly from the basic state at the same point in parameter space and share the same
azimuthal wavenumber. The introduction of nonlinearity favours the stability of one
of the SW/TW pair over the other (Crawford & Knobloch 1991), and in this problem
it is found that TW is the favoured state. When nonlinear solutions are considered in
§§ 6-7, we typically refer to TW or SW states as instances of mode QP.

3. Methodology

The computational methods employed were previously described and applied in
Blackburn (2002), Blackburn & Lopez (2002, 2003a,b), Blackburn & Sherwin (2004),
Blackburn et al. (2005) and Barkley, Blackburn & Sherwin (2008), and so only a brief
overview is presented here.

3.1. Discretization

The underlying discretization is achieved using nodal spectral elements for the (r,z)
meridional semi-plane shown in figure 1, coupled with Fourier expansions in azimuth,
or, in the limit ¥ =1, in the out-of-plane direction. The same discretization is used to
compute base flows, linear stability analysis and direct numerical simulation (DNS).
The previous study of instability in the Cartesian geometry (Blackburn & Lopez
2003b) used 108 spectral elements with nodal seventh-order-tensor-product spectral
element shape functions and presented a detailed convergence study to establish that
this provided adequate spatial resolution in the parameter regimes studied here. For
the present work, meshes with 176 elements and at least seventh-order shape functions
were adopted. Time advancement is second-order, with 3096 steps (or more) per wall
period. Again, this exceeds the resolution of the previous study.

The mesh is mapped as required by reflection about the mean radius to place
maximum resolution near the driven wall depending on whether this motion occurs
at the inner or outer radius. For computation of base flows and three-dimensional
DNS, the tangential wall velocity is brought to zero near the intersection with the
stationary walls using

u(ry/h,0,z) = [1 —exp(—200(1 + z2)")][1 — exp(—200(1 — z)")][0, 0, sin(2mr/7)],
(3.1)
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to provide a smooth regularization of the boundary condition singularity that occurs
in the corners. This regularization was also used in the earlier Cartesian-geometry
study.

3.2. Floquet analysis

The global linear asymptotic stability of the t-periodic base flow is studied using
Floquet analysis; the spatio-temporal symmetry H (2.3¢) of the base flow is
incorporated into the analysis by basing this on a half-period flip map instead of
the full-period Poincaré map (see Blackburn et al. 2005, for details). The Krylov-type
numerical method is based on time-stepping the linearized Navier—Stokes operator,
as described in Tuckerman & Barkley (2000), Barkley et al. (2008), and used e.g. in
Blackburn & Lopez (2003b). Base flows required for Floquet analysis are precomputed
as limit states of two-dimensional DNS, and reconstructed within the stability analysis
code via Fourier interpolation in time from a number of time slices. For the present
problem we have typically employed 128 time slices, double the number used in
Blackburn & Lopez (2003b).

Floquet solutions are of the form u'(t) = exp(ot)i(r, 0, z,t mod 7)+ c.c., where in
general both the Floquet exponents o and the t-periodic eigenfunctions # are either
real or occur in complex-conjugate pairs. Floquet modes are unstable if the real part
of the exponent o is positive or equivalently if the Floquet multiplier u = exp(o ) lies
outside the unit circle in the complex plane. Note that the synchronous modes A and B
have real Floquet multipliers, while mode QP has complex-conjugate-pair multipliers.
For the synchronous modes A and B the Floquet multipliers for the Poincaré map are
both positive; however, since mode A breaks while mode B preserves H-symmetry,
the Floquet multipliers based on the half-period flip map for mode B are positive,
while those for mode A are negative (for details see Marques et al. 2004, Blackburn
et al. 2005). In contrast, a subharmonic mode would correspond to a negative real
multiplier of the Poincaré map, and as described in § 1, such a mode does not arise
in the present (or any other Z, x O(2)-symmetric) system.

4. Basic state

The basic state is an axisymmetric time-periodic flow, synchronous with the forcing,
which is invariant under R,, K, and H. Its features have been previously described
for the planar case ¥ =1 (Vogel et al. 2003; Blackburn & Lopez 2003b), and these
are not qualitatively affected by curvature for the range of ¥ we consider here,
so we provide only a brief description of the salient features. Axial oscillations
of either the inner or outer cylinder produce periodic Stokes-type layers on the
oscillating wall, which separate owing to the presence of the two endwalls to form
rollers alternatively on each end as the stroke of the oscillating cylinder changes. For
small forcing frequencies, there is sufficient time at low enough forcing amplitudes
for these rollers to dissipate during part of the cycle, whereas for large frequencies
there is a balance between (slow) dissipation and (fast) boundary-layer forcing so
that rollers persist at both ends throughout the whole forcing cycle. In this paper,
the main focus is on the regime where, for the planar case ¥ =1, the primary
instability of the basic state is to TW, and this occurs for intermediate frequencies
(St ~ 100). Figure 1 and supplementary movie 1 show typical basic states in this
regime.
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FiGURe 2. Critical Reynolds numbers as a function of radius ratio ¥ =r,/r, for linear onset
of modes A and QP at St =100. Individual marginal stability curves (thin solid and chain
lines) are labelled by their integer azimuthal wavenumbers. Values of ¥ > 1 correspond to the
outer cylindrical wall being driven, while ¥ < 1 correspond to driving at the inner wall; see
figure 1. Envelopes of marginal stability curves are indicated for mode QP (thick solid line)
across the range ¥ € (0.8, 1.65) and for mode A at values near and below ¥ =1 (dashed line).
For ¥ > 1 the mode A stability envelope is drawn as the lower-bound union of the individual
curves.

5. Linear stability analysis results

The findings of the linear stability analysis for St =100, I" =2 are summarized in
figures 2 and 3. As noted in § 2, the two previously identified critical Reynolds numbers
in the Cartesian limit are Re. = 1212 for mode QP and Re.= 1371 for mode A. These
three-dimensional instabilities are associated with spanwise wavelengths A =0.739 and
A=13.81, with corresponding spanwise wavenumbers 8 =2n/4=28.5 and 1.65, respect-
ively (for non-dimensional wavenumbers, we use 8, which is real for the Cartesian case
¥ =1, and k, which is integer, for the annular cases with ¥ = 1). At this Stokes num-
ber the critical Re for mode B lies above the upper limit of figure 2. Discussion of the
physical characteristics of modes A and QP is deferred to § 6; the focus of this section
is on marginal stability Reynolds numbers, azimuthal wavenumbers and wavelengths.

Mode QP has a family of marginal stability curves, one curve for each integer
azimuthal wavenumber k; two such curves are drawn (dot-dash style) for k =42
and 50 in figure 2. Each curve has a single minimum, and as ¥ — 1 in either
direction, k values associated with these minima approach infinity and the curves
become densely packed. To simplify representation, only an envelope of the minima
has been drawn in the figure (thick solid line). This envelope itself has a minimum
critical Re ~ 1180 at ¥ =~ 1.33.

For the longer-wavelength mode A, there is another family of marginal stability
curves. At any value of ¥, the values of k for the mode A curves are considerably less
than for the mode QP curves, corresponding to the larger wavelengths for mode A
instabilities relative to mode QP. On either side of the Cartesian limit, ¥ =1, the
minimum marginal stability Re for each curve falls with increasing ¥ — 1|. For
¥ < 1, only the envelope of the mode A curves is shown. The associated critical Re
drop rapidly with ¥ and fall below those for the mode QP envelope at ¥ ~ 0.85.
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FiGURE 3. Most amplified Floquet modal azimuthal wavelength estimated at the mean radius
as a function of ¥. Dashed lines represent values for modes A and QP in the Cartesian
geometry (Blackburn & Lopez 2003b).

However, as ¥ increases just beyond unity, the critical Re for mode A rise rapidly,
and for ¥ € [1.02,1.2] the critical Re lie above the upper limit of figure 2. For
¥ > 1.2, there is a family of critical curves whose Re minima reduce with increasing
¥ and the corresponding values of k also fall, this being a result of only being able to
fit a smaller finite number of wavelengths within the annulus. In this case the stability
envelope is the lower-bound union of the individual curves, and takes on a distinctly
scalloped shape. For k < 5, the critical Re for mode A drop well below those for
mode QP. This occurs for ¥ = 1.45.

The azimuthal wavelengths of the most-amplified modes are related to those in the
Cartesian geometry. Using the dimensionless mean radius 7 = (ry + ry)/2h, we define
the wavelength A =7rA0 =2nr/k, where A0 is the angular extent of the instability
mode and k is the corresponding wavenumber. This leads to the prediction

_ lI/—i—lE
=1k

(5.1)

Using the most amplified wavenumbers obtained from the Floquet analysis (figure 2),
the wavelengths based on the mean radius are computed from (5.1) and plotted in
figure 3. The wavelengths in the annular geometries correspond quite well to those in
the Cartesian case, especially for mode QP. For mode A the agreement is best near
¥ = 1; for larger ¥ values, only a small number of wavelengths fit within the annulus,
and quantization effects drive the wavelengths away from the value predicted based
on the mean radius and (5.1).

At moderate values of ¥ near unity (in the range of 0.85-1.4, approximately),
mode QP becomes linearly unstable at lower Re than does mode A and the most
amplified wavelengths for the two modes are quite distinct. These observations suggest
that one might observe quasi-periodic solutions in the full-circle nonlinear system (i.e.
in DNS and physical experiments) for values of ¥ moderately close to unity, and
for Reynolds numbers slightly above the mode QP instability envelope curve. Prior
to dealing with solutions in the full annulus, we first examine behaviour of the two
modes in subspaces of restricted wavelength.

6. Nonlinear behaviour with subspace restriction

The linear stability analysis of the basic states provides the most critical
wavenumbers for instability of modes A and QP. In this section, nonlinear behaviour
in subspaces restricted to the critical wavenumber for each mode is investigated. The
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initial conditions for DNS consist of a basic state at Re a few per cent above the
critical value (computed in an axisymmetric subspace) to which a small multiple of
an unstable mode shape as derived from Floquet analysis is added. This combination
is then evolved via DNS to an asymptotic/saturated state whose equilibrium is
determined by nonlinear effects. Generally, close to criticality, the shape of the non-
axisymmetric component is quite close to that of the linear instability mode, while the
axisymmetric component is close to the base flow. Typically, four azimuthal Fourier
modes (eight planes of real data) are used, which is sufficient to accurately describe
these weakly nonlinear states (for purposes of visualization, we project the solutions
onto a higher number of Fourier modes).

6.1. Descriptions of modes QP and A for variable ¥

The instability leading to the quasi-periodic modes involves complex-conjugate-pair
Floquet multipliers and mode shapes that break some symmetries of the base state,
with the imaginary part of the critical multipliers providing a second frequency which
generically is incommensurate with the base state frequency. The quasi-periodic modes
come in different variants, either as TWs propagating in the azimuthal direction (either
positive or negative 6-direction), or a symmetric combination of these leading to an
SW. Since the temporal variation of the base flow modulates these instabilities, the
resulting flows are either modulated travelling waves or standing waves, but for
brevity we will simply refer to them as TW or SW.

As shown in Marques et al. (2004), the onset of TW or SW states in the Floquet
problem is analogous to the O(2)-symmetry breaking Hopf bifurcation (Crawford
& Knobloch 1991), and as in that case, typically the most energetic of the TW or
SW states is stable, while the other is unstable. A pure solution of either SW or
TW type can, however, be initiated with a suitable choice of initial conditions and
can be maintained indefinitely under nonlinear evolution with a symmetry-respecting
code. For example, to obtain an SW state the initial perturbation is constrained
to have reflection symmetry in azimuth and the system will retain this symmetry
under evolution by the Navier—Stokes equations. TWs come in conjugate pairs with
mean travel in either the positive or negative azimuthal direction. The sense of travel
depends on an arbitrary choice of sign of the azimuthal velocity component of the
initial velocity perturbation. One TW solution can be generated from the other by
a reflection of the azimuthal velocity component in any (r,z) plane (equivalently by
complex conjugation of this velocity component in Fourier space).

Figure 4 shows vorticity isosurfaces of the TW and SW saturated states at ¥ =4/3,
k=33 and Re =1200 (Re. = 1180 for marginal stability). With ¥ > 1, the outer wall
of the annulus is driven and the view is taken outwards from the axis. Note that
since this is a restricted subspace with k =33, only 1/33rd of the full annular cavity
is represented. At this slightly supercritical Re, the azimuthal vorticity isosurfaces are
only very slightly distorted away from axisymmetry; the radial vorticity (which is
zero for axisymmetric flow) isosurfaces illustrate the nature of the three-dimensional
disturbances, consisting of braids connecting the predominantly axisymmetric rollers.
The views shown in the figure are snapshots strobed once every forcing period t.
We note the general similarity and dynamic behaviour of the TW and SW states
of figure 4 to those for equivalent states in the Cartesian geometry at St =100 and
Re =1225 (see Blackburn & Lopez 2003b, figures 14 and 15).

For the TW case, the solution is identical in each snapshot, save for a uniform
azimuthal translation in the +0-direction, although there is a continuous temporal
modulation when the view is not strobed (this is more clearly perceived from observing
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FiGURE 4. (Colour online) Isosurfaces of the quasi-periodic modes (a) TW and (b) SW, strobed
at the wall oscillation period for ¥ =4/3, k=33, Re=1200 (1.7 % above Re.). The view is
taken outwards from the (vertically aligned) axis, and is of the subspace domain for k=33
(ie. 2n/33 in azimuthal extent, oriented horizontally). The rear wall is the oscillating wall.
Translucent isosurfaces show azimuthal vorticity component, solid isosurfaces show radial
vorticity component, with light and dark surfaces being of the same absolute value but of
opposite sign. Animations are available as supplementary movies 2 and 3.

et -l

supplementary movie 2). The rate of precession is very close to the imaginary part of
the Floquet exponent in these weakly nonlinear cases. For example, the corresponding
linear analysis at this point in parameter space gives the secondary period required for
the TW to traverse one wavelength as t, =4.087, very similar to results obtained in
the Cartesian case (see Blackburn & Lopez 2003b, figure 12a), and indeed figure 4(a)
shows that the wave has travelled just slightly less than one wavelength in four wall
oscillation periods. The SW solution does not translate in azimuth, and while it has
a reflection symmetry (about the central azimuthal coordinate), the flow pattern is
always different at each multiple of t.

Figure 5 shows two snapshots of vorticity isosurfaces for a mode A solution, also for
¥ =4/3, but at higher Re = 1320 and smaller kK =7 than the mode QP case discussed
above. These may be compared with a mode A solution for the Cartesian geometry
shown in figure 9(b) of Blackburn & Lopez (2003b); the features are qualitatively
the same. Mode A is synchronous with the driven wall and does not involve any
azimuthal precession. As in the Cartesian geometry, mode A has broken H-symmetry,
but satisfies a new symmetry relationship

(u, v, w)r,0,z,t) = (u, v, —w)(r,0 + ©/k, —z,t +T/2). (6.1)
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FIGURE 5. (Colour online) Isosurfaces, half a period apart, of mode A for a subspace solution
with W =4/3, k=7, Re=1320 (2.5% above Re.); translucent isosurfaces show azimuthal
vorticity and solid isosurfaces show radial vorticity, with light and dark surfaces being of the
same absolute value but of opposite sign. An animation is available as supplementary movie 4.

We note that for the cylinder wake, mode A retains H-symmetry and mode B breaks
it — the opposite of what occurs in this cavity system. As explained in Blackburn
& Lopez (2003b), the naming convention for modes A and B was adopted for the
Cartesian cavity based on the superficial visual similarity of the structure of instability
modes with the circular cylinder case, but the linkage between mechanisms and loss
of symmetry is apparently arbitrary and requires examination on a case-by-case basis.

6.2. Weakly nonlinear dynamics in k-restricted subspaces

The overall spatio-temporal structure of the three-dimensional modes does not change
qualitatively with ¥. Now, we address whether there are differences in their weakly
nonlinear dynamics due to variations in ¥, while retaining the restriction to single
azimuthal wavenumber subspaces. The measure used to indicate bifurcation from
the basic state is the solution kinetic energy contained in the azimuthal velocity
component (which is zero in the base flow); its non-dimensional form is

r nopre ek
= — v)rdodzdr. 6.2
= 8nr /r, /_r/z /—n/k< ) (6.2)

Figure 6 illustrates the nonlinear behaviour for the quasi-periodic modes TW and
SW, and the synchronous mode A, at ¥ =4/3 in subspaces restricted to the critical
azimuthal wavenumber for each mode predicted by the Floquet analysis, k=33
for TW and SW, and k=7 for mode A. For the quasi-periodic modes, figure 6(a)
indicates that both TW and SW solutions bifurcate supercritically from the basic
state with g, growing from zero with Re, and that the TW solutions have larger
go than SW. This implies (Crawford & Knobloch 1991) that TW will be stable to
general perturbations, while SW will be unstable. Indeed, nonlinear computations
show this to be the case, as was found with the Cartesian geometry as well as for
quasi-periodic modes of circular and square cylinder wakes (Blackburn et al. 2005).
For mode A, figure 6(b) shows the bifurcation to be subcritical, with a substantial
hysteresis interval in Re, delimited by critical Re for the Floquet instability of
the base state to mode A, and the critical Re corresponding to the saddle-node
bifurcation of stable and unstable mode A nonlinear states; this saddle-node critical
Re is only slightly larger than the critical Re for mode QP.

Figure 7 shows the variation of g, with Re for mode A at (a) ¥ =0.9, k=15 and (b)
¥ =1.4, k=06, i.e. one case with the inner and the other with the outer cylindrical wall
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FIGURE 6. Variation of g with Re for (a) TW and SW states restricted to the k = 33 subspace,
and (b) mode A restricted to a k=7 subspace, both with ¥ =4/3, St =100. The symbols on
the solid curves indicate fully saturated computed nonlinear states and the long-dashed parts
correspond to an estimate of an unstable branch. The vertical short-dashed lines identify
critical Reynolds numbers for the various states, as labelled.
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FIGURE 7. Variation of gy with Re for mode A at (a) ¥ =0.9, restricted to the k = 15 subspace,
and (b) ¥ = 1.4, restricted to the k = 6 subspace. The symbols on the solid curves indicate fully
saturated computed nonlinear states and the long-dashed parts correspond to an estimate of
an unstable branch. The vertical short-dashed lines identify critical Reynolds numbers for the
various states, as labelled; values for mode QP are shown for comparison.

oscillating. In each case the critical Re for mode A is greater than that for mode QP.
For the driven inner wall case (figure 7a), mode A bifurcates supercritically, whereas
for ¥ =1.4 (figure 7b) the bifurcation is subcritical, and the associated saddle-node
bifurcation occurs at Re lower than the critical Re for mode QP. Generally, for
¥ < 1 mode A has supercritical behaviour (first Landau constant positive), for
¥ =1 it is marginal (first Landau constant approximately zero), while for ¥ > 1,
the bifurcations to mode A become increasingly subcritical in nature (first Landau
constant increasingly negative), with the associated hysteresis range of Re overlapping
the critical Re for mode QP. Of course, the nonlinear competition between modes A
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and QP under such conditions cannot be determined from k-restricted subspace
simulations.

7. Nonlinear mixed modes

Nonlinear solutions computed in restricted subspaces are typical in numerical
investigations of three-dimensional Floquet instabilities, where spanwise periodicity
is assumed (e.g. Barkley & Henderson 1996; Blackburn & Lopez 2003b; Sheard,
Thompson & Hourigan 2004; Blackburn et al. 2005; Sheard et al. 2009). Especially
in Cartesian geometries, this may seem a reasonable expedient since the spanwise
spectrum is continuous in the infinite-geometry case, although examples in which this
issue was tackled by expanding the extent of the discrete spectrum are provided by
Henderson (1997) and Avila et al. (2007). In the present driven annular system, the
azimuthal Fourier spectrum is discrete and simulations in a more complete space that
includes low and high modes, but where resolution requirements in the (r,z) plane
are relatively undemanding, can be readily accommodated.

The simulations discussed in this section represent flows in the full closed
annular geometry, and thus can be realized in a physical experiment. Our
motivation was to examine quasi-periodic instabilities, which are of relatively modest
spanwise/azimuthal module, and sufficient Fourier modes are included to resolve
the most-amplified azimuthal wavenumber of the linear quasi-periodic instability at
each radius ratio ¥. Typically, we use kmax =4kop With Re a few per cent above the
critical value for linear instability of quasi-periodic modes, but well below the critical
value for linear instability of mode A (and also of mode B). This gives a spatial
resolution identical to that employed for the subspace calculations, but allows the
larger azimuthal length scales associated with other modes to also be represented and
resolved.

Flows have been examined for a range of radius ratios: ¥ =9/10, 10/9, 5/4 and
4/3 (as well as ¥ =1 with the simulations restricted to a subspace of the continuous
spectrum). Reporting of results concentrates on the case for ¥ =4/3, whose behaviour
is representative of the others, and whose geometry is readily realizable in a physical
experiment, since for given physical length scale £, it has the smallest circumference of
the cases simulated. The initial conditions in each case were the TW state computed
in the subspace simulation, to which is added about one part in 10* of Gaussian
white noise. Temporal evolution of energies in the azimuthal Fourier modes, given by

1 ro ry2
E, = = U -u,rdzdr, 7.1
k 21_'/” /_r/zuk u,razar ( )

where u, is the Fourier transform of velocity for azimuthal mode k, are used as a
diagnostic.

A typical evolution of Fourier modal energies for a full-annulus solution at ¥ =4/3
and Re=1200 (1.7% above Re.) is shown in figure 8. The simulation has 132
azimuthal Fourier modes, ie. 264 azimuthal planes of real data. At early times,
the modal energies of the axisymmetric component, Ey, as well as for the leading
wavenumber for the initiating TW solution and its azimuthal harmonics (E33, Egs, E99)
evolve at relatively constant levels, weakly modulated at the driving wall frequency.
Within about 50 forcing periods, the perturbations have organized in the other
modes and they start to grow exponentially. The Fourier modes with k being linear
combinations of 33 and 6 (other than k =33 and harmonics) are the fastest growing.
Upon initial nonlinear saturation, after r ~ 200z, there is a regular exchange of energy
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FiGgure 8. Evolution of Fourier modal energies for the full-annulus DNS at ¥ =4/3,
Re =1200, starting at t =0 with a k=33 TW subspace solution to which a small amount
of Gaussian white noise was added.

FiGURE 9. (Colour online) Snapshots of the mixed-mode state in the full annulus for ¥ =4/3,
Re =1200 at 7/t =520, showing isosurfaces of the azimuthal velocity component at levels
v=10.09 in (a) an oblique view, (b) a radial view and (c) an axial view. See also supplementary
movies 5 and 6.

between these modes, with a period of about 70z. This mixed-mode state persists until
approximately ¢/t = 600, by which time the remaining E; have saturated nonlinearly
and the behaviour appears temporally chaotic.

The initial mixed-mode state is relatively simple to interpret and so its dynamics
are considered before turning to the fully saturated state. Figure 9 shows azimuthal
velocity isosurfaces, viewed from various angles, of the mixed-mode state at
¥ =4/3 and Re=1200, taken at time ¢/t =520 during the long-period quasi-
regular energy exchange regime between linear combinations of k=6 and k=33.
Supplementary movies 5 and 6 provide animations of these isosurfaces which show the
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FiGure 10. (Colour online) Snapshots of the mixed-mode state in the full annulus for ¥ =4/3,
Re =1200 at ¢/t =520, as in figure 9, but filtered to show azimuthal Fourier mode k =33 and
its harmonics. The isosurfaces are of the azimuthal velocity component at levels v= +0.09 in
(a) an oblique view, (b) a radial view and (c) an axial view. See also supplementary movies 7
and 8.

spatio-temporal behaviour over 1407, or two long-period cycles visible in figure 8.
When viewing the animations it should be borne in mind that these are strobed at
the wall oscillation period and so much of the continuous temporal modulation that
is visible in the subspace animations (supplementary movies 2—4) is suppressed —
strobing is used both to reduce the size of the animations and to emphasize travelling
wave aspects.

First, note that the isosurfaces shown in figure 9 (and subsequent related figures)
are of azimuthal velocity component, which is identically zero in the base state;
the isosurfaces are representative of three-dimensional instability. Second, one will
observe that the dominant structure present in figure 9 is a quasi-regular array of
approximately 33 positive—negative interlinked isosurfaces; since the original TW
structure at initiation is at k=33 these isosurfaces predominantly represent TW
components. Third, the animations very clearly suggest an underlying TW state, e.g.
the animation (supplementary movie 5) which corresponds to the view in figure 9(c)
shows a counter-clockwise (CCW) sense of precession. Finally, note that in the view
presented in figure 9(c), there are six azimuthal locations at which the regular TW
structure appears to break down (one of these locations is central in the radial view
shown in figure 9b); this six-fold irregularity is associated with instability mode A.

The modal energy time series of figure 8 show that in the early mixed-mode
state (approximately for ¢/t € [200, 600]) the dominant components are formed by
k=6, k=33, their harmonics, as well as linear combinations of the two, such as
k=27, which is associated with their nonlinear interaction. Figures 10 and 11 are
isosurfaces of the state shown in figure 9 filtered to show the contributions only in
azimuthal modes k =33 and its harmonics, k = 33n, (figure 10) and azimuthal modes
k=06n (figure 11). Supplementary movies 7 and 8 for k =33n show that these modal
components behave very much like a pure TW, with a steady CCW precession when
regarded from the viewpoint of figure 10(c), but the state’s energy has an additional
long-period (At/t ~ 70) modulation associated with exchanges produced by the
mixed-mode state.
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FiGURE 11. (Colour online) Snapshots of the mixed-mode state in the full annulus for ¥ =4/3,
Re=1200 at ¢/t =485, filtered to show azimuthal mode k=6 and its harmonics. The
isosurfaces are of the azimuthal velocity component at levels v = 40.09 in (a) an oblique view,
(b) a radial view and (c) an axial view. See also supplementary movies 9 and 10.

The k = 6n components (figure 11, supplementary movies 9 and 10) have a character
typical of mode A, again with a long-period modulation associated with mixed-
mode behaviour. However, these mode A-type structures no longer maintain a fixed
azimuthal location, as they do in the linear analysis and the subspace calculations,
but have a retrograde precession (CW) compared to the k=33n structures. From
supplementary movies 9 and 10, which extend over Af/t =140, ie. two long-
period modulations of energy, these structures are seen to precess Af =~ 2m/6, or
approximately one wavelength over this time interval. We note (see §6.1) that since a
pure k =33 TW state takes approximately 4.087 to traverse one azimuthal wavelength
at Re=1200, ¥ =4/3, one TW module takes approximately 33 x 4.087 =1357
to traverse a complete circle. This is close to the long-period retrograde traverse
time (~1407) for one azimuthal module of the k=6n mode shown in figure 11,
supplementary movies 9 and 10.

After t/t ~ 650 in figure 8, energies in all Fourier modes reach approximate
statistical equilibrium, and long-period quasi-regular temporal structure is not evident.
Figure 12 shows the time average of E; taken over ¢/t € [860, 1000]. There is a broad
band of energy centred around k = 33 the wavenumber of the initial TW state (albeit
with two sub-peaks at k =30 and 35), as well as two other progressively weaker broad
energy bands centred around k=66 and k =99 which can be considered harmonics
of the k ~ 33 broad band. There is also a sharp peak at k =6 associated with a mode
A-type instability, as noted above.

Figure 13 is representative of the fully saturated mixed-mode state. The spatial
structure is again suggestive of an underlying mode QP TW state, but with less
order than exists at earlier times (cf. figure 9). Animations (see supplementary
movies 11 and 12) support this assessment: overall the appearance is of short-
wavelength mode QP TW structures that on average appear to precess in the same
sense (CCW) as observed in supplementary movies 5 and 6, although for some time
intervals the apparent sense of motion in the (strobed) animations is retrograde.

The spatio-temporal behaviour of the other cases computed at ¥ =9/10, 10/9, 5/4
and (Cartesian) ¥ =1 was qualitatively similar to that of ¥ =4/3, discussed above.
All cases were initiated with a saturated TW state computed in a subspace, projected
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FIGURE 12. Time-average modal energies for the large-time end of the evolution shown in
figure 8. Linear analysis predicts Fourier modes k=6 and k=33 are the most amplified
wavenumbers for modes A and QP, respectively, though only mode QP is linearly unstable at
Re =1200.

FiGUure 13. (Colour online) Snapshots of the mixed-mode state in the full annulus for ¥ =4/3,
Re =1200, /T =860 after full saturation has been reached; compare to figure 9. The isosurfaces
are of the azimuthal velocity component at levels v= + 0.09 in (a) an oblique view, (b) a
radial view and (c) an axial view. See also supplementary movies 11 and 12.

to a full annulus (or, for the ¥ = 1, a periodic geometry with sufficient spanwise extent
to accommodate both modes A and QP), to which a small amount of white noise was
added. For all cases, energies in Fourier modes associated with instability mode A
initially grew exponentially in time, reaching a preliminary saturation to a mixed-
mode state with mode QP and mode A components. Later, energies in all remaining
Fourier modes continued to grow until a fully saturated and temporally erratic state
was reached (i.e. similar behaviour to that shown in figure 8). An interesting feature
for ¥ =10/9 is that according to linear analysis (figure 2) the critical Re for mode A,
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Re,. > 1500, is substantially greater than that for mode QP, Re, =1192. One might
reasonably expect a pure TW state to be maintained in the full-annulus simulation at
2.5 % above criticality, Re = 1223. However, nonlinear effects excite mode A behaviour
and the result is a mixed mode with complicated spatio-temporal dynamics. It is of
interest to note that the wavenumber observed for mode A (k=15) in this case is
very close to the value predicted by (5.1), which with the Cartesian value 4 =3.81,
gives k =15.7.

8. Discussion and conclusions

We have examined instabilities in a system with a base state that has Z, x
O(2) symmetry characteristic of the infinite von Karman vortex street, but which is
physically realizable without end effects. The system consists of a liquid-filled annulus
with either the inner or outer cylinder oscillating in the axial direction. There are
four control parameters: the aspect ratio of the annular gap (kept fixed at 2); the
radius ratio ¥ that measures the degree of curvature and is varied (the Cartesian case
with ¥ =1 was analysed in detail in Blackburn & Lopez 2003b); and amplitude and
frequency of the oscillations, measured by the Reynolds and Stokes numbers. The
main motivation for the present investigation was to investigate modulated travelling
waves, which are a generic instability in systems with Z, x O(2) spatio-temporal
symmetry. In this non-autonomous Z, x O(2) symmetric system, having at least two
control parameters to vary allows access to regions of parameter space, where any
of the three instabilities to three-dimensional flow are the primary bifurcation from
the basic state (Marques et al. 2004). This is in contrast to autonomous systems such
as bluff body wakes, where there is only a single dynamic control parameter. In the
present work, the Stokes number was fixed so that for the given geometry, quasi-
periodic modes (either TW or SW) are the first to bifurcate from the the axisymmetric
time-periodic basic state. The variation in curvature has a definite, but subtle effect
on the observed instabilities. For moderate curvature, with ¥ € [0.85, 1.45], quasi-
periodic modes are the first to bifurcate from the basic state with increasing Re at
St =100. For larger curvature, longer wavelength type-A modes are first to bifurcate.
The azimuthal wavelengths of the least-stable modes of type A and QP are distinct,
and remain close to the values obtained in the Cartesian geometry for the range of
¥ considered.

Observations made in physical experiments with a related, but finite-length
Cartesian cavity (Leung et al. 2005), have shown quasi-periodic states with frequencies
and spatial structure very close to those of the predicted TW mode, but with no net
propagation in the spanwise direction, presumably owing to the presence of endwalls.
In the annular problem, the spatio-temporal dynamics are continuous with ¥ varying
across the Cartesian limit. This would suggest that differences in the dynamics between
the finite Cartesian cavity and a very low curvature annular cavity would be due to
endwall effects.

The weakly nonlinear dynamics of the least stable wavenumber modes of type A
and QP were first examined in subspaces of restricted azimuthal periodicity, selected
on the basis of the linear analysis. Numerical simulations in wavelength-restricted
subspaces have been a typical expedient in previous investigations (Barkley &
Henderson 1996; Henderson & Barkley 1996; Blackburn & Lopez 2003b; Sheard,
Thompson & Hourigan 2004), in part owing to the significant cost of full-space DNS
especially near ¥ = 1. In such restricted subspaces, mode QP bifurcates supercritically
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at all considered values of ¥, and modulated TW states of this mode are stable, while
modulated SW are unstable. On the other hand, depending on the curvature and
which wall oscillates, mode A can bifurcate either supercritically (for ¥ < 1) or
subcritically (& > 1), with the Cartesian case, ¥ =1, being marginal with a first
Landau constant of approximately zero, as earlier established by Blackburn & Lopez
(2003b).

In the present problem, subspace-restricted nonlinear results are, however, not
robust. Simulations using well-resolved DNS in the full domain show that the
nonlinear dynamics, even in parameter regimes very close to primary instabilities, are
not well predicted by either linear analysis or nonlinear computations in subspaces
restricted to the fastest growing linear modes. The nonlinear dynamics in the full
driven cavity, when initiated with a TW mode from a subspace computation, show
a long transient during which a mode A component grows, saturates and interacts
nonlinearly with the TW mode, resulting in mixed-mode dynamics which persist for a
few hundred forcing periods. This simple mixed-mode state is ultimately unstable as
the other Fourier modes grow, saturate and render the mixed mode with complicated
spatio-temporal behaviour. Despite the lack of robustness in detail, the final state still
retains the modulated TW as a readily identifiable dominant component. This final
state with a broad spectrum of energy across Fourier modes would also be observed
in a physical experiment, where the complicated behaviour might be attributed to
experimental noise or imprecision. Here, it is shown to be an inherent characteristic
of the full nonlinear problem.

The type of behaviour described above, complicated spatio-temporal dynamics
developing virtually directly from the basic state, has been observed in other flows,
both experimentally and numerically. For example, in periodically modulated Taylor—
Couette flow (Marques & Lopez 1997, 2000; Weisberg, Kevrekidis & Smits 1997),
Sinha, Kevrekidis & Smits (2006) reported on experimental results that indicated a
direct transition from the periodic axisymmetric basic state to complicated spatio-
temporal flow in regimes where linear Floquet analysis and nonlinear subspace-
restricted simulations predicted pure mode solutions, but full nonlinear simulations
revealed that the complex spatio-temporal behaviour was a result of a cascade
of symmetry-breaking bifurcations in an extremely narrow range of Reynolds
numbers, much finer than could be resolved in the experiments (Avila et al. 2007).
Similar cascades to spatio-temporal complexity have been found in rotating thermal
convection, where the onset of Kiippers—Lortz dynamics is reported to be a ‘direct’
transition from the basic state in experiments (Bodenschatz, Pesch & Ahlers 2000),
whereas full DNS shows that the complex dynamics also result from a cascade of
symmetry-breaking bifurcations over an extremely narrow range of parameter space
(Rubio, Lopez & Marques 2010).

Inherent in the complex spatio-temporal dynamics in the driven annular cavity
problem are the mixed-mode states. In the related Z, x O(2) circular wakes flows,
both physical experiments (Williamson 1996) and DNS studies (Henderson 1997)
show the presence of A-B mixed-mode behaviour at Reynolds numbers between
the linear onset of modes A and B, and Barkley, Tuckerman & Golubitsky (2000)
have provided a normal form analysis of this mixed-mode interaction between the
two synchronous states. In the annular driven cavity, however, the interaction is not
between two synchronous states but rather between a synchronous mode A and a
quasi-periodic mode TW. The theoretical analysis of such mode interactions (between
a Floquet multiplier equal to one and a pair of complex-conjugate Floquet multipliers)
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is complicated and incomplete (Kuznetsov 2004). The results presented here provide
insight into the associated dynamics in a physically realizable flow.
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