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The methodology for simulation of incompressible flows with generalized Newtonian viscosity models, for 
example shear-thinning rheologies, within the Semtex framework of open-source spectral-element/Fourier flow 
solvers [1,2] is outlined. Direction is given regarding the rheology models employed and how appropriate 
parameters are derived and supplied to the solver. Exponential spatial convergence of solutions is demonstrated 
for both Cartesian and cylindrical geometries. Other example applications deal with DNS of turbulent flows in 
pipes. We use Semtex to highlight the central importance of adequate rheology characterization for accurate 
simulation of turbulent flows of generalized Newtonian fluids.

1. Introduction

Semtex is a well-validated open-source framework of spectral el-
ement computer codes that are mainly directed at high-performance 
direct numerical simulation (DNS) of incompressible flows. Domain 
geometries accommodated are two-dimensional Cartesian (using struc-
tured or unstructured conforming quadrilateral meshes), with three-di-
mensional geometries possible by extrusion in an orthogonal coordinate, 
on the assumption of periodicity and Fourier expansions in that direc-
tion, see Fig. 1. The orthogonal coordinate may be chosen as Cartesian 
or cylindrical. Thus, flows accommodated may be two- or three-compo-
nent and two- or three-dimensional, in either Cartesian or cylindrical 
coordinate systems. Solver speed is high, largely through the default 
adoption of direct elliptic solvers using element-level static condensa-
tion for both pressure and velocity components, and parallel solution of 
Fourier modes (either singly or as sets) is possible with MPI, allowing 
further speed-up for three-dimensional solutions. Exponential conver-
gence of solutions in cylindrical coordinates with respect to number of 
points along an element edge was established in [3], while earlier work 
with a related solver [4] showed that convergence was also exponential 
in Cartesian coordinates. Numerical, scaling, implementation, conver-
gence and usage details within the Semtex framework for incompressible 
flows with Newtonian rheologies were detailed in [1]. A notable perfor-
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mance feature documented there is that for DNS of three-dimensional 
problems, speed-up generally increases linearly with number of CPUs 
until the workload becomes dominated by communication overheads; 
depending on the particulars of the mesh used, this limit could be many 
hundreds or thousands of processors. The source code package is avail-
able on Gitlab [2]; top-level routines are written in C ++, with some 
lower-level library routines provided in both C and Fortran.

While Newtonian rheologies i.e. those with a constant viscosity are 
almost standard in DNS studies, non-Newtonian rheologies are impor-
tant in many applications areas, from industrial through biological to 
geophysical flows. In the present work, our focus is on DNS of incom-
pressible flows of fluids with generalized Newtonian (GN) rheologies, 
for which the viscosity taken to be locally and instantaneously depen-
dent on the magnitude of the strain rate. Other types of non-Newtonian 
fluids include viscoelastic, thixotropic and rheopeptic rheologies, see 
[5,6]. While GN is conceptually the simplest non-Newtonian rheology, 
it is technologically relevant with a wide range of applicability, for ex-
ample in modelling of high-concentration mining tailings streams and 
flows in petroleum drill strings [7,8], but also in modelling blood flows 
[9–11].

Given the fluid velocity vector 𝒖(𝒓, 𝑡) and the rate of strain tensor 
𝑺 = [𝛁𝒖 + (𝛁𝒖)T]∕2, the viscosity 𝜇 is taken to be a scalar function of 
�̇� = (2𝑺 ∶𝑺)1∕2, the magnitude (second invariant) of 𝑺 , i.e. 𝜇 = 𝜇(�̇�). 
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Fig. 1. Indication of a possible spatial and computational domain style for 
Semtex with a three-dimensional spectral element/Fourier discretization. The 
Fourier expansion coordinate may be either cylindrical or Cartesian, and one or 
more Fourier modes (pairs of spatial planes) may reside on a processor, with 
parallel execution enabled using MPI across modes. While the two-dimensional 
spectral element mesh shown is structured, unstructured meshes may also be 
used.

As for Newtonian fluids, the shear stress 𝝉 is twice the product of the 
viscosity and rate of strain tensor,

𝝉 = 2𝜇(�̇�)𝑺, (1)

but since now 𝜇 is now a function of 𝑺 , this relationship is nonlin-
ear, unlike the situation in Newtonian fluids. Common instances of GN 
rheologies 𝜇(�̇�) are: power law, Herschel–Bulkley, Carreau–Yasuda and 
Cross, see §4 below for details. Despite the apparent conceptual sim-
plicity of GN rheology, the added complexity means that there are fewer 
analytical (and perforce laminar) solutions available for flows of GN flu-
ids than is the case for Newtonian flows; we will introduce some of these 
solutions when discussing code validation in §5.

Just as for Newtonian fluids, no analytical solutions exist for turbu-
lent flow of generalized Newtonian fluids (GNFs), and without physical 
experiments, one must resort to DNS, large eddy simulation (LES) or 
turbulence modelling for predictions.

Direct numerical simulation of the turbulent flow of non-Newtonian 
fluids was first presented in a series of papers [12–15] that considered 
the flow of high Reynolds number, weakly viscoelastic fluids in a chan-
nel with the aim of investigating drag reduction in surfactant solutions. 
A psuedo-spectral method was used with 2nd-order time-stepping.

Despite GNFs being significantly easier to model mathematically 
than viscoelastic fluids, the application of DNS to GNFs was first pre-
sented in [16], somewhat later than the viscoelastic studies mentioned 
above. That work, undertaken with the Semtex spectral element/Fourier 
package, investigated the turbulent flow of power law fluids in a circu-
lar pipe. Subsequent to [16], various different methods have been used 
to undertake DNS of GN flows including finite difference (FD), finite 
volume (FV) and low-order finite element method (FEM) approaches.

Frequently, in-house codes developed by research groups have been 
based on FD or, more often, FV methods. They have usually been applied 
to simple geometries such as channels and pipes. DNS were undertaken 
in [17] using a 4th-order in space, 2nd-order in time Adams–Bashforth 
FD scheme for power law and Casson rheology models in a channel 
geometry. The outcomes were used primarily to provide data for val-
idation of new sub-grid scale models for LES modelling. A more com-
mon approach than FD has been the use of FV methods and several 
in-house codes have been developed based on 2nd-order-in-space-and-
time schemes. Two examples are the SIMPLE-based algorithm of [18] 
used to develop RANS closures for power law fluids from DNS data and 
the centred difference, Crank–Nicholson code used in [19] to investi-
gate near-wall structures in turbulent channel flow of a Carreau fluid 
rheology. Higher order schemes have also been used, e.g. 3rd-order in 
space QUICK scheme with 2nd-order backward Euler method in [20]. 

In that study, the code was coupled to an immersed boundary method 
to investigate the effect of surface roughness in turbulent channel flow 
of a Herschel–Bulkley fluid.

The open source, FV-based software OpenFOAM has also been used 
to investigate turbulent flow of GNFs, typically with 2nd-order in space 
and time schemes. Zheng et al. [21] compared OpenFOAM results for a 
turbulent pipe flow of a Herschel–Bulkley fluid to those obtained with 
Semtex. They showed that although mean flow statistics were only a 
few percent different between the methods, 2nd-order statistics could 
vary by as much as 16%. They state that this level of accuracy is per-
haps acceptable for engineering calculations, however it likely precludes 
OpenFOAM use for more fundamental studies of GNF turbulence. Addi-
tionally, the optimal CPU time required for an OpenFOAM simulation 
was approximately 10–15 times longer per grid point than that required 
for a Semtex simulation. Given the fact that spectral element codes typ-
ically provide higher resolution per grid point than low-order methods, 
the compute time required for a given level of accuracy should be much 
higher with OpenFOAM than with Semtex. Other OpenFOAM DNS of tur-
bulent GNFs include those in [22] for turbulent channel flows of power 
law and Herschel–Bulkley fluids and [23] for turbulent flow of Herschel–
Bulkley fluids in a Taylor–Couette geometry.

More geometrically flexible finite element methods have also been 
used to undertake DNS of GNFs. A 2nd-order-in-space-and-time FEM 
code was used to simulate onset of instability, transition and flow 
unsteadiness in patient-derived models of arterial flow assuming a 
Carreau–Yasuda blood rheology model in [24]. An open-source FEM 
code [25] was used in [26] to investigate transition in stenotic flow use 
a modified Cross rheology model. No GN implementation details were 
provided for these studies. More recently, stabilized FEM methods have 
been used to consider unsteady flow in stenoses [27] and the discon-
tinuous Galerkin FEM code ExaDG has been used to simulate unsteady 
aortic flow [28]. Both [27] and [28] assumed a Carreau model for blood. 
Fully turbulent flow simulations of GNFs using FEM, however, appear 
to be absent.

Recently NEK5000 [29], another spectral element (high-order FEM) 
code framework, was used in [30] to investigate near-wall back-flow 
in the turbulent pipe flow of power law fluids. Details of the GN im-
plementation or other possible rheologies were not provided. We note 
that the fully-implicit methodology used in NEK5000 to deal with non-
Newtonian stress-divergence terms differs somewhat from that used in 
Semtex, which takes a simpler semi-implicit approach, as we shall out-
line in §§2 and 3.

Direct numerical simulation of GNF flows is the focus of the numer-
ical method described in this work. Our solver is implemented within 
the Semtex spectral-element/Fourier code framework [1,2] and has been 
the basis of a number of research publications dealing mainly with 
DNS of turbulent flow of GNFs in pipes and related simple geometries 
[16,21,31–37]. Compared to many other methods that have been used to 
undertake DNS of GNFs, Semtex has the advantage of high spatial accu-
racy and rapid parallel execution, being at least one order of magnitude 
faster than the common open source OpenFOAM finite volume code. It is 
ideal for DNS of flows with two-dimensional geometric complexity and 
one periodic dimension. Although Semtex has been applied to turbulent 
flows of GNFs for some time, details of the GN solver have not been pre-
viously documented, nor have the breadth of available rheology models 
and applications. Our purpose here is to remedy this situation and de-
scribe its use in both standard and more general geometries, to allow 
users to more readily benefit from application of the GN solver recently 
included in the open-source distribution [2].

2. Methodology

The incompressible Navier–Stokes equations with constant density 
and a (possibly variable) scalar dynamic viscosity are

𝜌
D𝒖
D𝑡 

= −∇𝑝+𝛁 ⋅ (2𝜇𝑺) + 𝜌𝒇 ,  with 𝛁 ⋅ 𝒖 = 0. (2)
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If 𝜇 = const. (and dividing through by 𝜌) this can be simplified in the 
conventional form

D𝒖
D𝑡 

= −∇𝑃 + 𝜈∇2𝒖+ 𝒇 ,  with 𝛁 ⋅ 𝒖 = 0. (3)

In timestepping (3) for DNS using a splitting scheme, it is very usual to 
deal with the nonlinear parts 𝑵 of D𝒖∕D𝑡 = 𝜕𝑡𝒖+𝑵(𝒖) explicitly in time 
(with a timestep restriction chosen to avoid CFL-type instabilities), but 
to use an implicit method to deal with the viscous terms 𝜈∇2𝒖 (see e.g. 
[1]), such that the more restrictive viscous instability does not constrain 
the timestep size.

However, for GNFs, one has instead to deal with viscous terms in 
the stress-divergence form 𝛁 ⋅ (2𝜈(�̇�)𝑺), as shown for (2), which will re-
introduce the viscous timestep restriction if wholly dealt with explicitly 
in time. A simple expedient first introduced by Leslie and Gao [38] in the 
context of Smagorinksy-type LES is to split the viscosity into a constant 
‘reference’ part 𝜈ref and a remainder which varies in space and time. 
This makes

𝛁 ⋅ (2𝜈𝑺) = 𝜈ref∇2𝒖+𝛁 ⋅ (2[𝜈(�̇�) − 𝜈ref]𝑺). (4)

One then treats the part 𝜈ref∇2𝒖 implicitly in time, and lumps 𝛁 ⋅
(2[𝜈(�̇�) − 𝜈ref]𝑺) in with the nonlinear terms 𝑵 to be dealt with explic-
itly in time. In practice this methodology often produces an acceptably 
large timestep (of the same order as that indicated by the CFL limit) and 
is the basis of our DNS studies of turbulent GN flows cited above.

There is still a problem in selecting a suitable value of 𝜈ref , since if 
too large, another type of instability (associated with unphysical nega-
tive viscosity) can arise, while if too small, the conventional numerical 
instability associated with explicit treatment of viscous terms will be 
re-asserted. In practice, however, finding a suitable balance by trial and 
error has worked reasonably well. The accuracy of simulations seems 
relatively insensitive to the exact value of 𝜈ref provided stable simula-
tions are obtained (see e.g. Fig. 3 and associated text). Typically, 𝜈ref will 
be chosen to represent an approximate average value of viscosity for the 
problem at hand. E.g. for a shear thinning fluid where the viscosity at the 
wall may be assessed based on known wall shear stresses, 𝜈ref ∼ 3𝜈wall
could be an appropriate guess. (For the example given in §8 we have 
used 𝜈ref = 5𝜈wall, while for the example in §5.2 where the maximum 
viscosity is known at the centreline, we have used 𝜈ref = 0.5𝜈max.) The 
splitting (4) has some limitations, and does not always allow successful 
simulation when rheology departs very significantly from Newtonian — 
e.g. where shear-thinning/thickening is a very dominant effect, or where 
a significant portion of the flow would in reality move as an unyielded 
plug.

While it is possible to deal with 𝛁 ⋅ (2𝜈𝑺) in other ways which are 
potentially more tractable (and stable) — such as the fully-implicit treat-
ment of [29] or the alternative implicit-explicit treatment of [39] — 
those methods require iterative solutions, whereas (4), which retains a 
standard Laplacian term with a constant viscosity, allows us to use di-
rect elliptic solvers. These are fast, and the setup cost is only incurred 
once, at the commencement of run-time. For three-dimensional prob-
lems, each Fourier mode is solved separately, and typically for the linear 
substeps, concurrently.

3. Implementation details

As more fully described in [1] temporal integration used by the dns 
solver in Semtex is handled using a ‘stiffly-stable’ approximation for the 
derivative of scalar variable 𝑢 at time level (𝑛+ 1), based on backwards 
differencing in time

𝜕𝑡𝑢
(𝑛+1) ≈ (Δ𝑡)−1

𝐾∑

𝑞=0 
𝛼𝑞𝑢

(𝑛+1−𝑞) (5)

where Δ𝑡 is a constant time step and 𝛼𝑞 are a set of weights. For 𝐾 = 1, 
the method is the backwards/implicit Euler approximation with 𝛼0 = 1

and 𝛼1 = −1. The approximation (5) has an error 𝑂(Δ𝑡)𝐾+1; Semtex can 
be run with 𝐾 = 1, 2, or 3, producing successively smaller errors but 
carrying the penalties of reduction of the region of stable integration 
in the complex plane as 𝐾 increases, and the requirement to store more 
time levels 𝑢(𝑛−𝑞) in order to reach 𝑢(𝑛+1). For 𝐾 ≤ 2, (5) is A-stable [40]; 
the default value in Semtex is 𝐾 = 2.

Substituting (4) and (5) into (3) produces a stiffly-stable fractional 
step time integration scheme for the incompressible Navier–Stokes equa-
tions, modified for GN rheologies:

𝒖∗ = −
𝐾∑

𝑞=1 
𝛼𝑞𝒖

(𝑛+1−𝑞) − Δ𝑡
𝐾−1∑

𝑞=0 
𝛽𝑞{𝑵(𝒖(𝑛−𝑞)) − 𝒇 (𝑛−𝑞)

−𝛁 ⋅ (2[𝜈(�̇� (𝑛−𝑞)) − 𝜈ref]𝑺(𝑛−𝑞))},

(6)

∇2𝑃 (𝑛+1) = (Δ𝑡)−1𝛁 ⋅ 𝒖∗, (7)

𝒖∗∗ = 𝒖∗ − Δ𝑡𝛁𝑃 (𝑛+1), (8)

∇2𝒖(𝑛+1) −
𝛼0

𝜈refΔ𝑡
𝒖(𝑛+1) = − 𝒖∗∗

𝜈refΔ𝑡
, (9)

where the weights 𝛼𝑞 are those introduced in (5), and weights 𝛽𝑞 are 
those for explicit polynomial-based extrapolation (at order 𝐾 − 1) of 
values from time levels (𝑛 − 𝑞) to time level (𝑛 + 1). Compared to the 
equivalent equations in [1], new stress-divergence terms appear in (6), 
and 𝜈ref is used in place of 𝜈 in (9).

This fractional-step scheme is an adaptation of the method origi-
nally proposed in [41] for the incompressible Navier–Stokes equations. 
Such schemes were later categorized as velocity-correction methods and 
given firmer theoretical bases [42,43]. As those works describe, in order 
to maintain the formal temporal accuracy of the method, it is required 
to introduce the identity

∇2𝒖 = 𝛁(𝛁 ⋅ 𝒖) −𝛁 × (𝛁 × 𝒖) (10)

and exploit 𝛁 ⋅ 𝒖 = 0 when deriving boundary conditions for the 
pressure–Poisson equation (7) from the Navier–Stokes equations (3), 
leading to the so-called rotational forms of the fractional-step schemes 
[42,43]. In the present setting, this gives the following approximation 
for a computed-Neumann pressure boundary condition at time level 
(𝑛+ 1), on any boundary where the pressure is not otherwise available 
(e.g. at walls):

𝜕𝑛𝑃
(𝑛+1) ≈ −𝒏 ⋅

𝐾−1∑

𝑞=0 

[
𝛽𝑞{𝑵(𝒖𝑛−𝑞) − 𝒇 (𝑛−𝑞)

−𝛁 ⋅ (2[𝜈(�̇� (𝑛−𝑞)) − 𝜈ref]𝑺(𝑛−𝑞))} + 𝜈ref𝛁 ×𝛁 × 𝒖(𝑛−𝑞) + 𝜕𝑡𝒖
(𝑛−𝑞)], (11)

where 𝒏 is the unit outward normal on the domain boundary. Again, 
compared to the equivalent equation in [1], new stress-divergence terms 
appear in (11), and 𝜈ref is used in place of 𝜈 in the rotational term. Owing 
to the presence of viscous terms in (11) which are not dealt with using 
(10) one may be concerned that the temporal accuracy of the method 
could be compromised. We demonstrate in Appendix A that typically, 
the method retains the intended formal temporal accuracy when stable 
outcomes are obtained.

Semtex uses equal-order approximations for velocity and pressure 
variables; in FEM nomenclature, (6)–(9), (11) becomes a ℙ𝑁 –ℙ𝑁 time-
integration scheme. Though one may be concerned about violations of 
the inf-sup condition with such equal order interpolations, in practice 
this does not seem to be problematic for high-order methods coupled 
with the fractional-step/rotational scheme described above, see e.g. 
[44], §8.3.3.

If the stress-divergence terms are omitted from (6)–(9), (11) and 𝜈
replaces 𝜈ref, the standard Newtonian algorithm from [1] is obtained, 
and the DNS solver is called dns. To distinguish the GN solver, which is 
the main focus of what follows, it is instead called gnewt. While for the 
dns solver various forms of the nonlinear terms are available, in gnewt 
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only the skew-symmetric form is implemented, i.e. 𝑵 = [𝒖 ⋅ 𝛁𝒖 + 𝛁 ⋅
(𝒖𝒖)]∕2. In our experience, this form is the most numerically robust.

So far as the user is concerned, there is generally little difference be-
tween setting up a session file for the DNS solver dns, as and the GN 
solver gnewt, as we will show in §§4 and 5. Typically all that is required 
is the addition of a small number of extra rheology model parameters 
within the TOKENS section of the file, as we will outline below. Regard-
less of the particular GN rheology chosen, one must set a value for the 
token REFVIS, i.e. 𝜈ref.

The outputs produced by gnewt are very similar to those of dns; an 
exception is that the viscosity is written out to solution files in addition 
to velocity and pressure fields. A restriction compared to dns is that 
transport of a scalar (and associated possible modelling of buoyancy 
effects) is not at present implemented in gnewt. The performance and 
scaling characteristics of gnewt are nearly identical to those of dns, 
as reported in [1]. A slight overhead is incurred for computation of the 
extra terms shown in (6) and (11).

4. Rheology models

Computation of kinematic viscosity 𝜈(�̇�) for different rheology mod-
els remains to be described. The kinematic viscosity models imple-
mented in the gnewt solver are set out below. We note that within 
the solver, a constant density 𝜌 = 1 is assumed, so that viscosities be-
come of kinematic type (with dimensions L2/T). However, viscosities 
provided by rheology models are typically given in dynamic form — di-
mensions M/(LT) — we examine techniques for non-dimensionalizing 
such models for computation in Appendix B.

All the models require the user to define numeric rheology tokens 
to the gnewt solver within the standard TOKENS section of an ASCII 
Semtex session file. Such tokens are parsed by the solver and so may 
be computed based on other tokens previously defined, as we will show 
below when dealing with validation examples. Values installed for these 
tokens may be recalled by the user as required, see §4.5 below.

4.1. Power law

The power law model

𝜈 = 𝜌−1𝐾�̇�𝑛−1, (12)

where 𝐾 is the consistency and 𝑛 is the power-law index, was one of 
the earliest proposed generalized Newtonian models [5]. While simple 
to define, it suffers from a numerical singularity where the shear rate 
falls to zero (e.g. in the centre of a laminar pipe or channel flow), giving 
an infinite viscosity. It reverts to the conventional Newtonian model for 
𝑛 = 1; fluids with 𝑛 < 1 are shear-thinning while those with 𝑛 > 1 are 
shear-thickening.

In order to use the power law model, the TOKEN PowerLaw must be 
set (to any non-zero value; we typically use PowerLaw=1). Also required 
are values for PL_N, i.e. the exponent 𝑛, and PL_K (which, since we 
are actually setting constants for 𝜈 rather than 𝜇, is technically 𝜌−1𝐾). 
Optionally the user can set the token PL_ZERO, which regularizes the 
viscosity and is used within the code as a cut-off minimum value for �̇�
in order to avoid the possibility of 𝜈 becoming undefined.

4.2. Herschel–Bulkley

This allows the modelling of viscoplastic behaviour and may be con-
sidered an elaboration of the power law model:

𝜈 = 𝜌−1[𝜏𝑦∕�̇� +𝐾�̇�𝑛−1], (13)

where 𝜏𝑦 is the yield stress. In the restriction 𝑛 = 1, it becomes the Bing-
ham model. As for the power law rheology, it predicts infinite viscosity 
if the shear rate falls to zero.

In order to use this model, the TOKEN HB must be set. Also required 
are values for HB_N, i.e. the exponent 𝑛, HB_K (which again is tech-
nically 𝜌−1𝐾), and YIELD_STRESS, actually = 𝜌−1𝜏𝑦). Optionally the 
user can again set a token HB_ZERO, which will be used as a cut-off 
minimum value for �̇� .

4.3. Carreau–Yasuda

This model has two plateau kinematic viscosities; 𝜈0 for low shear 
rates and 𝜈∞ for high shear rates, with a power-law type blending for 
intermediate rates.

𝜈 = 𝜈∞ + (𝜈0 − 𝜈∞)[1 + (𝜆�̇�)𝑎](𝑛−1)∕𝑎. (14)

In the restriction 𝑎 = 2 this is known as the Carreau model. The variable 
𝑛 is analogous to the equivalent power-law model variable in that for 
the power-law blend regime, it describes the slope of (𝜈−𝜈∞)∕(𝜈0 −𝜈∞).

This model does not allow the viscosity to become infinite. The user 
must set CAR_YAS, and provide parameters CY_LAMBDA, CY_A, CY_N, 
VISC_ZERO and VISC_INF.

4.4. Cross

The Cross model also has two plateau kinematic viscosities for low 
and high shear rates, with a blend for intermediate rates. Again, infinite 
viscosities do not arise.

𝜈 = 𝜈∞ + (𝜈0 − 𝜈∞)[1 + (𝜆�̇�)𝑛]−1. (15)

The user must set the TOKEN CROSS, and provide parameters 
CROSS_LAMBDA, CROSS_N, VISC_ZERO and VISC_INF.

4.5. Coding of rheology models

Since the rheology models above all start with pre-computation of 
�̇� , it is fairly straightforward to implement other generalized Newtonian 
rheologies if required (by modifying file viscosity.cpp). In Fig. 2 we 
show a code extract for computation of viscosity for the Cross rheology 
model, which uses Semtex’s auxfield class operator functions. A reader 
with some understanding of C ++ should be able to grasp the connection 
between this code snippet and (15).

5. Laminar validation studies

As noted in §1, there is a limited number of (steady, laminar, two-di-
mensional) analytical solutions available to allow validation of compu-
tations for flows of GNFs. The examples given in this section demon-
strate accuracy of the numerical method for steady two-dimensional 
solutions in both Cartesian and cylindrical coordinates, illustrating that 
the rheology models and numerical treatment work as expected. Steady 
solutions were obtained by integrating over sufficient elapsed time. The 
veracity and performance of the underlying unsteady DNS methodology 
used by Semtex was previously shown in [1].

5.1. Taylor–Couette flow of power-law fluid

We commence with an examination of the spatial convergence prop-
erties of the methodology for a simple problem that has an analytical 
solution and which may be computed in either Cartesian or cylindri-
cal coordinates. This is two-dimensional laminar Taylor–Couette flow 
of power law fluid, 𝜈 = 𝜌−1𝐾�̇�𝑛−1. If 𝑅𝑖 and 𝑅𝑜 be the inner and outer 
radii of the domain, rati 𝜂 = 𝑅𝑖∕𝑅0, with respective azimuthal speeds 
𝑤𝑖 and 𝑤0, difference Δ𝑉 = 𝑤𝑖 − 𝑤0, we take Ω𝑖 = 𝑤𝑖∕(𝑅𝑖Δ𝑉 ) and 
Ω𝑜 = 𝑤𝑜∕(𝑅0Δ𝑉 ). Then the azimuthal velocity as a function of ra-
dius 𝑟 is 𝑤 = 𝐴𝑟 + 𝐵𝑟(𝑛−2)∕𝑛, with constants 𝐴 = (Ω𝑜 − Ω𝑖𝜂

2∕𝑛)∕(1 −
𝜂2∕𝑛) and 𝐵 = ([Ω𝑖 − Ω𝑜]𝑅

2∕𝑛
𝑖

)∕(1 − 𝜂2∕𝑛). (With 𝑛 = 1 this reduces 
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/ / -- C r o s s m o d e l : G N V = n u _ i n f + ( n u _ 0 -n u _ i n f ) / ( 1 + ( l a m b d a * S R ) ̂  N ) ) . 

s t a t i c c o n s t d o u b l e L = F e m l i b : : v a l u e ( " C R O S S _ L A M B D A " ) ; 
s t a t i c c o n s t d o u b l e N = F e m l i b : : v a l u e ( " C R O S S _ N " ) ; 
s t a t i c c o n s t d o u b l e m u _ 0 = F e m l i b : : v a l u e ( " V I S C _ Z E R O " ) ; 
s t a t i c c o n s t d o u b l e m u _ i n f = F e m l i b : : v a l u e ( " V I S C _ I N F " ) ; 
s t a t i c c o n s t d o u b l e m u _ d i f = m u _ 0 - m u _ i n f ; 

( ( * S R * = L ) . p o w ( N ) ) + = 1 . 0 ; 
( ( * G N V = m u _ d i f ) / = * S R ) + = m u _ i n f ; 

� �

Fig. 2. A snippet of C ++ code for computation of kinematic viscosity the Cross model, from Gitlab distribution file gnewt/viscosity.cpp. The strain rate 
magnitude is input as (a pointer to) a Semtex auxfield class variable named SR and the output (𝜈) is another auxfield variable named GNV. Values for the 
model’s TOKENS are retrieved from the built-in parser using Femlib::value methods. Computation of GNV from SR proceeds using auxfield class operator 
functions with RPN-like logic. Processing for the other included rheologies proceeds along similar lines, and addition of alternatives proposed by other users should 
be straightforward.

to the conventional Newtonian solution.) The kinematic viscosity is 
𝜈 =𝐾(2𝐵∕𝑛)𝑛−1𝑟(2−2𝑛)∕𝑛.

In Semtex one may compute using either Cartesian or cylindrical 
coordinate systems, see [1,3]. In cylindrical coordinates this problem re-
quires a two-dimensional, three-component (2D3C) computation where 
only the azimuthal velocity is non-zero, whereas in Cartesian coordi-
nates (with an annular domain) one needs a two-dimensional, two-com-
ponent (2D2C) computation, the 𝑥, 𝑦 components of which are available 
from the solution above via a coordinate transformation.

Below is a complete listing of a Semtex session file used to compute 
the cylindrical-coordinate results for N_P=7 (7 points per element edge; 
polynomial order 6) shown in Fig. 3. Reynolds number has been set low 
enough that Taylor vortices will not form. We note that in cylindrical 
coordinates, Semtex uses 𝑥, 𝑦 and 𝑧 as the axial, radial and azimuthal 
coordinates with 𝑢, 𝑣 and 𝑤 as the corresponding velocity components. 
The example uses the yacc-based function parser included in Semtex to 
compute derived constants (TOKENS), boundary conditions (BCS), and 
initial/comparison conditions (USER) — the latter can be used by the 
Semtex compare utility both to compute starting values and to com-
pare against computed outcomes. See [1] and the user guide within the 
Semtex repository at [2] for further explanation.

< F I E L D S > 
u v w p 

< / F I E L D S > 

< T O K E N S > 
C Y L I N D R I C A L = 1 

N _ P = 7 
N _ Z = 1 
T _ F I N A L = 1 0 0 
D _ T = 0 . 0 1 
N _ S T E P = i n t ( T _ F I N A L / D _ T ) 
N _ T I M E = 1 

R e y n o l d s = 5 0 

P o w e r L a w = 1 
P L _ K = 1 . 0 / R e y n o l d s 
P L _ N = 0 . 6 
P L _ Z E R O = 1 e -6 
K I N V I S = P L _ K 
R E F V I S = 0 . 9 5 * K I N V I S 

R i = 0 . 5 2 
R o = 1 . 0 
e t a = R i / R o 
W i = 1 . 0 
W o = -0 . 5 
d e l t a V = W i -W o 
W i = W i / d e l t a V 
W o = W o / d e l t a V 
O M i = W i / R i 
O M o = W o / R o 

N u m e r = 1 -e t a ̂  ( 2 / P L _ N ) 
E x p o n = ( 2 -2 * P L _ N ) / P L _ N 
A = ( O M o -O M i * e t a ̂  ( 2 / P L _ N ) ) / N u m e r ) 
B = ( O M i -O M o ) * R i ̂  ( 2 / P L _ N ) / N u m e r ) 

< / T O K E N S > 
< U S E R > 
u = 0 
v = 0 
w = A * y + B * y ̂  ( 1 -2 / P L _ N ) 
p = 0 
l = P L _ K * ( 2 * B / P L _ N ) ̂  ( P L _ N -1 ) * y ̂  E x p o n 

< / U S E R > 

< G R O U P S N U M B E R = 2 > 
1 v g i v e n 
2 w w a l l 

< / G R O U P S > 

< B C S N U M B E R = 2 > 
1 v 4 

< D > u = 0 . 0 < / D > 
< D > v = 0 . 0 < / D > 
< D > w = A * y + B * y ̂  ( 1 . 0 -2 / P L _ N ) < / D > 
< H > p < / H > 

2 w 4 
< D > u = 0 . 0 < / D > 
< D > v = 0 . 0 < / D > 
< D > w = A * y + B * y ̂  ( 1 . 0 -2 / P L _ N ) < / D > 
< H > p < / H > 

< / B C S > 

< N O D E S N U M B E R = 9 > 
1 0 0 . 5 2 0 
2 0 . 5 0 . 5 2 0 
3 1 0 . 5 2 0 
4 0 0 . 7 6 0 
5 0 . 5 0 . 7 6 0 
6 1 0 . 7 6 0 
7 0 1 0 
8 0 . 5 1 0 
9 1 1 0 

< / N O D E S > 

< E L E M E N T S N U M B E R = 4 > 
1 < Q > 1 2 5 4 < / Q > 
2 < Q > 2 3 6 5 < / Q > 
3 < Q > 4 5 8 7 < / Q > 
4 < Q > 5 6 9 8 < / Q > 

< / E L E M E N T S > 

< S U R F A C E S N U M B E R = 6 > 
1 1 1 < B > w < / B > 
2 2 1 < B > w < / B > 
3 2 2 < P > 1 4 < / P > 
4 4 2 < P > 3 4 < / P > 
5 4 3 < B > v < / B > 
6 3 3 < B > v < / B > 

< / S U R F A C E S > 
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Fig. 3. Spatial convergence properties for spectral element simulations of 
Taylor–Couette flow of fluid with shear-thinning power law rheology, exponent 
𝑛 = 0.6, computed using both Cartesian and cylindrical coordinate systems and 
with four elements; the axial extent of the cylindrical domain was coincidentally 
chosen the same as its outer radius. Comparison to analytical solution. Crosses 
drawn for N_P=6 and 10 show the effects in the Cartesian case of varying RE-
FVIS in the range [0.2–1.8]×PL_K vs. 0.95×PL_K (value shown in listing) used 
for all other cases.

Note the rheology TOKENS for power-law fluid (see §4.1). While the 
constant KINVIS has no direct significance within gnewt, it is defined 
here partly so that the same session file might be used with the standard 
Newtonian solver dns that is part of Semtex to give the Newtonian-
rheology result, i.e. with 𝑛 = 1. (It is also possible to simulate the flow 
of Newtonian fluid using gnewt with power law rheology model, e.g. 
by setting PL_N = 1 in the power-law rheology tokens.)

In Fig. 3 we illustrate the spatial convergence properties of the steady 
solutions computed for 𝑅𝑖 = 0.52 and 𝑅𝑜 = 1, 𝑤𝑖 = 1, 𝑤𝑜 = −0.5, 𝑛= 0.6
in 4-element domains, both Cartesian and cylindrical. For the Cartesian 
simulation we have used a quarter-circle and supplied the analytical so-
lution on the domain boundaries. As expected, the method demonstrates 
asymptotic exponential convergence, here down to machine-noise lev-
els, and the outcomes for both coordinate systems are very similar. Also 
in Fig. 3 we illustrate the effect of substantial variation of REFVIS at 
two spatial resolution values. The effect is generally comparatively mi-
nor and less than the change associated with a variation of one order in 
spatial interpolation.

A Unix workflow to produce a 𝑤-component (azimuthal velocity) 
datum for Fig. 3, assuming the listing shown above is contained in text 
file TC, might be:

$ c o m p a r e T C > T C . r s t 
$ g n e w t T C & > / d e v / n u l l 
$ c o m p a r e T C T C . f l d > / d e v / n u l l 
F i e l d ’ u ’ : n o r m _ i n f : 4 . 4 4 4 e -1 6 
F i e l d ’ v ’ : n o r m _ i n f : 3 . 0 7 0 e -0 6 
F i e l d ’ w ’ : n o r m _ i n f : 4 . 1 0 9 e -0 6 
F i e l d ’ p ’ : n o r m _ i n f : 5 . 7 4 0 e -0 2 
F i e l d ’ l ’ : n o r m _ i n f : 4 . 6 3 9 e -0 7 

This workflow uses the Semtex utility compare to produce from the 
analytical result in the USER section both initial conditions for gnewt 
and comparison data for the computed solution. We note that field name 
l is used for kinematic viscosity, also saved as part of the computed 
results.

In the session file listed above, we have used a GROUP that is labelled 
wall. As for Semtex dns, executing gnewt will create a file with an 
extension .flx to which will be written integrals of tractive forces per 
unit length (and, in cylindrical coordinates, moments per radian around 
the symmetry axis) over the SURFACES that are tagged into the wall 
group. See the Semtex user guide for more detail regarding file structure.

Here, on the (inner-radius) wall, 𝑅𝑖 = 0.52, one can find from the 
analytical solution and rheology that �̇�𝑤 = 6.07092 and 𝜈𝑤 = 9.72139 ×
10−3. Hence one expects that the wall-generated torque per radian about 
the rotational axis should be −𝑅2

𝑖
𝜈𝑤�̇�𝑤𝐿𝑥 = −0.522 ×6.0792×9.72139×

10−6 × 1 = −15.958 × 10−3, where we have used 𝐿𝑥 = 1 from the ge-
ometry; the minus sign arises because the wall rotates with a positive 
tangential velocity and gnewt computes fluid forces and moments act-
ing on wall boundaries, rather than on the fluid.

Extracting the computed torque we find:

$ t a i l -1 T C . f l x | s l i t -c 1 1 
-0 . 0 1 5 9 5 8 4 

as expected (we have used Semtex utility slit to give the last, 11th, 
column of TC.flx which contains the torque). By including the outer 
SURFACES in the wall GROUP, one will find the net torque is zero to a 
good approximation, again as expected.

5.2. Laminar Poiseuille flow of Carreau fluid

In [45], analytical solutions for volumetric flow rate were supplied 
for steady flows of GNFs with Carreau and Cross rheologies in plane 
and circular Poiseuille flows. An extended analytical treatment was later 
supplied by Wang [46] for steady Poiseuille flow of Carreau–Yasuda 
GNF in a circular pipe, with solutions given in terms of the Gauss hy-
pergeometric function 1𝐹2. An advantage of Wang’s solution over that 
of Sochi is that [46] provides outcomes for velocity profiles as well as 
for volumetric flow rate.

We have simulated the Carreau-rheology case given by Sochi in Fig. 3
(a) of [45] for a pressure drop of Δ𝑝 = 1000 Pa over a pipe length of 
𝐿 = 0.85 m and radius 𝑅 = 0.09 m, using a cylindrical coordinate for-
mulation with our Carreau–Yasuda model (§4.3). As explained in [45], 
in order to make progress, one first needs to find the wall shear rate 
(or shear stress), which requires solution of a nonlinear equation since 
the viscosity is a function of strain rate; such requirements are com-
mon when dealing with Poiseuille flows of GNFs. The supplied rheology 
parameters are 𝑛 = 0.65, 𝑎 = 2, 𝜇0 = 0.1 Pa.s, 𝜇∞ = 0.005 Pa.s, 𝜆 = 1.5
s−1. Solving eq. (14) of [45] we find (to 6 s.f.) the wall shear rate �̇�𝑤 =
5920.16 s−1. WLOG we can take 𝜌 = 1 kg/m3. Non-dimensionalizing 
rheology parameters for convenience at a unit maximum radius as out-
lined in Appendix B, using dimensional length scale 𝐿 ≡𝑅 = 0.09 m and 
velocity scale (again to 6 s.f.) 𝑈 = �̇�𝑤𝑅 = 532.814 m/s, we obtain values 
of Carreau–Yasuda model TOKENS (§4.3) as follows (again to 6 s.f. for 
brevity): CAR_YAS=1, CY_A=2.0, CY_N=0.65, CY_LAMBDA=8880.23, 
VISC_ZERO=2.08536E -3, VISC_INF=104.268E -6 and a dimen-
sionless axial body force CONST_X=372.968E -6. From eq. (23) of 
[46] we have the analytical dimensionless centreline velocity 𝑢max =
0.45324069935. For 𝜈ref we used half the centreline value (𝜈0), i.e. 
REFVIS=0.5*VISC_ZERO.

The spatial convergence outcomes for centreline flow velocity for 
this case are shown in Fig. 4. As expected, convergence is asymptotically 
exponential.

5.3. Laminar Poiseuille flow of power-law fluid

The examples of §§5.1 and 5.2 were benign partly because the analyt-
ical value of 𝜈 remained finite everywhere in the domain, either because 
�̇� > 0 everywhere in §5.1 or because the Carreau–Yasuda model provides 
a limiting maximum viscosity for the case in §5.2, even though �̇� = 0 at 
the pipe centreline. However, as noted in §4.1 and §4.2, the viscosity 
becomes singular for some rheologies when �̇� = 0, which e.g. occurs 
on the centreline of laminar pressure-driven flow in a tube or chan-
nel. In the present case we consider body-force (or pressure-gradient) 
driven flow in a circular tube, radius 𝑅 and with body force per unit 
mass 𝐺 acting in the axial direction (𝐺 ≡ −𝜕𝑃∕𝜕𝑥). The analytical so-
lution with power-law fluid in this case is 𝑢 = 𝑈max[1 − (𝑟∕𝑅)(𝑛+1)∕𝑛], 
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Fig. 4. Spatial convergence properties for spectral element simulations of circu-
lar Poiseuille flow of Carreau fluid, using a cylindrical coordinate mesh. Com-
parison of centreline velocity to the analytical solution of [46].

Fig. 5. Spatial convergence properties for spectral element simulations of 
Poiseuille flow of fluid with power law rheology, exponent 𝑛 = 0.6, computed 
using a cylindrical coordinate system, and compared to the analytical solution. 
Results are shown for cases where the domain axis is included, and where the 
minimum radius 𝑟min = 0.04𝑅.

where 𝑈max = 𝑛∕(𝑛 + 1)[𝜌𝐺∕(2𝐾)]1∕𝑛𝑅(𝑛+1)∕𝑛 (the reader may confirm 
that this reduces to the conventional Newtonian case for 𝑛 = 1).

We can compute the solution in cylindrical coordinates with the axis 
as part of the domain (in which case we theoretically have 𝜈 =∞ locally, 
truncated numerically), or with the axis excised at some 𝑟 = 𝑟min, where 
the velocity is provided by the analytical solution, and where the vis-
cosity will remain finite (but perhaps quite large). In Fig. 5 we compare 
results for the two cases, with 𝑛 = 0.6 and 𝑟min = 0.04𝑅. The regular-
ization shear rate parameter TOKEN was set as PL_ZERO=1e -12. We 
observe that when the axis is excised, convergence remains nearly ex-
ponential until element order becomes large, and is much more rapid 
than if the axis is included.

This example suggests that for rheologies for which the viscosity can 
theoretically become infinite where �̇� = 0, the user must be cautious, 
especially if this can occur over an extensive region of the domain. We 
note, however, that if the flow is turbulent (as for examples we introduce 
below), this is rarely a significant issue because it is found that zero 
shear rates occur only very rarely (see e.g. [47] figure 6 i–l), and do not 
remain in fixed locations. Also, in such flows it is typically the case that 
variations in viscosity are most dynamically relevant near walls, where 
the shear rate is high [33,35].

Fig. 6. Shear rheogram for 0.075 wt% aqueous Carbopol GNF (◦), a composite 
of measurements made with two different rheometer types to cover a wide range 
of shear rates. Superimposed curves show Herschel–Bulkley (0–III) and power 
law (IV) model fits made over different ranges of shear rates. Re-plotted from 
[33].

Table 1
Rheology parameters fitted to the data of Fig. 6; Models 0–III are for Herschel–
Bulkley rheology and IV is for power-law rheology. Note the significant variation 
in fitted Herschel–Bulkley rheology model parameters with shear rate range 
restriction.

Model Shear rate [s−1] 𝜏𝑦 [Pa] 𝐾 [Pa s𝑛] 𝑛

0 Laminar pipe 1.33 0.067 0.88 
I 0.01–500 0.14 0.389 0.53 
II 0.01–5000 0.52 0.177 0.65 
III 0.01–15 000 0.72 0.129 0.69 
IV 0.01–15 000 – 0.150 0.68 

6. Validation for turbulent flow showing the importance of 
rheology characterization

Having demonstrated the veracity of the simulation methodology 
against analytical laminar solutions in §5, we now turn to DNS of tur-
bulent flows, for which no analytical solutions exist. Validation in this 
case presents two difficulties: firstly, that there is a paucity of other 
DNS solutions with which to compare and secondly, that relevant ex-
perimental measurements of rheology are more difficult to obtain than 
is the case for Newtonian fluids both because GN rheology models are 
only low-parameter-count idealizations of real fluid behaviour and be-
cause accurate characterization of their parameter values at appropriate 
rates of strain is difficult to obtain.

In this section we discuss outcomes from a coupled measurement and 
DNS campaign where much attention was paid to the issue of rheology 
characterization. When attempting to fit experimentally measured rhe-
ology one should be cognizant of the range of shear rates which are 
liable to be important; much experimental rheological equipment can 
only achieve low-to-moderate shear rates, which may be much lower 
than could be present e.g. near the wall of a turbulent flow.

In [33] we used gnewt to examine rheological model characteri-
zation as applied to turbulent flow of 0.075 wt% aqueous Carbopol 
solution in a pipe flow rig with diameter 𝐷 = 44.5 mm, using vari-
ous models, but with rheology measurements that used two types of 
rheometer —concentric cylinder and parallel plate — to cover almost 
four orders of magnitude in shear rate. (We note that low concentration, 
e.g. < 0.1 wt%, aqueous solutions of Carbopol are generally accepted 
as reasonable analogs of true shear-thinning GNFs.) The rheogram and 
various least-squares model fits to it are shown in Fig. 6, with the pa-
rameters supplied in Table 1.

As outlined in [33], Model 0 was obtained by using the analytical 
solution for laminar pipe flow of Herschel–Bulkley fluid to fit 𝜏𝑦 , 𝐾 and 
𝑛 against experimental measurements of bulk velocity and pressure drop 
for the laminar regime in the pipe flow rig, with �̇�𝑤 < 500 s−1, see Fig. 7. 
Such laminar-regime pipe flow data are sometimes used for rheology 
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Fig. 7. Pressure drops and bulk velocities from the pipe loop of experiments of 
[33] with 0.075 wt% aqueous Carbopol solution as the working fluid, shown 
with turbulent DNS data for the highest pressure drop re-dimensionalized for 
comparative purposes. The inset shows an expanded view with labelled data 
corresponding to simulations with the rheology parameters from Table 1. The 
solid line shows the analytical laminar solution for Herschel–Bulkley fluid, fitted 
to provide the rheology parameters of Model 0. The onset of transition was 
estimated to be 𝑈 ≈ 2.3 m/s. Re-plotted from [33].

characterization of GNFs; in effect this method provides another type 
of rheometry. Models I–III are least-squares fits of the Herschel–Bulkley 
model to the rheogram over successively wider rheometer shear rate 
ranges, while Model IV is a power law fit over the widest shear-rate 
range, as for Model III. The various models provide different conditional 
curve fits to the true rheology, as is evident in Fig. 6; this is reflected in 
the differing values of the fitted constants shown in Table 1.

The different model parameters were then used as the basis for 
DNS studies of turbulent pipe flow. For the highest cited turbulent 
bulk velocity 𝑈 = 𝑄∕𝐴 = 2.90 m/s at pressure gradient d𝑝∕d𝑧 = 2720
Pa/m (see Fig. 7) one can estimate a nominal mean wall shear rate 
�̇�𝑤 = [(𝜏𝑤 − 𝜏𝑦)∕𝐾]1∕𝑛 = 2630 s−1using the parameters of Model III and 
(from an elementary force balance) 𝜏𝑤 = d𝑝∕d𝑧 ×𝐷∕4. This shear rate 
is within the fitting range of Models II–IV, but well above those used 
for Models 0 and I. Comparing the predicted bulk velocities to the mea-
sured value, the errors were -13.4%, 8.3%, 1.2%, 0.3% and 0.4% for 
Models 0–IV respectively.

These outcomes are illustrated in Fig. 7. The curve used to fit the 
parameters of Model 0 to the experimental data up to 2.3 m/s is also 
shown; as one would hope, the fit in the laminar regime is good, how-
ever, the discrepancy in predicted bulk velocity for DNS of turbulent 
flow using Model 0 is substantial. The discrepancy for Model I is also 
large. The outcomes for Models II–IV could probably all be deemed ac-
ceptable; the key point is that the upper shear rate limits of rheogram 
data used in fitting Models II–IV all encompass the nominal experimen-
tal maximum mean wall shear rate of 2630 s−1 whereas the upper limit 
used for Model I does not. Agreement between simulation and exper-
iment is best for Models III (Herschel–Bulkley) and IV (power law), 
whose fitting included the same upper shear rate of 15 000 s−1.

That part of the study indicated that for acceptable accuracy in pre-
diction of the most basic flow statistics (e.g. to within 1% on bulk 
velocity), the rheological modelling range should at least bracket the 
nominal wall shear rate, and that rheological characterization based on 
laminar flow in the same experimental rig is liable to be rather inade-
quate for the task of modelling turbulent flow.

It is notable that though Models III and IV (respectively for Herschel–
Bulkley and power law rheologies, fitted over the same range of shear 
rates) deviate from the measured rheogram at low shear rates (substan-

Fig. 8. Mean velocity profiles for Model III and IV GNF simulations correspond-
ing to the highest experimental flow rate. Values are non-dimensionalized using 
the friction velocity 𝑢∗ = (𝜏𝑤∕𝜌)1∕2 and wall length scale 𝜈𝑤∕𝑢∗ in conventional 
fashion. Re-plotted from [33].

Fig. 9. Probability density functions of dimensionless shear rates in the near-
wall region (𝑦+ < 10) for GN simulations with Models III and IV, and a matching 
Newtonian DNS. �̇�+ = �̇�∕(𝑢∗2 ∕𝜈𝑤). Re-plotted from [33].

tially so for Model IV, see Fig. 6), they both match the rheogram very 
well at high shear rates and each predict the experimental turbulent 
bulk velocity to within 0.2%. This good agreement is reflected in the 
mean velocity profiles for Models III and IV, which are virtually indis-
tinguishable, see Fig. 8.

Based on conditional pdfs of shear rates in the wall region (see 
Fig. 9), we recommended that the rheological models should be fitted to 
at least double the maximum average nominal wall shear rate (�̇�+ = 1). 
Note that the near-wall shear rate pdfs for both shear-thinning GNFs are 
virtually indistinguishable from one another, from one obtained from a 
Newtonian simulation conducted at the same friction Reynolds number, 
and also from a simulation of power law rheology at more than twice 
the friction Reynolds number when expressed in wall units. Almost all 
the data fall below �̇�+ < 2.

Another significant outcome from [33] was that the details of the 
GN rheology model employed for turbulent flow studies may be rela-
tively unimportant, provided the rheology is fitted over an appropriately 
large range of shear rates. For example, radial profiles of first- and 
second-order velocity statistics for Models III and IV were virtually indis-
tinguishable (see Fig. 5 of [33]), even though the mean viscosity profiles 
differed somewhat outside the wall and buffer layers. In a later study 
[34], we further showed that outside the wall and buffer layers, the vis-
cosity of a shear-thinning fluid could be held constant at the inner/outer 
overlap value with little effect; only the viscosity variation in the inner 
(near-wall) layers being very important. This observation is relevant for 
rheology measurements and suggests that for turbulent flow predictions 
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accuracy of the rheology measurements at very low shear rates where 
the rheology measurements are tedious and error-prone could be sacri-
ficed in favour of high-shear-rate measurements.

The chief lesson to be drawn from this section is that DNS studies of 
turbulent flows of GN fluids can quite well approximate outcomes for 
real turbulent flows provided that the real rheology is adequately char-
acterized at a range of shear rates relevant to turbulent flow, typically 
in the near-wall region.

7. Turbulent GN flows

In this section we briefly discuss some outcomes obtained from sta-
tistical analysis of turbulent flows of generalized Newtonian fluids in 
pipes, again using Semtex.

In [35] we examined the effect of variation in power-law index 𝑛 on 
turbulent pipe flows at 𝑅𝑒𝜏 = 𝑢∗𝑅∕𝜈𝑤 = 323 (bulk Reynolds numbers 
𝑂(104)), keeping the wall shear stress 𝜏𝑤 and viscosity 𝜈𝑤 fixed. (The 
consistency 𝐾 was changed as 𝑛 was varied.) In Fig. 10 we show the 
effect of changing 𝑛 from shear thickening (𝑛 = 1.2) to shear thinning 
(𝑛 = 0.6) via examination of various flow statistics that may be collected 
by gnewt on setting TOKEN AVERAGE=2, and by using the Semtex utility 
rstress in post-processing to extract second-order statistics.

Fig. 10 (a) shows that shear thinning acts to increase the axial flow 
velocity at all radii (and conversely that shear thickening reduces it). 
Since the wall shear stress and viscosities are fixed, this means that 
the generalized Reynolds number 𝑅𝑒𝐺 =𝑈𝐷∕𝜈𝑤 increases and that the 
(Fanning) friction factor 𝑓 = 𝜏𝑤∕(

1
2𝜌𝑈

2) decreases with increasing shear 
thinning; shear thinning is drag reducing.

Fig. 10 (b) shows that in the viscous sublayer (𝑦+ < 10) the average 
viscosity is almost constant with distance from the wall, but then that 
there is significant variation with flow index and distance from the wall. 
An interesting side-effect (see inset) is that, for the same 𝜏𝑤 , the mean 
viscosity at the wall in fact increases somewhat with shear thinning. This 
comes about because the average shear stress in turbulent GN flow has 
an additional component owing to the correlation between fluctuations 
in viscosity and shear rate, which is negative for shear thinning, and 
which, unlike Reynolds shear stress, does not fall to zero at the wall. 
This also implies that in the viscous sublayer, mean velocity profiles for 
different values of 𝑛 do not exactly collapse when conventional law-of-
the-wall scaling is used; this may just be seen on close examination of 
Fig. 10 (a). See [35] for a more extended discourse.

Figs. 10 (c, d) illustrate the fact that shear thinning leads to an en-
hancement in streamwise velocity fluctuations and a reduction in radial 
(and, not shown, azimuthal) velocity fluctuations; thus, near the wall, 
it enhances the anisotropy of flow structure variation.

In [36] we examined the effect of changing the yield stress 𝜏𝑦 on 
turbulent flows of Bingham fluids (see §4.2) again at 𝑅𝑒𝜏 = 323, and 
again with 𝜏𝑤 and 𝜈𝑤 fixed. (We note that the shear rates were every-
where large enough that all regions were predicted to be yielded.) While 
there are differences in detail compared to the outcomes of [35], increas-
ing yield stress in the rheological model had a broadly similar effect to 
shear thinning in that it brought about drag reduction. However, un-
like power-law index variation, the effects of yield stress variation were 
strongest outside of the wall layers because within the wall layers, the 
fluid had almost pure Newtonian rheology.

8. An example of scaling to simulate experimental results

A recent experiment [48] examines transitional and turbulent flows 
of shear-thinning GN fluids in a pipe. The provided data on rheol-
ogy, Reynolds number and pressure drop enables us to show how to 
use such experimental results to set up a simulation-based comparison. 
While [48] studied symmetry-breaking transitions over a wide range of 
Reynolds numbers, an in-depth comparison would take us too far afield 
and we focus on a single case near the upper end of their Reynolds num-
ber range for which the flow is turbulent.

Fig. 10. The effect of varying flow index 𝑛 for turbulent pipe flows of power 
law GNFs, at fixed 𝑅𝑒𝜏 = 323. Arrows show sense of increasing 𝑛 from 0.6 to 
1.2; solid lines are for Newtonian fluid, 𝑛 = 1. Dimensionless profiles of (from 
a–d): average streamwise velocity, average viscosity, rms axial (𝑧) and radial (𝑟) 
velocity fluctuations. From [35].

The experiments used low-concentration aqueous solutions of Car-
bopol, which as we noted in §6 are commonly accepted as having quite 
pure GN rheologies with negligible viscoelastic effects. The case we 
examine used 0.08 wt% Carbopol, for which (their Table 1) a Herschel–
Bulkley model was chosen, with yield stress 𝜏𝑦 = 0.06 Pa, consistency 
𝐾 = 0.23 Pa s𝑛, and power-law index 𝑛= 0.61. In the experiment, pres-
sure drop (Δ𝑝) and bulk flow velocity were measured over a 3 m length 
(𝑙) of 25 mm diameter pipe (𝐷). In their Fig. 2, flow measurement re-
sults are presented in the form of generalized Reynolds number

𝑅𝑒𝐺 =
4𝜌𝑈 [(𝜏𝑤 − 𝜏𝑦)∕𝐾]1∕𝑛

Δ𝑝∕𝑙 
≡
𝑈𝐷

𝜈𝑤
, (16)

with the wall viscosity derived from the wall shear stress via the rheol-
ogy model, and the friction factor 𝑓 = 𝜏𝑤∕(

1
2𝜌𝑈

2). We assume 𝜌 = 1000
kg/m3.

Choosing a case they cite as turbulent, 𝑅𝑒𝐺 = 8000, we estimate 
𝑓 = 0.0056 from their Fig. 2 and then solve (16) iteratively to find 
𝜏𝑤 = 30.05 Pa from which Δ𝑝∕𝑙 = 4808 Pa/m, 𝑈 = 3.276 m/s and 
𝜇𝑤 = 10.24×10−3 Pa s follow. In addition the wall shear rate �̇�𝑤 = 2935
s−1, cf. Fig. 6 above. Using the methodology introduced in Appendix B
with 𝐿 ≡𝐷 as the length scale, one obtains dimensionless rheology val-
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Fig. 11. Spectral element mesh with 161 elements used for computation of tur-
bulent GN flow in a pipe matching a case from [48]. A session file containing 
this mesh can be found in mesh/circle161 in the Semtex distribution.

ues 𝜏′
𝑦
= 5.590×10−6 and 𝐾 ′ = 419.4×10−6, with a dimensionless body 

force 𝑓 ′ = 11.20 × 10−3 to drive the flow. The nominal dimensionless 
average wall kinematic viscosity is 𝜈′

𝑤
= 125.0 × 10−6.

To compute the flow in Cartesian coordinates, we have modified 
a 161-element session file available as mesh/circle161 within the 
Semtex distribution. The element outlines for this mesh, with 𝐷 = 1, 
are shown in Fig. 11. The only significant changes required to the sup-
plied session file are in the TOKENS section, as shown below. The reader 
should be able to identify the dimensionless parameters given above 
within the TOKENS. Fourier expansions are used in the 𝑧 (out-of-plane) 
dimension, with fundamental wavenumber BETA=1 to make the stream-
wise domain length 𝐿𝑧∕𝐷 = 2𝜋∕𝛽 = 2𝜋.

< T O K E N S > 
H B = 1 
H B _ Z E R O = 1 e -8 
H B _ K = 4 1 9 . 4 e -6 
H B _ N = 0 . 6 1 
Y I E L D _ S T R E S S = 5 . 5 9 0 e -6 

W A L L V I S = 1 2 5 . 0 e -6 
R E F V I S = 5 * W A L L V I S 
d p d z = 1 1 . 2 0 e -3 

N _ T I M E = 2 
N _ P = 9 
N _ Z = 1 2 8 
B E T A = 1 

D _ T = 0 . 0 0 1 
T _ F I N A L = 1 0 0 
N _ S T E P = i n t ( T _ F I N A L / D _ T ) 
I O _ C F L = 5 0 
I O _ F L D = 5 0 0 

A V E R A G E = 2 

# S V V _ E P S Z = 2 0 * R E F V I S 
# S V V _ M Z = i n t ( N _ Z / 8 ) 
# S V V _ E P S N = 5 * R E F V I S 
# S V V _ M N = i n t ( N _ P / 2 ) 
< / T O K E N S > 

< F O R C E > 
C O N S T _ Z = d p d z 

< / F O R C E > 

Also one may note spectral vanishing viscosity (SVV) parameter TO-
KENS [49], which are commented out — these were used to control 
the transition from the initially computed two-dimensional flow to a 
three-dimensional turbulent state; once transition completed, SVV was 
switched off, but we have displayed the commented-out values as an in-

Fig. 12. Profiles of (upper) axial velocity and (lower) GN viscosity across the 
pipe for the case investigated in §8, illustrating the differences between laminar 
and turbulent flow.

dication of what might be required to control transition (the transition 
process itself not being of interest here). See a more complete discus-
sion on the use of SVV and transition control in the Semtex user guide 
within the distribution [2].

The flow was initially computed as two-dimensional three-compo-
nent with N_Z=1, then projected to three-dimensional three-component 
with N_Z=128, with white noise added using the noiz utility pro-
vided with the Semtex distribution to initiate transition (and with SVV 
enabled). After monitored energy in Fourier modes (saved in file ses-
sion.mdl) showed that the outcome was statistically stationary, SVV 
was disabled. After 10 more domain wash-through times had elapsed, 
temporal averaging was initiated (here, with AVERAGE=2 to allow com-
putation of Reynolds stress terms as well as averages of primitive vari-
ables and viscosity) for approximately 30 domain wash-through times 
(in two tranches of 100 time units). These procedures are all docu-
mented in the Semtex user guide. To run the GN solver in parallel via 
MPI, one uses the gnewt_mp executable as below (where the session 
file name used was HB03, and 16 processes are employed):

$ m p i r u n -n 1 6 g n e w t _ m p H B 0 3 

We note that while a zero-shear-rate regularization cutoff (HB_ZERO) 
has been supplied (as is potentially appropriate to computations with 
power law or Herschel–Bulkley rheologies), checks of instantaneous 
field file dumps written out during execution in the turbulent regime 
showed that at no point in the mesh did the shear rate in fact drop to 
be close to supplied cut-off value �̇� = 1× 10−8, in line with our remarks 
at the end of §5.3. For example, using one representative field dump 
from the turbulent regime, we can use Semtex utilities first to add the 
rate-of-strain field (labelled g below), and then find its maximum and 
minimum values:

$ a d d f i e l d -g -s H B 0 3 H B 0 3 . f l d > t m p . f l d 
$ f p m i n m a x . p y t m p . f l d 

M I N M A X 
u -0 . 2 5 1 7 5 0 . 3 2 4 0 0 7 
v -0 . 2 3 6 5 8 0 . 2 2 2 0 5 9 
w -0 . 0 2 2 0 2 2 5 1 . 2 0 0 6 3 
p -0 . 0 3 3 4 9 9 0 . 0 4 2 5 6 8 8 
l 6 . 5 7 4 9 5 e -0 5 0 . 0 0 1 2 9 7 4 4 
g 0 . 0 6 7 1 7 8 8 1 1 4 . 7 7 

Reassuringly, we observe that the minimum reported instantaneous 
value for g ≡ �̇� = 0.0671788, much larger than the supplied minimum 
cut-off value of HB_ZER0=1e -8. 

In Fig. 12 we show comparisons of axial velocity and GN viscosity 
profiles obtained in laminar and turbulent flow simulations for this case. 
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(Data for the turbulent flow were first averaged in time, then axially and 
azimuthally.) The wall viscosity 𝜈𝑤 for the laminar flow matched the ex-
pected value of 125.0×10−6 to 4 s.f., whereas for the turbulent flow the 
average value of 𝜈𝑤 = 127.1×10−6, or 1.7% higher (for the same value of 
𝜏𝑤, a somewhat larger average value of viscosity will be obtained at the 
wall for turbulent vs. laminar flow of the same shear-thinning GNF, see 
discussion in §7 above). As expected, the centreline viscosity becomes 
very large in the laminar case — the theoretically infinite laminar cen-
treline value for Herschel–Bulkley fluid cannot of course be adequately 
resolved by the simulation, though this has little influence on the ve-
locity profile. The mean centreline streamwise velocity in the turbulent 
regime is observed from Fig. 12 to be approximately 1.1, in line with 
the instantaneous maximum w = 1.20063 reported above.

Computing the bulk flow velocities, we find that for laminar flow 
𝑅𝑒𝐺 = 19.3 × 103, while for turbulent flow, 𝑅𝑒𝐺 = 6890, the latter be-
ing significantly (13.8%) smaller than the experimentally nominated 
value of 𝑅𝑒𝐺 = 8000. One naturally expects some variation owing to 
the comparatively coarse (2 s.f.) estimate of 𝐶𝑓 = 0.0056 we extracted 
from figure 2 of [48], the fact that the supplied rheology parameters 
were also given to 2 s.f., the possibility that the Reynolds number is low 
enough that the flow is still transitional (hence, sensitive) and to possi-
ble influences of domain size and numerical resolution (both of which 
we believe are adequate).

However, as discussed in §6, such a large variation between experi-
mental and computed bulk velocities could also result from having fitted 
the rheological model parameters to rheological data obtained over a re-
stricted range of shear rates, compared to values relevant to those which 
may occur at the wall in a turbulent flow. From our previous analyses 
(§6) we would recommend that for the equipment used, shear rates of 
up to 6000 s−1 should be obtained to characterize the rheology ade-
quately for DNS accuracy at 𝑅𝑒𝐺 = 8000. Based on the descriptions of 
rheological equipment in [48], we believe that this is unlikely to have 
been achieved.

9. Discussion and conclusion

There are many rheology models available for GNFs (see [6]). They 
encompass fluids that are shear-thinning, shear-thickening, fluids with 
a yield stress and those with low and/or high strain rate plateaus. A 
very important consideration when using these rheology models is that 
there is usually no underlying fundamental physical theory to suggest 
that they correctly describe the rheology of any known fluid across all 
shear rates. They have largely been developed empirically based on ex-
perimental measurements of shear stress versus strain rate (commonly 
termed a rheogram), usually over a limited range of shear rates. As such, 
they are simply fits to the data. As shown in [33], and here in §6, rhe-
ology data used to fit the model parameters must cover the range of 
shear rates of relevance for a simulation, otherwise the fit can be signif-
icantly in error in important regions of the flow, especially near solid 
boundaries where strain rates are typically high, for example in a tur-
bulent flow. It is notable that while low-shear-rate parameter fits may 
be wholly adequate for laminar flow solutions, they can lead to signif-
icant errors when employed for turbulent flows where high shear rates 
are important in controlling dynamics, cf. Fig. 7.

The methodology generally possesses the exponential spatial conver-
gence properties that one expects of high order methods, see §§5.1, 5.2, 
and temporal convergence at orders 1–3, see §Appendix A. For some 
laminar flow calculations with power law or Herschel–Bulkley rheolo-
gies and where the shear rate may reach zero somewhere in the domain 
(e.g. at the centre of Poiseuille flows in pipes or channels, see §5.3) 
it may be advisable to use viscosity regularization (cut-off on mini-
mum numerical shear rate) to avoid theoretically infinite viscosity in 
these locations. The local accuracy of simulation predictions in such 
regions depends somewhat on the cut-off shear rate specified for the sim-
ulation. However, in turbulent flow calculations using such symmetric 
geometries, this issue is generally not significant. The shear rate rarely 

approaches zero, and even if it does, this is only likely to occur near the 
centre, where detail of viscosity variation has only minor influence on 
turbulent flow predictions [34].

In this article, we have outlined the numerical methodology and ca-
pabilities of the GN solver extension of Semtex, gnewt, and provided 
best practices for simulating the flow of generalized Newtonian flu-
ids. The distribution includes commonly used GN rheology models, and 
the solver is designed to be readily extensible to others. New rheol-
ogy models can be easily incorporated by modifying a single source 
file, viscosity.cpp. While Semtex supports solving the Navier–Stokes 
equations and scalar transport for Newtonian fluids, the GN extension 
is currently limited to solving only the Navier–Stokes equations. Future 
work will focus on extending the gnewt solver to include scalar trans-
port equations. This will enable studies on heat transfer in GNFs and the 
modeling of viscosity as a function of fine particle concentration under 
the continuum assumption.
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Appendix A. Temporal accuracy of the time-integration scheme

In §3 we explained that owing to the appearance of some viscous 
terms in (11) which are not amenable to the rotational-form decom-
position of (10), the velocity-correction scheme (6)–(9), (11) does not 
conform to the standard rotational form described in [41–43]. Hence 
one may be concerned that the temporal accuracy of the method is com-
promised. For testing of temporal convergence it is adequate to consider 
Stokes flow [43].

Since it is the decomposition of viscous stress in (4) rather than 
the dependence of viscosity on �̇� which is the main point in question, 
we carry out tests for which 𝜈 = const., i.e. Newtonian rheology; the 
test case is decaying Stokes flow in a channel, for which an analyti-
cal solution exists, see [41] §3.1. We examine the decay rate 𝜎 of the 
solution for 𝜈 = 1. Computations were carried out using 24 quadrilat-
eral elements with GLL polynomial order 𝑁𝑃 = 15 to span the domain 
[−𝜋,+𝜋] × [−0.5,+0.5] (i.e. errors are dominated by the temporal dis-
cretization). Convergence of 𝜎 w.r.t. Δ𝑡 are shown in Fig. 13. Outcomes 
for the standard Newtonian solver described in [1] are shown as open 
symbols; these confirm the expected convergence rates for time orders 
𝐾 = 1,2,3.

For testing temporal behaviour of the GN solver we take the ap-
proach of setting 𝑵 = 0, 𝜈ref = 1 + 𝛿, 𝜈 = 1 so that in (6), 𝜈 − 𝜈ref = −𝛿; 
the viscous decomposition (4) is still in force, but unsteady Stokes flow 
is computed with an overall viscosity level 𝜈 = 1. Outcomes are shown 
as filled symbols in Fig. 13; one may observe that the temporal conver-
gence properties closely match those for the standard Newtonian solver. 
For 𝐾 = 1,2, 𝛿 = 1 (large compared to unity), while for 𝐾 = 3 (which 
is not A-stable in the Newtonian case, see [41]), 𝛿 = 0.1; if 𝛿 was made 
too large for 𝐾 = 3, stability and accuracy were compromised. These 
results suggest that even though (6)–(9), (11) does not strictly conform 
to rotational form, the formal temporal accuracy of the original method 
is retained if the simulations are stable. We note that the default time-
order for the code is 𝐾 = 2; 𝐾 = 3 is rarely used in practice (owing to 
typical relationships between CFL limits and spatial accuracy).
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Fig. 13. Temporal convergence properties of the fractional step scheme for time 
orders 𝐾 = 1,2,3, carried out for decaying Stokes flow in a channel with eigen-
value 𝜎, see text and [41], §3.1. Open symbols are for the standard Newtonian 
solver described in [1], filled symbols are for the GN solver, with nonlinear ad-
vection terms disabled.

Appendix B. Non-dimensionalization of rheological parameters

Rheology model parameters for real fluids are invariably established 
experimentally and are typically supplied in dimensional form. For sim-
ulations however, it is more usual to consider dimensionless forms, and 
to have velocity and length scales of order unity. Hence one often needs 
to convert rheology model parameters to dimensionless form, and here 
we discuss one way to approach this task. We use the velocity scale 𝑈
and length scale 𝐿 (in a pipe flow experiment, these might be the bulk 
velocity and pipe diameter), as well as density 𝜌.

Terms in the momentum equations of (2) all have dimensions 
of force per unit volume. Simplifying notation to scalar quantities, 
we can consider the nonlinear terms, the pressure gradient, the vis-
cous terms and body force terms to be of forms 𝜌𝜕(𝑢2)∕𝜕𝑥, 𝜕𝑝∕𝜕𝑥, 
𝜕(𝜇𝜕𝑢∕𝜕𝑥)∕𝜕𝑥 and 𝜌𝑓 respectively. Now consider dimensionless quan-
tities such as 𝑥′ = 𝑥∕𝐿, 𝑢′ = 𝑢∕𝑈 . Then 𝜌𝜕(𝑢2)∕𝜕𝑥→ (𝜌𝑈2∕𝐿)𝜕𝑢′2∕𝜕𝑥′, 
𝜕𝑝∕𝜕𝑥 → (𝑈2∕𝐿)𝜕𝑝′∕𝜕𝑥′, 𝜕(𝜇𝜕𝑢∕𝜕𝑥)∕𝜕𝑥 → (𝑈∕𝐿2)𝜕(𝜇𝜕𝑢′∕𝜕𝑥′)∕𝜕𝑥′
and 𝜌𝑓 → (𝜌𝑈2∕𝐿)𝑓 ′. Dividing each term by 𝜌𝑈2∕𝐿 we obtain 
𝜕𝑢′2∕𝜕𝑥′, 𝜌−1𝜕𝑝′∕𝜕𝑥′ ≡ 𝜕𝑃 ′∕𝜕𝑥′, (𝜌𝑈𝐿)−1𝜕(𝜇𝜕𝑢′∕𝜕𝑥′)∕𝜕𝑥′ and 𝑓 ′. 
(Note the appearance here of the ‘kinematic pressure’ 𝑃 = 𝑝∕𝜌, very 
often used unremarked in place of pressure for incompressible simula-
tions, those of Semtex included.)

From the above one arrives at the dimensionless kinematic viscos-
ity 𝜈′ = 𝜇∕(𝜌𝑈𝐿), i.e. (𝜌𝑈𝐿)−1𝜕(𝜇𝜕𝑢′∕𝜕𝑥′)∕𝜕𝑥′ → 𝜕(𝜈′𝜕𝑢′∕𝜕𝑥′)∕𝜕𝑥′. To 
make further progress, one must examine the particular functional form 
of 𝜇 = 𝜇(�̇�), since �̇� = (𝑈∕𝐿)�̇� ′. As an example, for Herschel–Bulkley 
rheology (§4.2), we obtain 𝜏′

𝑦
= 𝜏𝑦∕(𝜌𝑈2) and 𝐾 ′ =𝐾𝑈𝑛−2∕𝜌𝐿𝑛.

Data availability

Data will be made available on request.
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