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This work examines consequences of modelling approximation errors made within the
context of the Navier–Stokes–Boussinesq system. Starting from a canonical Boussinesq
model, where density fluctuations are allowed to interact with all accelerative terms of
the incompressible Navier–Stokes equations in arbitrarily accelerating reference frames, a
unified treatment is developed that provides a straightforward way to identify buoyancy
forcing associated with gravitational effects, centrifugal forcing associated with frame
rotation, as well as centrifugal-type forcing due to variations in flow kinetic energy. The
results of the cases studied in inertial, rotating and mixed reference frames demonstrate
that in general it may be important to apply buoyancy effects to all non-local accelerative
terms, including non-gradient terms such as Coriolis acceleration. Additionally, it is shown
that the common practice of ignoring terms representing interaction between density
fluctuation and local fluid acceleration can lead to non-negligible error in Boussinesq
modelling of highly unsteady flows. These findings have special significance for accurate
simulation of flows with density variations in which there may be both background rotation
and localised regions of strong swirl, but are also relevant for studies conducted in the
inertial frame of reference.

Key words: buoyancy-driven instability, rotating flows, general fluid mechanics

1. Introduction

The Boussinesq approximation for flows with buoyancy – that if density variations
are small enough then the flow can be considered incompressible, and that buoyancy
body-force contributions arise in the momentum equations – has been widely used for
many years. The conditions under which the approximation is adequate if the underlying
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driving force for buoyancy is gravity have been discussed in detail by Tritton (1988). Since
the effects of uniform gravitational acceleration can be replaced by a suitable rectilinear
acceleration of the reference frame in which the flow is considered, buoyant flows driven
by gravity can be considered as the simplest case of flows with density variation arising in
arbitrarily accelerating frames. The most general case allows for frame rotation in addition
to rectilinear acceleration of the origin, and this is what we seek to address herein.

When the reference frame rotates, centrifugal buoyancy can be considered in addition to
gravitational: heavier fluid moves outwards from the axis of rotation owing to centrifugal
force, and vice versa (see e.g. Barcilon & Pedlosky 1967; Brummell, Hart & Lopez 2000;
Hart 2000; Marques et al. 2007). However, these centrifugal buoyancy effects must also
exist in flows with localised swirl, irrespective of the frame of reference. Such effects
were considered by Lopez, Marques & Avila (2013), who suggested that, in a non-rotating
frame, centrifugal buoyancy forcing could be approximated as arising from the product of
density fluctuation and the gradient of kinetic energy. How one should model centrifugal
buoyancy when both the reference frame rotates and there is also significant localised
swirl has been left unaddressed. Such considerations may be important, for example,
in simulations of rotating machinery flows. For these flows, it is convenient to work in
a rotating frame where the geometry appears stationary, but where localised swirl and
associated centrifugal buoyancy effects are comparable to those associated with frame
rotation. More generally, these considerations can become important when there is no
obvious choice for an appropriate frame rotation rate, such as when there are differentially
rotating parts of the geometry.

In the following, we consider the question of how best to model the effects of Boussinesq
buoyancy in cases of general frame motion while also including centrifugal buoyancy
due to localised swirl. The approach taken builds on, and generalises, the work by Lopez
et al. (2013) in that density (and its variation) is allowed to interact with all non-local
fluid acceleration terms. An approach introduced earlier by Marques et al. (2007) and
reconsidered by Lopez et al. (2013) – that density fluctuations are considered to be
significant in the momentum equations only where they premultiply terms representing
the gradient of a scalar – is examined, generalised and shown to be adequate in some
situations but not others. We also show that the general practice of ignoring the effect of
interaction between density variations and local fluid acceleration, common in Boussinesq
approximations, can produce significant errors, increasing as the local accelerative terms
become larger in relation to advective and frame-accelerative terms. Those errors should,
if possible, be minimised by an appropriate choice of reference frame. Our results are
necessarily obtained by computer simulation since analytical solutions are not available;
however, we have used sufficient numerical resolution to ensure that errors incurred by
approximate modelling rather than numerical approximation errors remain the central
focus. The differences in computational resources required to solve the various forms of
models considered are minimal.

2. Formulation

The Boussinesq approach to modelling buoyant flows can be summarised by stating that
comparatively minor changes in density are accommodated within the incompressible
Navier–Stokes system without changes to fluid properties, such as viscosity and
diffusivity. The Boussinesq model is an approximation to the more complete, but
computationally expensive, compressible Navier–Stokes system. A standard requirement
for good Boussinesq approximations is that the density fluctuations relative to a
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background density be small, ρ′/ρ0 � 1 (e.g. see Tritton 1988). With this in mind, the
momentum and continuity equations for a Newtonian fluid can be written as

ρ

ρ0

Du
Dt

=
(

1 + ρ′

ρ0

)
Du
Dt

= − 1
ρ0

∇p + ν∇2u, ∇ · u = 0, (2.1a,b)

where Du/Dt is the material derivative of velocity, ρ0 is a constant reference density, ρ′
is the density fluctuation and p is the pressure. The kinematic viscosity ν is a constant
determined at a temperature corresponding to ρ0. The set (2.1a,b) might be termed the
canonical form of the Navier–Stokes–Boussinesq system. A sometimes overlooked fact of
Boussinesq-based modelling is that the maximum relative density variation, ρ′

max/ρ0, is an
independent dimensionless variable and should be sufficiently small for the approximation
to be valid.

For general reference frame motion, the material derivative is

Du
Dt

= ∂u
∂t

+ u · ∇u + 2Ω × u + Ω × (Ω × r) + α × r + A, (2.2)

where ∂u/∂t is the local rate of change of velocity, u · ∇u is its convective rate of change,
A is a rectilinear acceleration of the frame origin, Ω is frame angular velocity around
the origin, α = dΩ/dt is the angular acceleration of the frame around the origin and r is
a position vector relative to the origin. The velocity is measured relative to the frame’s
origin. The terms 2Ω × u, Ω × (Ω × r) and α × r are respectively known as Coriolis,
centripetal and Euler accelerations. Since acceleration of the origin is a uniform vector
field, it can be written as the gradient of a scalar field Φ that varies linearly with position,
i.e. A = ∇(A · r) = ∇Φ. Using standard vector identities, the material derivative may be
rewritten as

Du
Dt

= ∂u
∂t

+ ω × u + ∇(1
2 |u|2) + 2Ω × u + ∇(1

2 |Ω × r|2) + α × r + ∇Φ

= ∂u
∂t

+ ω × u + 2Ω × u + α × r + ∇(1
2 |u|2 + 1

2 |Ω × r|2 + Φ), (2.3)

in which ω = ∇ × u is the vorticity. Without loss of generality, a uniform gravitational
force per unit mass, g, may be replaced by an equivalent frame acceleration A = −g,
implying also a change in sign of the scalar field Φ. The gradient term representing
centripetal acceleration is often written as −|Ω|2r⊥, where r⊥ is the radius vector taken
perpendicular to the axis of rotation.

A further approximation often applied in concert with that of Boussinesq is to include
the effect of density fluctuation only on non-local acceleration terms. This allows density
fluctuation effects to be dealt with explicitly in time (as is typically done for the nonlinear
terms in uniform-density flows, which is convenient for many time-stepping numerical
schemes). Within the context of the canonical Boussinesq approach, this is completely
correct for steady flows and approximately so if the local acceleration terms are small
compared to the sum of the others. Applying this idea to (2.2), equation (2.3) gives

ρ

ρ0

Du
Dt

≈ ∂u
∂t

+
(

1 + ρ′

ρ0

)
[u · ∇u + 2Ω × u + Ω × (Ω × r) + α × r + A]

= ∂u
∂t

+
(

1 + ρ′

ρ0

)
[ω × u + 2Ω × u + α × r + ∇(1

2 |u|2 + 1
2 |Ω × r|2 + Φ)].

(2.4)
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Since the final group of terms is the gradient of a scalar, (2.4) can be further rearranged in
order to remove consideration of hydrostatic-type variations in pressure, to give

∂u
∂t

+
(

1 + ρ′

ρ0

)
[ω × u + 2Ω × u + α × r] + ρ′

ρ0
∇(1

2 |u|2 + 1
2 |Ω × r|2 + Φ). (2.5)

All forms of (2.4) and (2.5) represent the same rational generalisation of the treatment
given by (2.12) of Lopez et al. (2013) in order to deal with arbitrarily accelerating frames
of reference. When using this approach in simulations, special treatment or separation of
the scalar-gradient-type terms is not required; we have written them as separate terms here
partly to aid the exposition below. We point out that Lopez et al. (2013) essentially gave
two alternative treatments: one – their (2.4) – for rotating frames of reference with gravity,
and the other – their (2.12) – for inertial frames of reference with gravity. The present
unified approach can deal with either frame as a special case and it can help explain why
using (2.4) and (2.12) of Lopez et al. (2013) will in general give different outcomes if
applied to the same flow.

The gradient-type buoyancy-related terms in (2.5) result from: (i) centrifugal buoyancy
related to (perhaps localised) swirl with respect to the reference frame, ∇(|u|2/2); (ii)
centrifugal buoyancy due to uniform frame rotation (sometimes referred to as ‘Coriolis
buoyancy’), ∇(|Ω × r|2/2); and (iii) buoyancy due to gravity/frame acceleration, ∇Φ.
The term ∇(|u|2/2) is clearly the gradient of kinetic energy per unit mass considered in
the frame of reference, and its buoyancy effect does not appear to have an accepted name.
However, for flows that are solid-body rotation, considered in an inertial reference frame
(such that Ω = 0), it is straightforward to show that it is also associated with centrifugal
effects. Note that ρ′∇(|u|2/2) appears as a forcing term in (2.14) of Lopez et al. (2013),
who derived it on the basis of an approximation; when considered as an accelerative term
rather than a forcing term, it takes the opposite sign to our outcome.

Up to this point we have not discussed how density variations are computed. We
use a standard treatment where the relative density variations arise via a constant
temperature-dependent volumetric expansion rate β, such that

ρ′/ρ0 = β(Tref − T) = (Tref − T)/Tref , (2.6)

where T is absolute temperature, Tref is a reference or background value and the latter
relation is appropriate to a perfect gas. Very often, Tref = (Thot + Tcold)/2, in which case
ρ′

max/ρ0 = (Thot − Tcold)/(Thot + Tcold) = �T/(2Tref ) = β�T/2. To compute transport
of temperature, we use an advection–diffusion equation

∂T
∂t

+ u · ∇T = κ∇2T, (2.7)

where κ = ν/Pr is the fluid’s thermal diffusivity and Pr is the Prandtl number. Equation
(2.7) represents the first law of thermodynamics under standard Boussinesq restrictions
(see e.g. Tritton 1988). More generally, e.g. for thermohaline buoyancy, more complicated
approaches could be used to estimate ρ′/ρ0; provided this remains small, there are no
consequences for the key findings of § 3.

In all computations reported in § 3, we have employed a public-domain spectral element
code for incompressible flows (Blackburn et al. 2019) and checked that outcomes are
effectively resolution-independent. In summary, we solve the (approximate) unsteady
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incompressible Navier–Stokes–Boussinesq equations

∂u
∂t

+
(

1 + ρ′

ρ0

)
[ω × u + 2Ω × u + α × r] + ρ′

ρ0
∇(1

2 |u|2 + 1
2 |Ω × r|2 + Φ)

= −∇p̆ + ν∇2u, ∇ · u = 0, (2.8a,b)

where p̆ may include hydrostatic variations to the normalised pressure p/ρ0, together with
the advection–diffusion equation (2.7), coupled via (2.6). The non-local accelerative terms
of (2.8a,b) can be selectively enabled to examine their effects.

In both Marques et al. (2007) and Lopez et al. (2013), it was argued, on the basis
that neglected terms should be of second order, that only gradient density-fluctuation
effects need be retained in order to obtain first-order-accurate results with Boussinesq-type
buoyancy. In what follows we will demonstrate that this may lead to significant error
in some cases, even for small density fluctuations. One can choose to include all the
buoyancy-related terms in (2.8a,b), or to include only those which factor gradients of a
scalar function (effectively, the proposal of Marques et al. (2007), but here generalised to
arbitrarily accelerating frames). The difference between these two approaches should only
amount to the inclusion or omission of terms in the momentum equations such as

ρ′

ρ0
[ω × u + 2Ω × u + α × r] = ρ′

ρ0
[(ω + 2Ω) × u + α × r], (2.9)

where ω + 2Ω is twice the local fluid rotation rate in the inertial frame. We shall
demonstrate that omission of terms (2.9) can have a significant effect on the accuracy
of outcomes, though we restrict attention to cases where α = 0.

3. Numerical results

Our approach is to investigate two simple case studies that possess both rotation and
buoyancy, and can be considered in various reference frames, such as in an inertial
frame with walls moving relative to the observer, in a rotating frame in which the walls
appear fixed, and in an intermediate ‘semi-rotating’ frame. For both case studies, no flow
other than solid-body rotation would arise in the absence of centrifugal buoyancy effects.
The first test case is an axisymmetric restriction of the flow considered by Marques
et al. (2007), while the second is an axially invariant version of the flow configuration
considered by Pitz, Marxen & Chew (2017). Both cases have non-slip walls, so that far-field
boundary conditions (and how these might need to account for hydrostatic pressure
gradients) do not require detailed examination, and both have α = 0.

3.1. Axisymmetric steady flow
The first case is the same as that examined in § 3.1 of Marques et al. (2007); axisymmetric
flow in a rotating cylindrical container of radius-to-length aspect ratio R/L = 1, heated
on one endwall and cooled on the other, with an adiabatic outer wall. In their treatment,
gravitational acceleration acts in the direction pointing from the cool wall to the hot wall,
and the Prandtl number Pr = 7, i.e. the modelled flow is that of water in a rotating
cylinder heated from below. They used (ρ′/ρ0)∇(|Ω × r|2/2 + Φ) for the buoyancy
terms, ρ′

max/ρ0 = 0.031429, and omitted the gradient of kinetic energy as well as the
terms in (2.9). In the absence of centrifugal buoyancy, the basic state consists of uniform
conduction and solid-body rotation. For non-zero Froude number, Fr = |Ω|2R/|g|, the
saturated states (prior to onset of any instability) are steady toroidal overturning motion
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Figure 1. Simulation results for the axisymmetric test case of § 3.1 of Marques et al. (2007). Panels (a–d)
illustrate flows in the meridional (x, r) semiplane; the cylinder rotates around the x axis. The gravity vector
is aligned with the +x axis, or, equivalently, frame acceleration is aligned with −x. Colour contours are of
T − Tref drawn at levels −0.5 to +0.5 in steps of 0.1, and dashed lines represent negative values. Sectional
streamlines illustrate meridional flows. (a–c) Flows computed using gradient-type buoyancy, respectively in
inertial, semi-rotating and fully rotating frames of reference. (d) The same quantities computed using the more
complete approach of (2.8a,b) – the same in all frames of reference. (e) Temperature profiles extracted along
the axis (inset shows detail around the zero crossings). The solid line shows data from the results of (d); the
dotted, chained and dashed lines show data from (a), (b) and (c), respectively; the semi-rotating case (b) differs
significantly from the others.

with upwelling of warm fluid along the axis and a return flow of cooled fluid near the outer
wall. The remaining dimensionless groups (of total six) are: maximum relative density
variation ρ′

max/ρ0; Rayleigh number Ra = β|g|L3(Thot − Tcold)/κν; and Coriolis number
Co = |Ω|L2/ν.

Figure 1 presents results from our axisymmetric simulation at Fr = 0.4, Co = 100 and
Ra = 1.1 × 10−4; the same parameter values as used for the simulation in figure 1 of
Marques et al. (2007). The resulting flows are steady, ∂u/∂t = 0, in all frames of reference.
We take Thot − Tcold = 1, and so in (2.6) Tref ≡ 15.909. The flow visualisations shown in
figure 1(a–d) are presented in the meridional (x, r) semiplane and rotation is around the x
axis; lengths are normalised by the cylinder radius R.

Figure 1(a–c) represent computations made using the gradient-based buoyancy
approach, i.e. where the terms of (2.9) are omitted, respectively for the inertial frame
of reference (where walls rotate at the vessel rotation rate |Ω|), the semi-rotating frame
(walls rotate at rate |Ω|/2) and the fully rotating frame of reference (in which the walls
appear fixed). One may observe that the results in panels (a) and (c) are much alike,
and very similar to those in figure 1 of Marques et al. (2007), while those in panel (b),
while superficially similar, differ significantly in detail from panels (a) and (c); note,
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Boussinesq approximation in accelerating frames

for example, the locations of the T = 0 contours (the first solid lines) along the rotation
axis, x.

Figure 1(d) shows results using the more complete approach where the terms of (2.9)
are retained in (2.8a,b). In this case, meridional flows and temperature contours for all
three frames of reference are identical to within numerical error (here, at relative levels
approximately nine orders of magnitude or more below the outcomes presented). This
agreement demonstrates the completeness of the approach advocated in (2.8a,b) for steady
flows.

Figure 1(e) shows profiles of temperature extracted along the rotation axis for the various
approaches of figure 1(a–d). From these, the locations for T = 0 on the x axis can be read
more precisely. Again, we note the relatively good agreement of panels (a) and (c), and
that these agree well with those of panel (d), while results obtained with the gradient-only
buoyancy approach in the semi-rotating frame, panel (b), are significantly in error.

3.2. Non-axisymmetric flow
Our second case study is a simple adaptation of the rotating annular cavity flow considered
by Pitz et al. (2017), with a hot outer wall and cold inner wall. This case considers a
zero-gravity environment, and so centrifugal buoyancy is wholly responsible for driving
azimuthal flow variations. We focus on the geometry with inner-to-outer radius ratio
η = a/b = 0.52, as was the case in most of their work. To simplify matters, we compute
two-dimensional flows that are axially invariant, while most of their results were for a fully
enclosed cavity with adiabatic endwalls. In the absence of gravity and endwalls, the five
independent dimensionless groups may be represented as η, Pr, ρ′

max/ρ0, Re = |Ω|(b +
a)(b − a)/2ν and Ra = β(Thot − Tcold)|Ω|2(b + a)(b − a)3/2κν. As in Pitz et al. (2017),
we use Pr = 0.7 (air) and ρ′

max/ρ0 = 0.05. Pitz et al. (2017) carried out computations in
a rotating frame of reference, included only the gradient-based centripetal acceleration
term (ρ′/ρ0)∇(|Ω × r|2/2) in their approximation to (2.8a,b), and, like Marques et al.
(2007), omitted the terms of (2.9). Pitz et al. found that the fully enclosed flow bifurcated
to a (standing) wave, steady in the rotating frame, with azimuthal wavenumber k = 5 at
Ra = 3040 (see their table 1).

This case is somewhat more complicated than the one considered in § 3.1, largely
because of the possibility of unsteady flow at the onset of instability. This enables
us to additionally examine the consequences of committing the (standard) modelling
approximation error of omitting term (ρ′/ρ0)∂u/∂t from (2.1a,b). We mainly focus on
the critical Rayleigh numbers, which are typically substantially smaller than those of Pitz
et al. (2017). This difference is due to the effects of endwalls, which were present for
their study, but are absent in ours. We first compute the stable one-dimensional rotating
basic state at Ra = 1500, add a small white-noise perturbation everywhere in the domain
at higher Rayleigh numbers, wait for saturated two-dimensional states to evolve, then
reduce the Rayleigh number and repeat until the bifurcation is suitably bracketed. This
is detected by subtracting the stable basic state and computing the domain integral of
kinetic energy in the difference flow; since the bifurcation is of supercritical Hopf type,
this energy integral initially varies linearly with the control parameter, Rayleigh number,
at onset (Guckenheimer & Holmes 1986). As in the case study of § 3.1, we have carried
out simulations in inertial, rotating and semi-rotating frames of reference using both the
near-complete approach of (2.8a,b), and the gradient-only approach in which the terms
(2.9) are omitted. In all cases, instability is a supercritical Hopf bifurcation to azimuthal
waves with k = 5. Figure 2 shows a snapshot of temperature contours obtained using the
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1.0

0.5

0y

–0.5

–1.0 –0.5 0

x
0.5 1.0

Figure 2. Simulation results for a two-dimensional flow in a rotating annulus at Ra = 1850, with centrifugal
buoyancy. This is an axially invariant equivalent of the annulus of radius ratio η = 0.52 considered by Pitz
et al. (2017). Colour contours of T − Tref range from −1 at the inner radius (blue) to +1 at the outer radius
(red), in steps of 0.2; dashed lines represent negative values.

computational technique represented by (2.8a,b), obtained in the fully rotating frame at
Ra = 1850, illustrating the k = 5 wave.

In table 1, critical Rayleigh numbers Rac for our two-dimensional simulations are
presented, along with their percentage variations from the ‘true’ value obtained using the
approach of (2.8a,b). (We have refined spatial meshes and time step sizes to the point that
relative numerical errors of the values presented are well below the accuracy suggested
by the number of significant figures provided.) The solution obtained in the fully rotating
frame for the ‘non-gradient’ equation set (2.8a,b) is a slow retrograde rotating wave; its
rotation speed relative to the reference frame is −2.515 × 10−3. We have also carried out
a bifurcation study for a frame in which this wave appears fixed, thus making the local
accelerations ∂u/∂t = 0. This is the ‘true’ reference case from which the errors in Rac
shown in table 1 were calculated. To approximately five significant figures, Rac = 1759
for this case agrees with that obtained for the fully rotating frame of reference when
the ‘complete’ approach of (2.8a,b) is employed. In this two-dimensional restriction,
Rac is well below that in the full three-dimensional study of Pitz et al. (2017), and
somewhat above the value for Rayleigh–Bénard convection rolls between two parallel
planes, Ra = 1708 (Chandrasekhar 1961).

Considering the differences in estimates of Rac in table 1, we first note that for the
inertial and semi-rotating frames, all solutions are rotating waves, and in the inertial frame
(Ω = 0), the waves rotate at very close to the rotation rate of the annulus. In the fully
rotating frame (Ω = 1) and for the non-gradient approach, the solution is a very slow
rotating wave. We have already seen that for the steady flows, as considered in § 3.1,
the non-gradient and the more complete Boussinesq approximations produce identical
results (modulo solid-body rotation) in all frames. Thus we can attribute the increasing
error in Rac as Ω decreases for the non-gradient results listed in table 1 to the fact that
(ρ′/ρ0)∂u/∂t, a term neglected in all our and, as far as we are aware, all extant Boussinesq
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Ω Non-gradient Gradient

0 1824 (3.7 %) 1735 (−1.3 %)
0.5 1777 (1.0 %) 3489 (98.4 %)
1 1759 (0.0 %) 1754 (−0.3 %)

Table 1. Critical Rayleigh numbers, Rac, with relative errors, for the non-axisymmetric case study shown in
figure 2. Ω is the dimensionless rotation rate of the frame of reference used, varying between zero (inertial)
and unity (fully rotating). A reference case, with Ω = 0.997485 was used to compute the error values listed
(see text).

approximations, becomes more important when the flow becomes increasingly unsteady
as Ω decreases below 0.997485 towards zero. Provided ρ′/ρ0 � 1, such errors should
always be relatively small. For the present calculations, the maximum error in Rac for the
non-gradient approach, 3.7 %, is of the same order as ρ′

max/ρ0, 5 %.
Table 1 also shows that, for the gradient-based Boussinesq approximation, errors in Rac

are relatively small when Ω = 0 and 1, but very large for the semi-rotating case with
Ω = 0.5. This is mainly attributable to omitting the terms represented in (2.9), which are
apparently significant for the semi-rotating case. Recall that for the steady flow of § 3.1, the
error for the gradient-based approach was also largest in the semi-rotating case. Finally,
for Ω = 1 there is a distinction in bifurcation behaviour between the two Boussinesq
approaches. While for the non-gradient approach, the bifurcation is to a rotating wave, for
the gradient approach, a standing wave bifurcates. Theoretically, if the modelled physics
were equivalent, these two wave types would bifurcate linearly at the same value of Rac,
and (weakly) nonlinear effects would select one of these two outcomes as the stable case,
observable using nonlinear simulations. Therefore, changing the modelled physics (from
non-gradient- to gradient-based buoyancy) here also changes the nature of the bifurcation.

4. Discussion and conclusions

The main points of novelty in the present work are as follows:

(i) We have supplied a frame-independent exposition of Boussinesq modelling which
could be used for accurate simulation of flows with differential rotation where
there is no distinguished frame of reference; such conditions could, for example,
be obtained in rotating machinery of various kinds.

(ii) We have demonstrated that a modelling restriction to include only gradient-type
buoyancy terms, as advocated for example by Marques et al. (2007) and Lopez et al.
(2013), can lead to errors which are sometimes of first-order significance. In § 3.1 we
have shown that when dealing with a steady flow, our unified approach eliminates
these modelling errors in a frame-independent way.

(iii) We have shown that in very unsteady flows, omission of terms of type (ρ′/ρ0)∂u/∂t
from (2.1a,b) can lead to non-negligible modelling errors. We were able to do this
by considering in § 3.2 a flow which could be made steady by a suitable choice of
rotating frame, and examining the size of errors in Rac for various other frames
where |∂u/∂t| becomes large.

All Boussinesq approaches represent approximations to the fully compressible
Navier–Stokes system of equations. One might consider (2.1a,b), in which density factors
all terms of the material derivative of velocity, to represent the canonical form of the
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Boussinesq approximation. As far as we are aware, however, it is standard (and convenient)
practice to omit the effect of density variation on the local derivative, i.e. terms of form
(ρ′/ρ0)∂u/∂t, which in the canonical case leads to (2.8a,b). In § 3.1, it was demonstrated
that for a steady flow, that approach produces the same result in all steadily accelerating
frames of reference. In § 3.2, however, it was shown that such an approach may introduce
significant error, perhaps of order ρ′

max/ρ0, if ∂u/∂t is large compared to non-local
accelerations. An obvious and standard way to minimise errors of this kind is to adopt
an appropriate frame of reference in which local acceleration terms are as small as
possible. If the flow is dominated by a known background rotation, this is the frame to
use. A difficulty arises if the appropriate rate is unclear in advance, e.g. where there is
significant differential rotation and unsteady flow.

When one is assured that background rotation provides the dominant centrifugal
buoyancy effect, it appears reasonable to deal with this using only gradient-based
buoyancy. In an inertial frame where Ω = 0, this may be addressed via (ρ′/ρ0)∇(|u|2/2).
Alternatively, in a fully rotating frame one may reasonably use (ρ′/ρ0)∇(|Ω × r|2/2) =
−(ρ′/ρ0)|Ω|2r⊥: for solid-body rotation (i.e. which flows with dominant background
rotation approximate to first order) the two forms are equivalent. The difficulty again arises
when there is no clear choice of frame, e.g. when there is significant differential rotation.
In that case, approaches which employ only gradient-type buoyancy terms may lead to
significant errors, as the results of § 3 make clear.

Initially, it seems confusing that the results obtained when the terms (2.9) are omitted
are frame-dependent, since the form of these terms is frame-invariant. However, the term
ω × u arises from the identity u · ∇u = ω × u + ∇(|u|2/2). The partition between the
non-gradient and gradient components of this decomposition varies depending on the
reference frame adopted, and hence so does the relative importance of the product term
(ρ′/ρ0)ω × u neglected in the gradient-based approach. Clearly, this term can become
significant in ‘semi-rotating’ frames. We conclude that it is always safest to retain such
terms and use one of the forms (2.4) or (2.5), leading to (2.8a,b).

The formulation of (2.8a,b) is simply a straightforward generalisation of the
methodology advanced in § 2.2.2 of Lopez et al. (2013) for use in an inertial frame of
reference, so as to accommodate arbitrary frame acceleration. However, in their further
development (§ 2.2.3), Lopez et al. sought to derive a gradient-type centrifugal effect
based on an approximation for rapidly rotating frames (their (2.13)). That approximation
is incorrect, since it results in a forcing term ρ′∇(|u|2/2) for the Navier–Stokes equations.
Transposed so as to be interpreted as an accelerative term, as we have considered in
(2.8a,b), this would become −ρ′∇(|u|2/2), taking the opposite sign to our derivation.
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