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On three-dimensional quasiperiodic Floquet instabilities
of two-dimensional bluff body wakes
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Previous studies dealing with Floquet secondary stability analysis of the wakes of circular and
square cross-section cylinders have shown that there are two synchronous instability modes, with
long ~mode A! and short~mode B! spanwise wavelengths. At intermediate wavelengths another
mode arises, which reaches criticality at Reynolds numbers higher than modes A or B. Here we
concentrate on these intermediate-wave number modes for the wakes of circular and square
cylinders. It is found that in both cases these modes possess complex-conjugate pair Floquet
multipliers, and can be combined to produce either standing or traveling waves. Both these states are
quasiperiodic. ©2003 American Institute of Physics.@DOI: 10.1063/1.1591771#
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Three-dimensional secondary stability analysis of bl
body flows has been a topic of special interest since
classic experimental investigations of Williamson,1 where it
was demonstrated that two distinct types of secondary in
bility, each with a particular characteristic frequency a
spanwise wavelength, were dominant in the secondary in
bility of the circular cylinder wake. Following the stimulu
of these experimental results, numerical Floquet stab
analysis of the time-periodic two-dimensional base flo
was carried out,2,3 culminating in the equally classic study o
Barkley and Henderson,4 hereafter referred to as BH96. I
that work, the three-dimensional Fourier Floquet instabi
modes of the two-dimensional cylinder wake were compu
as functions of both spanwise wave numberb52pD/l,
whereD is cylinder diameter andl is spanwise wavelength
and the mean flow Reynolds number Re5UD/n, whereU is
the freestream speed andn is the fluid’s kinematic viscosity.
As Reynolds number is increased, the long wavelength m
A (lA /D53.96 at onset! is the first to become unstable, v
a subcritical bifurcation with a linear onset Reynolds num
RecA5188.2 Mode B bifurcates supercritically5 from the
two-dimensional flow at RecB5256, with the much shorte
spanwise wavelengthlB /D50.822. In the case of mode B
the two-dimensional flow is already unstable to mode A, a
for intermediate Reynolds numbers~between RecA and RecB)
it appears that mixed-mode states exist, while ultimately
Re*265, only mode B-type states are observed. A lo
dimensional model for the mixed-mode scenario, and
subsequent dominance of mode B at higher Reynolds n
bers, has appeared.6

Floquet stability analysis of the two-dimensional wa
of cylinders with square cross section has been presente
Robichaux, Balachandar, and Vanka,7 subsequently referred
to as RBV99. The dominant three-dimensional instabilit
are similar to those for the circular cylinder: mode A, wi
onset Re'166, has a spanwise wavelengthl55.22D ~where
L571070-6631/2003/15(8)/57/4/$20.00
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D is now the length of a side of the square!; mode B, onset
Re'190, has wavelengthl51.2D.

All the three-dimensional modes by definition break t
O(2) spanwise symmetry of the two-dimensional base flo
Modes A and B are synchronous with the base flow, i.e.
onset they have a temporal periodicity which is very close
that of the underlying two-dimensional flow. The two
dimensional flow has a spatiotemporal symmetry such
~in primitive variables! the flow at any time is identical to
that displaced half a shedding period in time and reflec
about the wake centerline. It is found that in both flows u
der discussion here, mode A preserves this symmetry, w
mode B breaks it.4,6,7

In this Letter, the focus is not on mode A and mode
instabilities, but rather on a third instability mode, that h
wavelengths intermediate between modes A and B,
which bifurcates from the two-dimensional base flows
Reynolds numbers above those for either mode A or B. S
modes were first reported by BH96@in passing, see Fig. 7 o
their paper, data reproduced in Fig. 2~a! here# as possessing
complex-conjugate pair Floquet multipliers. An apparen
similar mode~intermediate wavelengths, higher onset R!
was reported for the square cylinder by RBV99, where it w
said not to have complex-conjugate pair multipliers but to
a subharmonic mode, i.e., a mode with the real multip
m521 at onset. By repeating RBV99’s analysis for th
square cylinder, but using the same numerical technique
employed by BH96, we demonstrate that in fact these in
mediate modes in both cases have complex-conjugate
multipliers. The complex-conjugate modes can lead eithe
quasiperiodic standing wave or traveling-wave type so
tions.

We restrict the discussion to flows in which geometr
and boundary conditions have a homogeneous spatial c
dinate, here taken to be thez coordinate. In these case
three-dimensional instabilities can be described with a F
© 2003 American Institute of Physics
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rier series expansion in the homogeneous coordinate.
linear stability analysis these Fourier modes are independ
The spatial forms which Floquet Fourier modes can be
sumed to take depend on three factors:~a! the number of
independent spatial dimensions required to represent the
flow ~its ‘‘dimensionality,’’ here two!; ~b! the number of in-
dependent velocity components required to represent
base flow~its ‘‘componentality,’’ here also two!; ~c! the com-
plexity of the Floquet multipliers. At each spanwise wav
lengthl, the velocity component and pressure Floquet F
rier modes are represented by two-dimensional comp
fields which can be equivalently considered at each p
(x,y) as a complex scalar with, in general, both real a
imaginary parts nonzero, a wave in thez-direction with ar-
bitrary amplitude and phase, or a pair of cosine and s
waves, each of arbitrary magnitude.

For three-component base flows, it is found by exami
tion of the linearized Navier–Stokes equations that the fu
general complex form of the perturbation Fourier mod
must be retained throughout the analysis.8 For two-
dimensional, two-component base flows~present cases! there
are two sets of spanwise expansions for perturbation velo
(u8,v8,w8) and pressurep8 that each pass uncouple
through the linearized Navier–Stokes equations,

$u8, v8, w8, p8%~x,y,z,t !

5$u8 cosbz, v8 cosbz, w8 sinbz, p8 cosbz%~x,y,t !,
~1!

or

$u8 sinbz, v8 sinbz, w8 cosbz, p8 sinbz%~x,y,t !. ~2!

The independence of these two sets of solutions means
we are free to choose eigenfunctions based on either se
an arbitrary~but temporally constant! linear combination of
the two—which corresponds to an arbitraryz-coordinate
shift of the eigenfunction. The above holds regardless of
temporal structure of the base flows.

We now turn to consider time-periodic base flows~pe-
riod T), whose stability may be characterized by Floqu
multipliers m, which can be real or occur in complex
conjugate pairs. Marginal stability for a Floquet mode occ
as its multiplier crosses the unit circle, i.e., atumu51. If the
Floquet multiplier is real (m561 at marginal stability!, then
in effect the corresponding Floquet mode is a standing w
type solution, since it evolves through each period by a m
tiplication with this real value, which~to within a constant!
leaves the spatial shape invariant. In these cases, it is s
cient to use either~1! or ~2! for the spatial expansions, an
this was the approach adopted by both BH96 and RBV
However, in the case of complex-conjugate pair multiplie
~where marginal stability, withm5e6 iu, corresponds to a
Neimark–Sacker bifurcation! thenwhile it is still possibleto
choose expansions~1! or ~2!, restriction to either of these
cases again corresponds to choosing a standing wave
solution, whereas either traveling or standing waves are p
sible outcomes. While in linear stability analysis the eige
functions for the standing wave are just symmetric combi
tions of those for traveling waves, the Floquet multipliers a
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the same in either case, and marginal stability occurs at
same parameter values, the nonlinear evolution of the
cases produces two distinct solution branches. As w
O(2)-equivariant Hopf bifurcations,9 at most one of these
branches will have stable solutions. Neimark–Sacker bi
cations introduce a new temporal frequency~related to the
value of the imaginary parts of the Floquet multipliers!, in
general incommensurate with that of the base flow, and
three-dimensional solutions are temporally quasiperiodic

There are a number of possible numerical techniq
that may be applied to Floquet analysis. Unless it is knowa
priori that the Floquet multipliers will be~say! real, a prin-
cipal requirement of the method is that it must be sufficien
general to be capable of computing either real or compl
conjugate pair Floquet multipliers. Noack and Eckelman3

found the eigensystem of the monodromy matrix obtain
using a low-dimensional projection of the velocity fiel
while BH96 used a Krylov subspace iterative method ba
on the linearized Poincare´ return map of the perturbation t
estimate Floquet multipliers and eigenfunctions.4,10 Both
these methods are sufficiently general to compute comp
conjugate pair eigensystems, provided of course that the
mension of the subspace in which the eigensystem is so
is sufficiently large~two, minimum, and typically many more
in practice!. On the other hand, RBV99 used a on
dimensional power-type method, takingumu to be the limiting
value of

ummaxu5N~ t1T!/N~ t ! ~3!

@Eq. ~19! of RBV99#, whereN(t) is the square-root of the
kinetic energy in the perturbation velocity at timet, and then
giving m a sign, positive or negative, depending on the o
served temporal behavior of the perturbation velocity fro
period to period. This means that for their analysis the m
tipliers could either be positive, or negative, butreal only.
And indeed RBV99 reported that all the modes they fou
had real Floquet multipliers.

The synchronous~A and B! Floquet modes for the wake
of circular and square cylinders described by BH96 a
RBV99 are, as outlined above, evidently quite similar in n
ture, which is unsurprising given the similarities of the tw
dimensional base flows. Given this, itis somewhat surprising
that the third mode that can potentially bifurcate from t
two-dimensional wake as Reynolds number is increased~a
mode with spanwise wavelength intermediate between th
for modes A and B! was reported by BH96 to have comple
conjugate pair Floquet multipliers, but by RBV99 to have
real, negative multiplier~a subharmonic mode, which the
referred to as mode S!. That discrepancy has prompted th
present comparative re-examination of the Floquet analy
using the more general numerical method employed
BH96.

The underlying spatial discretization in each case e
ployed spectral elements, and this has been maintained in
present investigation. Figure 1 shows the outlines of
spectral elements used for the wakes of the circular
square cylinders. The circular cylinder mesh, while differe
in detail, is very similar in overall resolution and doma
extent toM2 , the principal analysis domain used by BH9
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The one-dimensional Lagrange interpolants used as
tensor-product basis for shape functions in each element
polynomial orderN57, while BH96 usedN58. The square
cylinder mesh used is identical to that employed by RBV
in extent, number and placement of elements, and elem
interpolation order,N515.

Floquet analyses for both wakes have been compu
over ranges of Reynolds numbers and spanwise wave n
bers consistent with the original studies. For both the circu
and square cylinder wakes, the Krylov dimension~size of the
subspace in which eigenpairs are computed! wasK525, but
the results for the leading modes were nearly identical w
computed atK513. To summarize the outcome, Fig. 2 pr
sents the values ofumu found at different values of spanwis
wave number,b, for Reynolds numbers Re5280 for the cir-
cular cylinder wake~the highest Reynolds number employ
by BH96, where the intermediate mode nearb'4 is closest
to criticality! and Re5205 for the square cylinder, where th
intermediate wavelength modeb'2.5 has just exceede
criticality. In both Figs. 2~a! and 2~b!, values forumu, digi-
tized from the plots published in BH96~Fig. 7! and RBV99
~Fig. 8!, are shown as open squares. Clearly the agreem
between the present work and the original papers for
computed values ofumu is very good. The only substantiv
difference is that Floquet multipliers for the intermedia
wavelength mode~labeled QP in both plots! were found here
to occur in complex-conjugate pairs for both wakes. That
the present results are in agreement with the finding of BH
for the circular cylinder wake but in disagreement with th
of RBV99 for the square cylinder wake in that the interm

FIG. 1. Two-dimensional spectral element meshes for~a! circular cylinder,
218 elements, and~b! square cylinder, 62 elements, reproduced to the sa
scale.
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FIG. 2. Comparison of magnitudes of Floquet multipliers computed in
present study with those previously presented~Refs. 4 and 7! for the ~a!
circular-section cylinder at Re5280 and~b! square section cylinder at Re
5205. Previous results:h. Current results:s, real Floquet multipliers, syn-
chronous modes; •, complex-conjugate multipliers, quasiperiodic mode

FIG. 3. Plot showing estimates~•! for umu for the square-section cylinder
computed using power method~3!, starting from random initial conditions
compared to values computed using a Krylov subspace method~solid line!
at b52.3: ~a! Re5205; ~b! Re5225.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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diate wavelength mode had negative real multipliers. T
agreement~not illustrated! between the presently compute
values ofumu and those of RBV99 at Re5225 is as good as
seen in Fig. 2~b!, but again the multipliers for the intermed
ate mode are complex, not real.

In seeking to resolve the discrepancy, we used
method of RBV99 to compute estimates ofumu, using~3!, and
compare to the results obtained using the Krylov subsp
method withK525—these computations were performed
b52.3, which is near the most-amplified wave number
the quasiperiodic mode, and at two Reynolds numbers,
and 225. The outcome is shown in Fig. 3. It can be seen
after starting transients have died, the estimates ofumu com-
puted using~3! do not reach steady states, but instead os
late around the values computed using the Krylov subsp
method. This is exactly the behavior that would be expec
for standing-wave modes with complex-conjugate pair F
quet multipliers.

Further, it can be seen that the amplitude of the osci
tion decreases with increasing Reynolds number, while
period of oscillation increases. This is consistent with
complex values of the multipliers—in fact, the location
the multipliers in the complex plane can be inferred from
oscillatory behavior seen in Fig. 3. In Fig. 4 is plotted t
locus with Re of~one of! the complex-conjugate pair multi
pliers ~computed using the Krylov method! in the second
quadrant of the complex plane. It can be seen that the cri
Reynolds number for this mode is close to 200, and thatwith
increasing Reynolds number the multipliers approach
negative real axis. With increasing Reynolds number the a
sociated Floquet modes will behave more and more like s
harmonic, rather than quasiperiodic modes.

Now we have an explanation for the ‘‘discrepancy.’’
RBV99 had examined the behavior of normalized Floq

FIG. 4. The locus with increasing Reynolds number of~one half of pairs of!
complex-conjugate Floquet multipliers for the quasiperiodic mode of
square-section cylinder, atb52.3. Marginal stability occurs at Re'200
when the locus crosses the unit circle.
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modes at Reynolds numbers well above onset they co
have confused what they saw with a subharmonic mo
since the corresponding multipliers have comparativ
small imaginary parts.~The Reynolds numbers for their ex
aminations of modal behavior in their Figs. 11 and 14 we
not supplied.! In addition, confining the space of shape fun
tions employed to~1! would, as explained earlier, have pr
cluded the possibility for spanwise travel of the mode sha
depriving them of another visual cue.

Thus, the apparent discrepancy between the reported
haviors for the three-dimensional instability modes of the
two bluff body wakes appears to be resolved, and the
scriptions can be unified. Both wakes possess synchron
long and short wavelength instability modes~modes A and
B!, with identical symmetries in each flow, and in additio
they have another, intermediate wavelength mode, whic
quasiperiodic, and which can manifest either as standing
traveling waves. It is possible that this is a general scen
for three-dimensional instabilities of the time-periodic wak
generated by two-dimensional bluff bodies which possess
flection symmetry about the centerline of the wake.
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