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Previous studies dealing with Floquet secondary stability analysis of the wakes of circular and
square cross-section cylinders have shown that there are two synchronous instability modes, with
long (mode A and short(mode B spanwise wavelengths. At intermediate wavelengths another
mode arises, which reaches criticality at Reynolds numbers higher than modes A or B. Here we
concentrate on these intermediate-wave number modes for the wakes of circular and square
cylinders. It is found that in both cases these modes possess complex-conjugate pair Floquet
multipliers, and can be combined to produce either standing or traveling waves. Both these states are
guasiperiodic. ©2003 American Institute of Physic§DOI: 10.1063/1.1591771

Three-dimensional secondary stability analysis of bluffD is now the length of a side of the squarsnode B, onset
body flows has been a topic of special interest since th&e~190, has wavelength=1.2D.
classic experimental investigations of Williamsbwhere it All the three-dimensional modes by definition break the
was demonstrated that two distinct types of secondary insta®(2) spanwise symmetry of the two-dimensional base flows.
bility, each with a particular characteristic frequency andModes A and B are synchronous with the base flow, i.e., at
spanwise wavelength, were dominant in the secondary instanset they have a temporal periodicity which is very close to
bility of the circular cylinder wake. Following the stimulus that of the underlying two-dimensional flow. The two-
of these experimental results, numerical Floquet stabilitydimensional flow has a spatiotemporal symmetry such that
analysis of the time-periodic two-dimensional base flows(in primitive variable$ the flow at any time is identical to
was carried out;® culminating in the equally classic study of that displaced half a shedding period in time and reflected
Barkley and Henderschhereafter referred to as BH96. In about the wake centerline. It is found that in both flows un-
that work, the three-dimensional Fourier Floquet instabilityder discussion here, mode A preserves this symmetry, while
modes of the two-dimensional cylinder wake were computednode B breaks it:®’
as functions of both spanwise wave numbgs27D/\, In this Letter, the focus is not on mode A and mode B
whereD is cylinder diameter andl is spanwise wavelength, instabilities, but rather on a third instability mode, that has
and the mean flow Reynolds number=RéD/v, whereU is  wavelengths intermediate between modes A and B, and
the freestream speed amds the fluid’s kinematic viscosity. which bifurcates from the two-dimensional base flows at
As Reynolds number is increased, the long wavelength modBeynolds numbers above those for either mode A or B. Such
A (N a/D=23.96 at onsstis the first to become unstable, via modes were first reported by BH9® passing, see Fig. 7 of
a subcritical bifurcation with a linear onset Reynolds numbettheir paper, data reproduced in FigaRherd as possessing
Re.,=1882 Mode B bifurcates supercriticaflyfrom the  complex-conjugate pair Floquet multipliers. An apparently
two-dimensional flow at Rg=256, with the much shorter similar mode (intermediate wavelengths, higher onset) Re
spanwise wavelengthg /D =0.822. In the case of mode B, was reported for the square cylinder by RBV99, where it was
the two-dimensional flow is already unstable to mode A, andsaid not to have complex-conjugate pair multipliers but to be
for intermediate Reynolds numbedisetween Rg, and Reg) a subharmonic mode, i.e., a mode with the real multiplier
it appears that mixed-mode states exist, while ultimately fooru=—1 at onset. By repeating RBV99’s analysis for the
Re=265, only mode B-type states are observed. A low-square cylinder, but using the same numerical technique as
dimensional model for the mixed-mode scenario, and themployed by BH96, we demonstrate that in fact these inter-
subsequent dominance of mode B at higher Reynolds nunmediate modes in both cases have complex-conjugate pair
bers, has appearéd. multipliers. The complex-conjugate modes can lead either to

Floquet stability analysis of the two-dimensional wake quasiperiodic standing wave or traveling-wave type solu-
of cylinders with square cross section has been presented lipns.
Robichaux, Balachandar, and Vankaubsequently referred We restrict the discussion to flows in which geometries
to as RBV99. The dominant three-dimensional instabilitiesand boundary conditions have a homogeneous spatial coor-
are similar to those for the circular cylinder: mode A, with dinate, here taken to be the coordinate. In these cases,
onset Re=166, has a spanwise wavelengtk 5.22D (where  three-dimensional instabilities can be described with a Fou-
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rier series expansion in the homogeneous coordinate. In the same in either case, and marginal stability occurs at the
linear stability analysis these Fourier modes are independerdgame parameter values, the nonlinear evolution of the two
The spatial forms which Floquet Fourier modes can be ascases produces two distinct solution branches. As with
sumed to take depend on three factd@: the number of O(2)-equivariant Hopf bifurcation$,at most one of these
independent spatial dimensions required to represent the babeanches will have stable solutions. Neimark—Sacker bifur-
flow (its “dimensionality,” here two; (b) the number of in- cations introduce a new temporal frequer(cglated to the
dependent velocity components required to represent thealue of the imaginary parts of the Floquet multipliers
base flow(its “componentality,” here also twp (c) the com-  general incommensurate with that of the base flow, and the
plexity of the Floquet multipliers. At each spanwise wave-three-dimensional solutions are temporally quasiperiodic.
length\, the velocity component and pressure Floquet Fou- There are a number of possible numerical techniques
rier modes are represented by two-dimensional complethat may be applied to Floquet analysis. Unless it is knawn
fields which can be equivalently considered at each poinpriori that the Floquet multipliers will bésay) real, a prin-
(x,y) as a complex scalar with, in general, both real andcipal requirement of the method is that it must be sufficiently
imaginary parts nonzero, a wave in thalirection with ar- general to be capable of computing either real or complex-
bitrary amplitude and phase, or a pair of cosine and sineonjugate pair Floquet multipliers. Noack and Eckelnfann
waves, each of arbitrary magnitude. found the eigensystem of the monodromy matrix obtained
For three-component base flows, it is found by examinausing a low-dimensional projection of the velocity field,
tion of the linearized Navier—Stokes equations that the fullywhile BH96 used a Krylov subspace iterative method based
general complex form of the perturbation Fourier modeson the linearized Poincameturn map of the perturbation to
must be retained throughout the analysidsor two- estimate Floquet multipliers and eigenfunctiéri8. Both
dimensional, two-component base flojgsesent casg¢shere  these methods are sufficiently general to compute complex-
are two sets of spanwise expansions for perturbation velocitgonjugate pair eigensystems, provided of course that the di-
(u',v",w") and pressurep’ that each pass uncoupled mension of the subspace in which the eigensystem is solved

through the linearized Navier—Stokes equations, is sufficiently large(two, minimum, and typically many more
o, in practicg. On the other hand, RBV99 used a one-
o', wh, p'i(x.y.zt) dimensional power-type method, takifg to be the limiting
={u’ cospBz, v’ cosBz, w’ sinBz, p’ cosBz}(X,y,t), value of
@ | ttmad = N(E+T)/N(D) )
or [Eq. (19 of RBV99], whereN(t) is the square-root of the

kinetic energy in the perturbation velocity at tirneand then
giving u a sign, positive or negative, depending on the ob-
The independence of these two sets of solutions means tha¢rved temporal behavior of the perturbation velocity from
we are free to choose eigenfunctions based on either set, period to period. This means that for their analysis the mul-
an arbitrary(but temporally constantinear combination of tipliers could either be positive, or negative, bratal only.
the two—which corresponds to an arbitrazycoordinate  And indeed RBV99 reported that all the modes they found
shift of the eigenfunction. The above holds regardless of théad real Floquet multipliers.
temporal structure of the base flows. The synchronou#A and B) Floquet modes for the wakes
We now turn to consider time-periodic base floge-  of circular and square cylinders described by BH96 and
riod T), whose stability may be characterized by FloquetRBV99 are, as outlined above, evidently quite similar in na-
multipliers u, which can be real or occur in complex- ture, which is unsurprising given the similarities of the two-
conjugate pairs. Marginal stability for a Floquet mode occursdimensional base flows. Given thisjstsomewhat surprising
as its multiplier crosses the unit circle, i.e.,|aj=1. If the  that the third mode that can potentially bifurcate from the
Floguet multiplier is real 4= + 1 at marginal stability, then  two-dimensional wake as Reynolds number is incredsed
in effect the corresponding Floquet mode is a standing wavenode with spanwise wavelength intermediate between those
type solution, since it evolves through each period by a mulfor modes A and Bwas reported by BH96 to have complex-
tiplication with this real value, whiclfto within a constant  conjugate pair Floquet multipliers, but by RBV99 to have a
leaves the spatial shape invariant. In these cases, it is suffieal, negative multipliea subharmonic mode, which they
cient to use eithe(l) or (2) for the spatial expansions, and referred to as mode)SThat discrepancy has prompted the
this was the approach adopted by both BH96 and RBV99present comparative re-examination of the Floquet analysis,
However, in the case of complex-conjugate pair multipliersusing the more general numerical method employed by
(where marginal stability, withw=e"'"’, corresponds to a BH96.
Neimark—Sacker bifurcationthenwhile it is still possibleto The underlying spatial discretization in each case em-
choose expansiondl) or (2), restriction to either of these ployed spectral elements, and this has been maintained in the
cases again corresponds to choosing a standing wave typeesent investigation. Figure 1 shows the outlines of the
solution, whereas either traveling or standing waves are pospectral elements used for the wakes of the circular and
sible outcomes. While in linear stability analysis the eigen-square cylinders. The circular cylinder mesh, while different
functions for the standing wave are just symmetric combinain detail, is very similar in overall resolution and domain
tions of those for traveling waves, the Floquet multipliers areextent toM,, the principal analysis domain used by BH96.

{u’sinBz, v’ sinBz, w’' cosBz, p’ sinBz}(x,y,t). (2
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The one-dimensional Lagrange interpolants used as theG. 2. Comparison of magnitudes of Floquet multipliers computed in the
tensor-product basis for shape functions in each element haesent study with those previously presentBefs. 4 and J for the (a)
polynomial ordeN=7, while BH96 usedN=8. The square (ﬂrzcgéarl;secpon cylinder at Re280 and(b) square section cy'Iln.der at Re

; . . = . Previous result§l. Current resultsO, real Floquet multipliers, syn-
cylinder mesh used is identical to that employed by RBV99 ¢hronous modes; +, complex-conjugate multipliers, quasiperiodic modes.
in extent, number and placement of elements, and element

interpolation orderN=15.

Floquet analyses for both wakes have been computed Lo o ' ]
over ranges of Reynolds numbers and spanwise wave num- i '“.. o e e e e e e % e .‘
bers consistent with the original studies. For both the circular S T A N R e
and square cylinder wakes, the Krylov dimensisize of the i C lul=1.1012 ]
subspace in which eigenpairs are computedsK =25, but 5 Lo ]
the results for the leading modes were nearly identical when § 05 7
computed aK=13. To summarize the outcome, Fig. 2 pre- A ]
sents the values df| found at different values of spanwise oL L L
wave numberg, for Reynolds numbers Re280 for the cir- 0 20 40 60
cular cylinder wakedthe highest Reynolds number employed @ nT
by BH96, where the intermediate mode ngas4 is closest 25 : — .
to criticality) and Re=205 for the square cylinder, where the E Va lul=1.8557 ]
intermediate wavelength modg~2.5 has just exceeded = ? E e =
criticality. In both Figs. 2a) and Zb), values for|u|, digi- g 15F 3
tized from the plots published in BH9&ig. 7) and RBV99 ™ E 3
(Fig. 8), are shown as open squares. Clearly the agreement s 1 = E
between the present work and the original papers for the Z 05 b E
computed values ofu| is very good. The only substantive 5 3
difference is that Floquet multipliers for the intermediate 0 = 2'0 — 4'0 : 6'0'

wavelength modélabeled QP in both plojsvere found here (b) nT

to occur in complex-conjugate pairs for both wakes. That is, , ] , _

the present results are in agreement with the finding of BH9§'C: 3 Plot showing estimatds) for || for the square-section cylinder,
. . . . . computed using power methd@), starting from random initial conditions,

for the circular cylinder wake but in disagreement with thatcompared to values computed using a Krylov subspace metuid line)

of RBV99 for the square cylinder wake in that the interme-at 8=2.3: (a) Re=205; (b) Re=225.
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S B B B modes at Reynolds numbers well above onset they could
have confused what they saw with a subharmonic mode,
since the corresponding multipliers have comparatively
small imaginary parts(The Reynolds numbers for their ex-
aminations of modal behavior in their Figs. 11 and 14 were
not supplied. In addition, confining the space of shape func-
tions employed td1) would, as explained earlier, have pre-
ol v v b b cluded the possibility for spanwise travel of the mode shape,
-15 -1 -05 depriving them of another visual cue.
Re (k) Thus, the apparent discrepancy between the reported be-
FIG. 4. The locus with increasing Reynolds numbetafe half of pairs of ~ haviors for the three-dimensional instability modes of these
complex-conjugate Floguet multipliers for the quasiperiodic mode of thetwo bluff body wakes appears to be resolved, and the de-
square-section cylinder, g8=2.3. Marginal stability occurs at R&200  gcriptions can be unified. Both wakes possess synchronous
when the locus crosses the unit circle. long and short wavelength instability modésodes A and
B), with identical symmetries in each flow, and in addition
they have another, intermediate wavelength mode, which is
diate wavelength mode had negative real multipliers. Theuasiperiodic, and which can manifest either as standing or
agreementnot illustrated between the presently computed traveling waves. It is possible that this is a general scenario
values of|u| and those of RBV99 at Re225 is as good as for three-dimensional instabilities of the time-periodic wakes
seen in Fig. B), but again the multipliers for the intermedi- generated by two-dimensional bluff bodies which possess re-
ate mode are complex, not real. flection symmetry about the centerline of the wake.
In seeking to resolve the discrepancy, we used the
method of RBV99 to compute estimates af, using(3), and
compare to the results obtained using the Krylov subspacBCKNOWLEDGMENTS
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