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In this paper, direct numerical simulation of fully developed turbulent pipe flow is carried out at
Re,= 170 and 500 to investigate the effect of the streamwise periodic length on the convergence of
turbulence statistics. Mean flow, turbulence intensities, correlations, and energy spectra were
computed. The findings show that in the near-wall region (below the buffer region, r*=230), the
required pipe length for all turbulence statistics to converge needs to be at least a viscous length of
0(6300) wall units and should not be scaled with the pipe radius (J8). It was also found for
convergence of turbulence statistics at the outer region that the pipe length has to be scaled with pipe
radius and a proposed pipe length of 8776 seems sufficient for the Reynolds numbers considered in
this study. © 2010 American Institute of Physics. [doi:10.1063/1.3489528]

I. INTRODUCTION

With the advancement in computer technology, data ob-
tained from direct numerical simulation (DNS) of turbulent
flows are fast becoming an indispensable tool for turbulence
research.! The use of DNS provides a vast amount of infor-
mation for scientists to better understand the physics of tur-
bulent flows. The earliest reported study of DNS is of three-
dimensional isotropic turbulence by Orszag and Patterson’
more than three decades ago. Since then, low Reynolds num-
ber DNS of turbulent boundary layer, channel, and pipe
flows has been performed by various workers. As the Rey-
nolds number of DNS is now approaching and overlapping
the lower end portion of experimental Reynolds number
range, it is possible to compare statistics between them.
However, statistics are influenced by how the boundary con-
ditions interact with the largest scale motion in DNS. Since
the early hot-wire experiments of Favre et al® and
Townsend” it has been well known that long streamwise cor-
relations exist in wall-bounded turbulent flows. A renewed
interest in this topic came with the experiments by Kim and
Adrian’ who highlighted that the inferred length of these
motions in turbulent pipe flows from premultiplied spectra
were considerably longer than previously appreciated.
(Marusic et al.® provides a review of these studies). Balaku-
mar and Adrian’ also reviewed the available data and desig-
nated “large-scale motions” (LSMs) as motions with wave-
length of up to 2—34, where ¢ is the half channel height,
pipe radius or boundary later thickness, and very-large-scale
motions (termed VLSMs with wavelength of more than 36)
to be present within the outer flow. Another study by Hutch-
ins and Marusic® reported long meandering features in the
logarithmic region of turbulent boundary layers to exceed
206. It was later reported by Monty et al.”" that these long
meandering features in pipe and channel are up to 256 in
length. They also reported that coherent structures in turbu-
lent boundary layers are smaller in maximum streamwise
and spanwise extents than turbulent pipe and channel flows.

1070-6631/2010/22(11)/115107/10/$30.00

22, 1151071

Hence internal flow simulations are liable to require more
extended domains than comparable flat wall boundary layer
flows. In this paper, we will investigate the length of domain
required in order to obtain converged statistics.

One of the earliest DNS of internal flow was that of a
turbulent channel flow, carried out by Kim et al.' at Re,
=u,6/ v~=180 (where u, is the friction velocity, v is the ki-
nematic viscosity). They compared DNS results with experi-
mental data and found that general characteristics of turbu-
lence statistics are in agreement except at the near-wall
region. It was suspected that the disagreement might be due
to the inaccurate measurement of the experimental u,. The
computational domain size was chosen to be 476X 27w
X286 (streamwise, spanwise, and wall normal). Like most
DNS studies of fully developed turbulent channel and pipe
flows, streamwise periodicity was employed in their simula-
tion. This is justifiable if the computational domain is suffi-
ciently long that the largest eddies are fully represented and
the velocity fluctuations are uncorrelated at the half domain
period.ll Kim e al.'' showed that the velocity correlations
were uncorrelated (Fig. 2 of their paper) to justify their
choice of domain streamwise extend. Eggels et al.’? per-
formed DNS of turbulent pipe flow at Re_ of 180 to investi-
gate the differences between channel and pipe flows and to
compare with experimental results. They also utilized
streamwise periodicity with a computational pipe length of
1068. This length was chosen on the same basis as used by
Kim et al.'' However, Eggels et al.”? reported correlations
being nonzero at streamwise separation of half the pipe
length, which suggests that their pipe length may have been
insufficient. They did not investigate how other statistics
were affected by domain length, which is what our present
study will address. Though correlation statistics serve as a
guideline when choosing a suitable length for DNS, there is
no benchmark regarding the computational size requirement
to fully isolate the effects of streamwise periodicity.

Following these pioneering DNS studies of channel and
pipe flows, many further investigations have been carried
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out, with Reynolds numbers generally rising with time as a
result of increased computational power. Low Reynolds
numbers tend to decrease near-wall values of rms values of
turbulent fluctuations. This has been documented by Antonia
and Kim" using DNS channel flow at Re,~ 180 and 400 at
domain length of 47r8. Other DNS of turbulent channel flow
studies include those of Moser et al.'* at Re,~=~ 180, 395, and
590 with corresponding computational domain sizes of
476X 4/37w6X 268, 2mSX w6X 26, and 2mwEX wSX26.
Iwamoto ef al." computed DNS channel flow at Re~ 110 at
SméX2mw6X 26 and at Re, =~ 150, 300, 400, and 650 with
constant domain size 2.5m8X 2wSX 28, Abe et al.'® also
used DNS channel flow at Re_=~ 180, 395, and 640 at differ-
ent box sizes of 12.86X6.46X26, 6.46X3.26X26, and
6.46X 26X 26, respectively. Later, Abe et al."’ recognized
that the effects of large-scale structures in the outer region
require a larger domain size to capture large-scale features.
They carried out a study at the same Reynolds numbers and
kept the box sizes constant at 12.86X6.46X 26 to investi-
gate large-scale features. Hoyas and Jiménez'® carried out
DNS of channel flow at Re,.~2003. In that paper, they com-
pared DNS results with previous published channel flow of
Re,=547 and 934," all with a domain length of 87r6. Hoyas
and Jiménez'® showed that the streamwise turbulence inten-
sities, normalized with inner variable, increase with Rey-
nolds number across the entire boundary layer.

For pipe flow simulations, unlike those for channel and
boundary layer flows, a natural periodicity exists and only
the streamwise domain size needs consideration. Reynolds
number effect in turbulent pipe flow is of particular interest
to many due to the natural periodicity in the azimuthal direc-
tion. Wanger ef al. 20 performed a DNS of turbulent pipe flow
with Reynolds number from Re,~ 180, 250 and 320 with
fixed pipe length of 105, however no details on why they
chose this pipe length was given. The reported results were
in agreement with the reportsm’16 for channel flow where rms
of velocity fluctuations increases with Reynolds number.
More recently, DNS of higher Reynolds number turbulent
pipe flows have been made available by Wu and Moin*!
where the simulation is based on a pipe length of 156 at
Re,=1142. They chose this pipe length based on previous
findings in the literature that reported LSMs to range be-
tween 88 and 168

As evidenced from the discussion above, computational
domain sizes in pipe and channel flows vary considerably.
There has been an inclination towards running simulations at
higher Reynolds numbers at the expense of shortening the
domain length. This is no coincidence because the computa-
tional cost of a wall-bounded numerical simulation as esti-
mated by Jiménez™* scale with ~L§L}.Re‘;. For example, if
we could afford a n-fold increase in computational time,
there is a strong temptation to increase Re, by factors of n
rather than increasing the domain length L, by factors of n.
Most early simulations were for domains restricted to 27w
and more recently del Alamo et al.” and Hoyas and
Jiménez'® have advocated the need for longer channels, up to
8rd. Figure 1 summarizes the streamwise domain extents for
selected DNS studies of channel and pipe flows. Figure 1(a)
shows the computational lengths of the simulations scaled
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with 8. The upper bound on the streamwise extent (/) for
these previous works, all with Re_ <1000, is 400. When the
computational lengths are plotted in terms of wall units (I*
=lu,/v) as shown in Fig. 1(b), we see an increase in compu-
tational length over two orders of magnitude. It is well
known that the most energetic small-scale structures have a
streamwise wavelength of N} = 1000 (Ref. 6) and if the com-
putational domain is less than [*=1000, the influences of
streamwise periodicity are substantial as will be shown later
in this study.

Up to now, there are very limited studies that have
looked at the effects of the computational domain length,
with the exception of the study of del Alamo er al.”® where
the effects of reduced computational box size were briefly
discussed. As will be shown later in this article, effects of
computational length can cause a variation of turbulence sta-
tistics for pipe flow and would render comparison of differ-
ent DNS data sets inaccurate. Thus, the objective of this
study is to investigate the effects of computational domain
length on turbulence statistics and determine the minimum
lengths required for various statistics to converge. Low-order
turbulence statistics such as mean flow and turbulence inten-
sities are dealt with first, followed by higher order turbulence
statistics such as two-point correlations, cross correlations,
and one-dimensional energy spectra. The Reynolds numbers
chosen for the study are Re.~ 170 and 500.

Il. METHODOLOGY

The governing equations considered in the simulations
are the incompressible Navier—Stokes equations coupled
with the continuity equation

J
a—l:+N(u)=—p’1Vp+vV2u, (1)
V-u=0. (2)

The equations are written in the cylindrical coordinate sys-
tem and we will use x, r, and 6 to denote the axial, radial,
and azimuthal directions, respectively. The velocity compo-
nents u (u, u,, and up) and pressure (p) are functions of
(x,r, 6,1). The nonlinear terms are denoted by N(u) which is
computed in skew-symmetric form (u-Vu+V-uu)/2 for ro-
bustness. The numerical scheme employed is detailed in
Blackburn and Sherwin® and is based on a cylindrical-
coordinate spectral element/Fourier spatial discretization.
The velocity u can be directly projected onto a set of two-
dimensional complex azimuthal Fourier modes

. 1 2 }
u(x,r,t) = ;TJ uy(x,r,0,1)e"*%dg, (3)
0

where k is the azimuthal wavenumber. The time integration
scheme is based on a second-order velocity-correction pro-
jection scheme described by Guermond and Shen” and Kar-
niadakis ef al.”’ Details of the computational domains are
presented in Table I. The number of turnovers for each test
case is given as TU,/L,, where T is the time duration where
the statistics were collected and computed, and U, is the bulk
velocity. The grid spacing in the axial and azimuthal direc-
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FIG. 1. Previous wall-bounded DNS studies; (a) scaled with & (half channel height or pipe radius) and (b) scaled in wall units (v/u,).

tions for each Reynolds number are kept constant to ensure
that any variation in the data is due to variation in the pipe
length (Table T). We have also performed separate calcula-
tions to ensure that the grid spacing in all directions are
sufficient to resolve all length scales for the Reynolds num-
bers considered in this study. For both Reynolds numbers of
Re,= 170 and 500, the pipe lengths range from 7§ (shortest)
to 20778 (longest). The motivation for choosing these pipe
length limits is to enable our study of pipe length effects to
encompass the majority of computational domain lengths of

previous DNS studies at comparable Reynolds number and
to capture the LSMs and VLSMs as discussed earlier. Figure
1 clearly shows the different pipe lengths used (denoted as
“©®” symbols) in this study relative to other DNS studies.
The spatial resolution in the streamwise direction is kept
constant meaning that as the pipe length increases, more el-
ements are added to extend the pipe rather than increasing
the grid points and changing the spatial resolution. The spac-
ing (Ar*) in the radial direction for Re.~ 170 is 0.5 for the
near wall and 3.6 near the pipe center. The radial spacing for

TABLE I. Summary of computational domain and grid information.

Re, 170 500

Pipe length (L,) (78,276,416,8mw6,12768,2076) (78,278,476,875,12168,2076)
N, [8, 16, 32, 64, 96, 160] [23, 46, 92, 194, 276, 460]
N, 8 16

N, 128 384

Ax* 6.7 6.8

Art [0.5, 3.6] [0.07, 5.5]

Ar6* (at wall) 8.4 8.2

TU,/L, [500, 150, 71, 30, 37, 35] [108, 41, 22, 11, 8, 8]
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TABLE II. Summary of computational methods and spatial information for DNS studies listed in Fig. 1.

Discretization Spatial resolution
Previous DNS Streamwise and spanwise Wall-normal or radial Ax* Azt Ar* Ay*/A(ro)* Re,
Channel flows
Kim et al.’ Spectral Spectral 12 [0.05,4.4] 7 180
Antonia et al.® Spectral Spectral [7,11] [0.05,5.5] 4 [180,300]
Jiménez and Pinelli® Spectral Spectral [9.3,14] [0.05,7.7] [3.5,8] [201,633]
Moser et al.® Spectral Spectral [9.7,17.7] [0.04,7.2] [4.8,6.5] [180,590]
Abe et al.® Second order Second order [8,9.88] [0.15,9.64] [4.5,5] [180,640]
del Alamo and Jiménez' Spectral Spectral 8.9 [0.04,6.7] 4.5 [180,550]
Abe et al.® Fourth order Second order [8,9.88] [0.15,8.02] [4,4.94] [180,640]
Iwamoto et al." Spectral Spectral [16.4,36] [0.03,7.98] [5.3,14.4] [110,600]
Toh and Itano' Spectral Spectral 13.5 5.4 [137,349]
del Alamo et al) Spectral Spectral [7.8,8.9] [0.02,7.8] [3.9,4.5] [550,1900]
Hoyas and Jiménez" Spectral Fourth order 8.2 [0.02,8.9] 4.1 2003
Pipe flows
Eggels et al! Second order Second order 7.03 1.88 8.84 180
Satake et al.™ Second order Second order [8.78,15.4] [0.1,4.16] [7.4,8.8] [150,1050]
Wagner et al." Second order Second order [3.7,6.58] [0.36,7.68] [4.7,8.4] [180,320]
Wu and Moin® Second order Second order [5.31,8.37] [0.17,11.3] [2.2,7.0] [180,1142]
Current Study Spectral Spectral [6.7,6.8] [0.07,5.5] [8.2,8.4] [170,500]

“Reference 11.
"Reference 28.
“Reference 29.
dReference 14.
“Reference 16.
Reference 30.
€Reference 17.
"Reference 15.

Re,~500 is 0.07 at the near wall but near the center, the grid
spacing is 5.5. The radial grid spacing close to the center of
the pipe is comparable to Wu and Moin®' with Ar*=~11.3 at
Re,~ 1142 and Wanger et al.” with Ar*=7.68 at Re,
~320. Table II shows a comparison of computational meth-
ods and spatial information for all DNS studies shown in
Fig. 1.

lll. RESULTS AND DISCUSSIONS
A. Mean velocity profiles

In Fig. 2 the mean velocity profiles are shown for all
pipe lengths investigated for both Reynolds numbers. Fig-
ures 2(a) and 2(c) show the mean velocity profiles normal-
ized by the center velocity U, from the pipe center (r/&
=0) to the wall (r/5=1.0). Figures 2(b) and 2(d) show the
mean velocity profiles normalized by the friction velocity as
a function of wall-normal locations (where *=0 is at the
wall). The results from Re,~ 170 show the lack of conver-
gence for the mean velocity profile at pipe length of 78
whereas the results for Re,~ 500 show no discrepancy for all
pipe lengths considered. The pipe lengths required for con-
vergence seem to differ when scaled with &, but when the
pipe length is measured in wall units, for Re,~ 170, conver-
gence of the data starts when the pipe length is 2778, which is
approximately 1000 wall units, and for Re_ .~ 500, 74 is ap-
proximately 1500 wall units. This suggests that mean veloc-

‘Reference 31.
JReference 19.
¥Reference 18.
'Reference 12.
MReference 32.
"Reference 20.

°Reference 21.

ity profiles seem to collapse when the pipe length [*
>(0(1000). The effect of domain length on the Reynolds
shear stress (—u'u,*) profiles has also been investigated and
the convergence of this statistic was found to be very similar
to the convergence of the mean velocity profiles.

B. Turbulence intensity profiles

The rms statistics for the streamwise fluctuating velocity,
here defined by u’, for different pipe lengths are shown in
Figs. 3(a) and 3(b) for Re,~ 170 and 500, respectively. Here
the rms is normalized by the friction velocity (u'*=u'/u,). It
is clearly shown that the u’* profile for 76 for both Reynolds
numbers differs from the other pipe lengths. At Re_ =~ 170,
the statistics for pipe length of 276 also seem to differ
slightly. Figures 3(c) and 3(d) show the turbulence intensity
at a chosen wall-normal location of r*~15. This height is
chosen due to the well known fact that the peak turbulence
intensity occurs at this wall-normal height. The converged
peak turbulence intensities for Re,~170 and 500 are u'"
~?2.6 and 2.7, respectively. This increase in turbulence inten-
sity as the Reynolds number increases is widely accepted as
a Reynolds number effect.'” ¥ Here it is highlighted that
the minimum length required for u’* to converge within 1%
variation (shown as dashed lines) of the value of u'* calcu-
lated for the longest four pipe lengths for each Reynolds
number. For Re, =~ 170, the minimum length is 47 corre-
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FIG. 2. Streamwise mean velocity profile («); (a) and (c) normalized by center-line velocity U, and (b) and (d) normalized by the friction velocity u,. The
symbols used are the same for both Re, to represent different pipe lengths; 768 (- -), 275 (O), 478 (+), 878 (O), 12765 (V), 2076 (@).

reported a higher than expected peak turbulence intensity for
DNS of short channel flow. In their paper, the peak intensity
is u'*=3 for Re,~137 and channel length of [*=259,
which is relatively close to our result of u'*=~2.9 with Rey-
nolds number of Re,~ 170 and pipe length of I*=534. We

sponding to I*~0(2100) and for Re,~500, the length re-
quired is 278 corresponding to '~ 0(3100). It is apparent
from Figs. 3(a) and 3(b) that an artifact of insufficient pipe
length is a higher value in the peak turbulence intensity (at
r*=15). This finding is consistent with Toh and Itano®' who
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FIG. 3. Streamwise velocity turbulence intensity profile u’* for different pipe lengths, (a) for Re,~ 170 and (b) for Re,~500. Symbols used in (a) and (b) are
as in Fig. 2. (c) and (d) shows the turbulence intensity at wall-normal location r*= 15 for different pipe lengths. The two dashed lines in (c) and (d) represent

1% variation from the mean of u’* based on the four longest pipe lengths.
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FIG. 4. Streamwise two-point correlation for velocity («) at wall-normal location r*= 15 for different pipe lengths, (a) for Re,~ 170 and (b) for Re .~ 500.
(c) and (d) show the two-point correlation at r/ 8=~ 0.9 for Re,~ 170 and 500, respectively. The x-axes for (a) and (b) are in viscous length scale and for (c)

and (d) are normalized by &. Symbols used are as in Fig. 2.

will try to quantify why a greater peak turbulence intensity
occurs for shorter pipes using correlation functions which we
will discuss in the next section.

C. Streamwise two-point correlations

In addition to the use of two-point correlations as an aid
in choosing a suitable computational length, they have also
been used to understand average structure characteristics and
help identify coherent structures. The correlation between
any two fluctuating components / and J is defined as

B I(x,70,r)J(x + Ax,r0+ Ar6,r)

RIJ s (4)
g0y

where o refers to the standard deviation, and Ax and Ar6 are
the spatial distances in the streamwise and azimuthal direc-
tions, respectively; r is the desired wall-normal location. The
overbar denotes the spatial average. Correlation functions
have successfully been employed by Ganapathisubramani
et al.™ to identify and study vortical structures and also by
Hutchins and Marusic® to study large-scale features of atmo-
spheric surface layer structures, which they termed “super-
structures.”

Two-point correlation results for different pipe lengths
are shown in Fig. 4. Figure 4(a) shows the results at wall-
normal location r*=15 for Re,~170. As the pipe length
increases, the correlation curves start to extend axially and
fall off towards zero. When the pipe length is 87, the cor-
relation falls completely to zero and similar results are ob-
tained for pipe lengths of 12 and 2076. This shows that
convergence is achieved at a pipe length of 878. Results for

the same Reynolds number at another wall-normal location
nearer to the pipe center r/5=~0.9 are shown in Fig. 4(c).
Here the correlation curves fall sharply and cross R,,=0 at a
smaller Ax* (all curves cross before Ax*<<500 which is
x/ 8<3) as compared to the correlation curves in Fig. 4(a).
The correlation curve for 76 crosses zero at x/ 6=0.8, for 2
and 476, and correlation curves cross zero at x/ 0= 1. Re-
sults start to converge and cross zero at x/ 6=~ 1.5 when the
pipe length is 8776 and greater. Correlation curves that do not
cross the R,,=0 suggest that there is a periodicity effect,
which will be discussed in the next section. Results for Re,
~500 at r*=15 is shown in Fig. 4(b). The results seem to
suggest that convergence is achieved at a pipe length of 2776.
However, the inserted diagram in Fig. 4(b) clearly shows that
the statistics are not yet converged at 27d and that conver-
gence is only achieved at 478. The results at wall-normal
location 7/ 5=~ 0.9 are shown in Fig. 4(d) and the pipe length
required for convergence of statistics is 876. It is interesting
to note the result for Re,~ 170 for 274 is similar to that for
Re,~500 at md. In viscous length scale, this is [*
~(0(1100) and O(1600) for corresponding Re,~ 170 and
500. In terms of viscous units, both Reynolds numbers in the
near-wall region require [*= 0(4300) and 0O(6300) for Re,
~ 170 and 500, respectively. This illustrates that if a similar
pipe length (in viscous units) is used, even at different Rey-
nolds numbers, the pipe length required to achieve conver-
gence of the statistics would not vary significantly. In the
outer-region near the pipe center, the pipe length required for
convergence is 876 for both Reynolds numbers. This sug-
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FIG. 5. Streamwise cross correlation between streamwise velocity (#) and
streamwise wall shear stress (7) for wall-normal locations from wall to pipe
center, (a) for Re,~ 170 and (b) for Re,~500. Contour lines are from 0.03
(outermost) with increment of 0.2. Symbols used for (a) and (b) are the same
and as in Fig. 2.

gests that pipe length requirement in near-wall statistics
should be in viscous units while the outer region has to be
scaled with &.

D. Cross correlations for streamwise velocity

Cross correlation functions support the hypothesis of the
existence of coherent and organized structures in wall-
bounded turbulent flows as reported in the literature.' "~
The cross correlations between streamwise velocity u and
streamwise wall shear stress 7 for wall-normal location up to
the pipe center are shown in Fig. 5. Here we have plotted the
contours of the correlation coefficient, R,,, as a function of
wall-normal location (r*) and streamwise separation distance
(Ax"). The normalized wall-normal distance (r/6) and
streamwise separation distance (Ax/ 6) are included for com-
parison between both Reynolds numbers. Here the correla-
tion contour lines begin at a value of 0.03 at the outermost
contour and increase at intervals of 0.2. The results for Re,
=~ 170 are shown in Fig. 5(a) and for Re,~ 500 in Fig. 5(b).
One should note that the cross correlation contours for the
different pipe lengths are plotted in the same figure and the
abrupt end of contour lines for pipe lengths 76, 274, and
478 in Fig. 5(a) signify the axial limits of the computational
domain. The contour lines (for 78 and 276) that do not close
strongly suggest “contamination” of structures in the flow (in

(@) =6 2078

0
A(r)*+
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an average sense) owing to the periodicity in the streamwise
direction. This is due to a pipe length that is too short to
accommodate the longest structures in the flow field. This
translates to the structures being infinitely long and having a
constant influence on the streamwise wall shear stress. Look-
ing at the contours for [/ =414, the outermost contour line
(R,,=0.03) fails to form a complete curve at Ax*=~ 1100 and
the missing bit of the contour line is seen at Ax*=~—1100. As
mentioned, this is due to periodicity of the structures and it
can be interpreted as the leading tip of the structures leaving
one end of the pipe and coming back at the other end. This
periodic cycle of structures is the reason the correlation
curves in Fig. 4 do not cross R, =0 for pipe lengths less than
41r6. The cross correlation statistics start to converge as the
pipe length exceeds 874. In Fig. 5(b), the moderate Rey-
nolds number case exhibits similar effects of insufficient pipe
length as for Re,~ 170 [Fig. 5(a)]. However, in this case, the
cross correlation statistics start to converge at 4md. Once
again if we relate the minimum pipe length required for con-
vergence for both Reynolds numbers in viscous length scale,
for Re,~170 we would need ["=~0(4300) and for Re,
~500, [*=0(6300) is required. The correlation contours
show that there is correlation even at distances far from the
wall for pipe lengths of 76 and 276 for both Reynolds num-
ber discussed. Results from the turbulence intensity and cor-
relation profiles suggest that statistics near the wall should be
scaled in terms of viscous wall units rather than the outer
scaling 6. This gives a better benchmark for the pipe length
requirement for convergence of statistics.

Contours of streamwisely averaged azimuthal cross cor-
relation between streamwise velocity u# and streamwise wall
shear stress 7 are shown in Fig. 6. Figure 6(a) shows the
results for Re,~ 170 and Fig. 6(b) for Re,~500. The left
hand side of the figure displays the result for 76 and the right
hand side the result for 20778. The correlation coefficient is
shown as gray contour lines and shaded contours. The con-
tour lines vary from 0.1 from the outermost contour with an
increment of 0.2. The contour shading has been adjusted to
provide a clearer picture of pipe length effects on the corre-
lation statistics, red denotes positive correlation, and blue

) =6 2078 0.1

-0.1

FIG. 6. (Color) Contours of streamwisely averaged azimuthal cross correlation between streamwise velocity () and streamwise wall shear stress (7) for
wall-normal locations from wall to pipe center, (a) for Re,~170 and (b) for Re,~500. Contour shadings vary from negative correlation —0.1 (blue) to
positive correlation 0.1 (red). Contour lines (gray) are from 0.1 (outermost) with increment of 0.2. The dashed lines show the approximate azimuthal distances

(A(r6)*) of the peak negative correlation.
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FIG. 7. One-dimensional normalized streamwise premultiplied energy spec-
tra for streamwise velocity u for all wall-normal locations r* for (a) Re,
~170 and (b) Re,~500. The y-axis is the normalized streamwise wave-
length A} =\ u,/ v. Contour lines are from 0.3 (outermost) with increment of
0.4. The symbols used are 476 (dot-dashed line — — —), 876 (dotted line
-------- ), 1276 (dashed-line — —), and 2078 (solid line ).

denotes negative correlation. The results clearly illustrate the
averaged structure size (radially) is bigger for a short pipe
length (due to the periodicity in the streamwise direction) as
compared to a pipe length that is sufficiently long. This
agrees with the streamwise cross correlation results previ-
ously discussed. The distinctive positive-negative-positive
correlation indicates existence of counter rotating vortex
pairs (in an averaged sense). Interestingly the peak negative
correlation at the near wall is at an azimuthal separation dis-
tance of A(r6)*= 0(60) and the azimuthal extent of positive
correlation is about (r6)*= 0(100), for both Reynolds num-
bers at pipe lengths of 776 and 107d. This positive correla-
tion extent can be taken as representative of eddies with azi-
muthal wavelength of A*=~100. This wavelength of A*
~ 100 corresponds to the average spanwise wavelength of
near-wall dominant structures®® and can also be seen in the
two-dimensional energy spectra map of Hoyas and
Jiménez."®

From both the streamwise and azimuthal cross correla-
tions, we can infer that turbulent structures in an average
sense span up to the center of the pipe for short computa-
tional pipe lengths and these massive periodic structures are
most likely the contributing factor to the greater peak turbu-
lence intensity seen in Figs. 3(a) and 3(b).

E. One-dimensional premultiplied streamwise
energy spectra

Energy spectra are often used to express the energy con-
tribution of structures for wavelengths A, at a given wall-
normal distance. Premultiplied energy spectra are calculated
using

\Puu(kx’r) = kx<ﬁ(kx’r)12*(kx’ r)>? (5)

where k, is the streamwise wavenumber, ( ) denotes spatial
and temporal averaging, ## denotes Fourier transform of u,
and * denotes complex conjugate. Figure 7 presents contours
of the normalized one-dimensional, premultiplied stream-
wise energy spectra (‘I’*:‘I’/ui) of the streamwise velocity
component u. In Fig. 7, we emphasize only the energy spec-
tra for pipe lengths of 4, 8, 12, and 207é for both Re,
~ 170 and 500. These pipe lengths are chosen because the
turbulence statistics computed in the previous sections indi-
cated lack of convergence for pipe lengths up to 27d. The

Phys. Fluids 22, 115107 (2010)

energy spectra are plotted as a function of streamwise wave-
length \,, where \,=2/k,. The results for Re,~ 170 show
convergence for the pipe lengths exceeding 876 or a viscous
length of O(4300). In Fig. 7(b), the energy spectra for 476
converges in the near-wall region (#*<20) and fails to con-
verge at distances further away from the wall. The reason for
the lack of convergence away from the wall is due to the
insufficient pipe length. This causes the energy which is sup-
posed to be contained within the large-scale structures to be
redistributed to the small scales as seen in Fig. 7(b) in the
region of r* of 20-200. The energy spectra for 87w6-207S
seem to converge nicely, suggesting a pipe length of 876 or
a viscous length of O(12 000) is sufficient for the analysis of
energy spectra statistics.

Figure 7 clearly shows a distinctive peak in the energy
spectra at location r* =15, )\;~ 1000 as has been well noted
in the literature.® Hutchins and Marusic®*' and Monty et al. 10
have also noted an outer peak in such premultiplied spectral
plots occurring in the logarithmic region at wavelengths of
675 (corresponding to the VLSM or superstructures), but no
such peak is discernible here. However, it is noted that the
Reynolds numbers are very low, and effectively there is a
very small separation of length scales. Correspondingly,
there is a lack or nonexistence of the logarithm region at the
Reynolds numbers considered in this study. Evidence from
the energy spectra statistics seems to indicate that in the
near-wall region, a pipe length of "= 0(6300) is sufficient
for convergence for both Reynolds numbers. Results also
show that a pipe length of 876 is sufficient for the energy
spectra statistics to be independent of Reynolds number and
wall-normal distance.

IV. CONCLUSIONS

In this study, the effects of periodic domain length on
turbulence statistics were investigated for various computa-
tional pipe lengths. The influence of insufficient pipe length
on the convergence of lower order statistics (such as the
mean velocity profile) is less significant as compared to
higher order statistics (such as correlations and energy spec-
tra). Our results show that an artifact of a short pipe length
[I*<0(3100)] is the periodicity of structures in the flow,
resulting in artificial domain-filling structures contributing to
greater turbulence intensities.

The minimum computational pipe lengths required for
convergence for various turbulence statistics for both Rey-
nolds numbers are summarized in Table III. The table dis-
plays the different turbulence statistics calculated and high-
lights the required minimum lengths in terms of pipe radius
(6) and viscous length scale ( *). For the one-dimensional
energy spectra statistics, the minimum length to obtain con-
verged results for 7+ <20 is stated in the brackets “( ).” The
conclusion that can be drawn from the table is that different
turbulence statistics require different computational lengths
to achieve convergence. Results obtained seemed to indicate
that statistics in the near-wall region are less sensitive to
short domain lengths. To study turbulence statistics in the
outer region, the minimum pipe length required appears to
scale better in terms of pipe radius rather than using viscous
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TABLE III. Summary of estimated minimum computational pipe length required for convergence of different
turbulence statistics for Re,~ 170 and 500. The second column displays minimum length in pipe radius (8) and
the last column in viscous wall unit ( *). For the one-dimensional energy spectra statistics, the minimum length
to obtain converged results for " <20 is stated in the brackets ( ).

Min length (6)

Min length ( *)

Turbulence statistics Re, =170 Re,.=500 Re. =170 Re,.=500
Mean velocity profile 2m T 1000 1500
Turbulence intensity 4 2m 2100 3100
Two-point correlations at r*=15 8 4 4300 6300
Two-point correlations at 7/ 6=0.9 8w 8 4300 12300
Cross correlations 8w 4w 4300 6300

1d energy spectra (r*<<20) 8m(87) 8m(4) 4300(4300) 12300(6300)

length scale. In order to isolate the effects of streamwise
periodic boundary conditions on turbulence statics, a pro-
posed pipe length of 876 appears adequate for all statistics
to converge (up to the Reynolds number in this study). The
proposed length is by no surprise the same as the domain
length advocated by workers such as Hoyas and Jiménez'®
and del Alamo et al."
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