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Abstract

We study the two-dimensional symmetry breaking transitions in the time-periodic flow generated in quiescent fluid by a rigid
cylinder with simple harmonic rectilinear translation in a direction normal to its axis. The base flow possesses two symmetries:
a spatio-temporal symmetry and a spatial reflection symmetry about the axis of oscillation. Two distinct regimes of marginal
stability are identified through two-dimensional Floquet analysis. These correspond to (I) a pair of real Floquet multipliers
simultaneously crossing the unit circle at= +1 and (Il) a pair of complex-conjugate multipliers crossing the unit circle,
w=et? (a Neimark—Sacker bifurcation). In both transitions the spatial reflection symmetry of the base flow is broken, but for
type | transitions, the spatio—temporal symmetry of the base flow is retained.
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1. Introduction

The stability of flow generated in quiescent fluid by the rectilinear sinusoidal oscillation of a circular cylinder in a direction
normal to its axis has been the subject of both experimental studies [1-4] and also two-dimensional numerical investigations [5].
The flow is of fundamental interest, and results have potential application to the study of loads on structures immersed in waves
or other oscillatory flows.

Two dimensionless control parameters determine the state of this flow. These are the Keulegan—CarpenteK@umber,

27 A/D, and the Stokes numbe,= D2/vT, whereA is the amplitude of motion] is the cylinder diametef is the period

of oscillation, andv is the kinematic viscosity of the fluid. At low values KfC and g, the periodic flow is two-dimensional.

The visual observations of Honji [1] and Tatsuno and Bearman [3] demonstrated that the symmetry breaking transitions from
the base flow occur through instabilities that have both two-dimensional and three-dimensional aspects. In previous work [6],
we have addressed some of the three-dimensional instabilities, using three-dimensional Floguet analysis. That work also helped
establish that some of the transitions, noted to be primarily two-dimensional in nature [3], are located quite accuka@el§)in (

control space when simulations are restricted to two space dimensions. While the two-dimensional flows are sometimes first
unstable to three-dimensional perturbations, these instabilities do not appear to significantly influence the primarily two-dimen-
sional symmetry-breaking transitions. In the present work, we restrict attention to two-dimensional bifurcations, and employ
two-dimensional Floguet analysis.
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The base flows have two two-dimensional symmetries. If the direction of motion of the cylinder is taken to be parallel to
the y axis, and the flow{, V) is generated in thex( y) plane, the two symmetries possessed by this base flow are the spatial
reflection symmetry (reflection about= 0)

(Uv V)(X,y,t)z(_U, V)(_x’y’t)v (1)
and the spatio—temporal symmetry
o, vy, y,ty=WU, =V)(x,—y,t +T/2). 2)

Our computations are all performed using primitive variables (velocity, pressure), but as visualisations will be presented in the
form of vorticity contours, note that the corresponding symmetries for the out-of-plane vorticity compprzeat

(x,y,t)=—82(—x,y,1), 3)
x,y,1)=—82(x,—y,t +T/2). 4)

Fig. 1 shows base flows at two points KRG, 8) control space, and serves to illustrate their reflection symmetry (3).

Three types of flows which break the two-dimensional reflection symmetry (1), (3) have previously been observed both in
experiment and in two-dimensional direct numerical simulation (DNS) studies; these are exemplified in Fig. 2, which shows
instantaneous vorticity contours from two-dimensional DNS. At comparatively small valyeshaf transition with increasing
KC is to a synchronous state (with period close to that of the base flow); this is illustrated in Fig. 2(a) — the transition breaks the
reflection symmetry but not the spatio—temporal symmetry. The sign with which the flow breaks symmetry-idirtbetion
is arbitrary (but constant with time), depending on initial conditions. At intermediate valygéstbé symmetry breaking that
occurs with increasingC is to a quasi-periodic state, where the flow ‘flaps’ from side to side and sheds discrete vortices at a
secondary periods; this flow is illustrated in Fig. 2(b). The third kind of flow with broken symmetry (Fig. 2(c)), observed at
higher values of8, has a chaotic nature, where, as in Fig. 2(b), discrete vortices are shed, and the flow ‘flaps’ from side to side,
but at irregular intervals.

The curves of marginal stability for the two-dimensional symmetry breaking transitiosOn3() control space have been
approximately established by prior experimental [3] and DNS [6] studies. As can be seen in Fig. 3, the experiments and DNS
are in close agreement for the location of the transitions. In addition, this figure shows labels indicating the approximate location
of some of the regimes defined by Tatsuno and Bearman [3]. RegimedB correspond (in the restriction to two-dimension-
al flows) to the vorticity contours shown in Fig. 1 (a) and (b), respectively, while regimesandE are represented by the
vorticity contours of Fig. 2 (a), (b) and (c), respectively.

In the remainder of this work, we investigate two-dimensional bifurcations which break the pair of symmetries exhibited
by the base flows via two-dimensional Floquet analysis, and obtain the lo€idng) control space of two kinds of two-di-
mensional symmetry breaking bifurcations. The maximum Stokes number for the present investiggtiensd®, and the
maximum Keulegan—Carpenter numbeKiS = 10.

Fig. 1. lllustration of instantaneous vorticity contours for the base flows aK@) 7.0, 8 = 12.5), and (b) KC = 3.5, 8 = 100). The flows are
shown at the instant of maximum travel in the vertical direction, with the extent of peak-to-peak travel shown. Positive vorticity indicated
by black contours, negative by grey.
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(b)

Fig. 2. Instantaneous vorticity contours from two-dimensional DNS, illustrating three variations in transition from the symmetrical base flows:
(a) SynchronousT(-periodic) regime, shown akKC = 7, 8 = 13.5); (b) quasi-periodic regime, shown & = 5, 8 = 40); (c) chaotic regime,
shown at KC = 4, g = 100).
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Fig. 3. Boundaries between the two-dimensional symmetrical flows and those with broken symmetry, as established in the experiments of
Tatsuno and Bearman [3] (solid line) and two-dimensional DNS [6] (dashed line): above the lines, the flow breaks two-dimensional reflection
symmetry (1), (3). Labels—E indicate approximately the locations of various flow regimes identified in [3].

2. Computational methodology

In Floguet stability analysis [7] -periodic base flonJ, is examined in conjunction with a perturbation, to determine
whether the perturbation grows or decays in time. The evolution equations for the perturbation flow are the Navier—Stokes
equations linearised about the base flow. Perturbation solutibnsan be written as a sum of componeiatgy) expo (¢ — t)
whereu(tg) is a T-periodic Floguet eigenfunction, evaluated at arbitrary phrgsend o is a Floquet exponent. Floquet
multpliers i are related to the Floquet exponentdby 1 = expo T. In general, the exponents and the multipliersw can
either be real, or occur in complex-conjugate pairs. Instability occurs when a multiplier leaves the unit|girctelj, or
equivalently when the real part of a Floquet exponent becomes positive.

The technique used here for Floquet analysis is a Krylov subspace method that examines the stability of the linearised
Poincaré map for the perturbation flow, and is detailed in [8]. Other applications of the numerical method may be found
in [9-11]. These previous applications have been to three-dimensional perturbation flows, and where the flow boundaries
have either been locations of zero local acceleration of the base flow, or solid walls; a restriction to two spatial dimensions,
and application to a domain where the local acceleration of the base flow is non-zero on far-field boundaries, entails some
modification and special considerations, outlined below.

The base flow to be tested for stability is obtained by solving the two-dimensional incompressible Navier—Stokes equations
in an accelerating reference frame, attached to the cylinder [12,13]. The reflection symmetry (1) of the base flow is enforced by
solving in a half domain (see Fig. 4(a)), with symmetry boundary conditions alongth@ boundary. The base flow obtained
in this way is integrated in time until it reaches a periodic state, after which it is projected (by reflection in thedi®eonto
the full domain mesh Fig. 4(b), and stored for Fourier time interpolation. Typically 64 time slices, equi-spaced in time over the
base flow period, are used by the Floquet solver for this reconstruction of the base flow.
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Fig. 4. Domains and spectral element meshes used for computations. The centre panel, (b), shows the 164-Blemddib 4bmain, used
for Floguet stability calculations; panel (a) shows the corresponding half-domain used to produce symmetrical periodic base flow fields, while
(c) illustrates a sub-domain used to examine domain size effects on Floquet analysis.

Table 1

Convergence results for Floquet multipliers at (a) different polynomial interpolant orders with & 40D domain, where is the order of the
tensor-product interpolant function employed within each spectral element; (b) different domain gize8 afll simulations were conducted
at (KC =3.65, 8 =1000)

(@ p 6 8 10 12
[ 1.147180 1.147338 1.147052 1.146481
(b) Domain size 20 x 20D 40D x 40D 60D x 60D 80D x 80D
I 1.110241 1.147338 1.144826 1.142876

The boundary conditions applied to the velocity perturbationiaee 0 on all domain boundaries. This is a suitable boundary
condition for the symmetry breaking Floquet modes, however these boundary conditions are not suitable for resolving the mode
of marginal stability ¢ = +1) that can exist in a Floquet analysis [7]: in the current problem, this mode represents the local
acceleration fieldd U) of the base flow at = g, which in general is non-zero on the far-field boundary. In practice, this
incompatibility means that the method has difficulty resolving modes for whi¢k< 1, however, it is successfully able to
resolve unstable two-dimensional modes, i.e.|fdr> 1.

Spatial discretisation was carried out with spectral elements, with Lagrange interpolant shape functions based on Gauss—
Lobatto—Legendre quadrature points. Interpolant order and domain size selections were carried out on the basis of convergence
results for Floquet multipliers akC = 3.65, 8 = 1000) and summarised in Table 1: a polynomial interpolant ogder8 and
a domain size of 4D x 40D were selected for subsequent work. The domain size corresponds approximately to that used in
experiments of Tatsuno and Bearman [3]. As a further check of domain size effects, an analysis was carried out using a much
smaller domain (Fig. 4(c), with the base flow computed on the 4340D domain and projected onto this smaller domain);
the resulting variation i | was less than 0.3%, confirming that Floquet mode energy is concentrated near the cylinder.

3. Results

Our investigation has determined that there is a single curve of marginal stability for the initial two-dimensional symmetry
breaking transitions, but the bifurcations on it fall into two distinct regimes. These two regimes correspond to (1) real Floquet
multipliers crossing the unit circle at= +1 (synchronous modes) and (Il) complex-conjugate pairs of multipliers crossing the
unit circle (quasi-periodic modes). We examine these two types of instability and their relation to the three types of symmetry
breaking behaviour found previously (Fig. 2) in the following sections.

3.1. Synchronous modes

The transition to synchronous flows with broken reflection symmetry (1), (3) occurs at comparatively low vaiesof
high values oKC. In Fig. 5(a) we see instantaneous vorticity contours for the base fld6Cat(7.0, g = 13.5) for the time at
which the cylinder is at its maximum displacement in thdirection. Fig. 5(b) shows the vorticity contours of a critical Floquet
eigenfunction at the same phase in the motion cycle. The eigenfunction breaks the reflection symmetry (3), and so does the
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(b)

Fig. 5. Vorticity contours illustrating a synchronous symmetry-breaking transition: (a) periodic base flk@ at7.0, 8 = 135); (b) one of
the symmetrically related pair of marginally stable Floquet eigenfunction at the same set of control parameters; (c) DNSK&st70,(
B =150).

resulting flow. In Fig. 5(c) we show vorticity contours for a the saturated flow obtained at a slightly larger vglugooiputed
using DNS initiated with the base flow perturbed by the leading Floquet eigenfunction.

The eigenfunction varies with phase in the motion cycle, and while it breaks reflection symmetry (3), it retains the spatio—
temporal symmetry (4), as does the perturbed flow. As the reflection symmetry can break in two ways, the unstable Floquet
modes come in left- and right-handed pairs, and there is correspondingly a pair of Floquet multipliers that cross the unit circle
simultaneously at = +1.

The synchronous symmetry breaking appears to correspond well to the flow visualisation results presented for the transition
A — D, as described in [3]. Regintzis also known as the ‘transverse street’ regime [2].

3.2. Quasi-periodic modes

At higher values ofs, the first Floquet multipliers to cross the unit circle occur in complex-conjugate pairg, Feetif
so the bifurcation is of Neimark—Sacker type [14]. A secondary pefigdarises, so the resulting flows are — initially at least
— quasi-periodic, and evolve on 2-tori. While in general the new period is not neccessarily simply retat@ehioh is not a
self-rotation number), in the cases examined here, weTind 27 T /6. Both the Floquet multipliers and their eigenfunctions
arise in complex-conjugate pairs, but it is sufficient to examine either the real or imaginary parts of the eigenfunctions, as one
can be obtained from the other by evolution in timeZy/4 [11]. Again, the eigenfunctions break the reflection symmetry of
the base flow about the oscillation axis, and owing to the quasiperiodic nature of the solutions, the spatio-temporal symmetry
is broken as well.

At moderate values g8 andKC (corresponding to the the transitian— C in Fig. 3), the saturated flow aKC, 8) values
slightly above critical evolves to a quasi-periodic state, where the secondary feri®tinked to a slow flapping-x — —x
of the induced flow, and the shedding of discrete vortices. This behaviour is illustrated in Fig. 6, which shows the base flow
and (real part) Floguet eigenfunction &iG = 4.60, 8 = 40.0), together with a snapshot of the quasi-periodic flow observed at
(KC=4.60,8=442).

In order to establish the linkage between the phase ahglt#ained through Floquet analysis and the secondary p&god
spectral analysis of quasi-periodic time-series data (force exerted on the cylinder in DNS) was carried Bgiexratted.

Fig. 7(a) illustrates the variation ¢ft| with KC at 8 = 44.2: belowKC¢ = 4.515, the mode of marginal stability is the leading

mode, while folKC > KCg, || increases approximately linearly wikC. At KC¢, the Floquet multiplier phase angkex 0.5,

and® — 0 with increasing<C (Fig. 7(b)). In Fig. 7(c) the secondary period computed simply fi@ws- 27 T /6 is shown, and
compared to the secondary period computed from spectral analysis of the DNS data: it can be seen that at criticality, the two
periods match. A9s/T ~ 13, the vortex shedding period is clearly much longer than the cylinder oscillation period.

The Stokes number chosen for the above analysis 44.2, corresponds to one of the flow visualisations (Fig. 13) in [3],
which clearly exhibits periodic vortex shedding, nominally similar to the flow illustrated in Fig. 6(c). Although the Keulegan—
Carpenter numbers differ slighthiKC = 4.40 in [3] compared t&KCc = 4.515 here), and the results in [3] suggest that the flow
is subsequently unstable to three-dimensional secondary instabilities, this agreement in two-dimensional flow structure for the
transitionA — C is significant and reassuring. As was noted in [3], the sense of rotation of the shed vortices is the opposite
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(b) (©

Fig. 6. Vorticity contours for a transition across the critical transition curve from regito€. Shown are: (a) periodic base flow & = 4.60,
B = 40.0); (b) the real part of one of the complex-conjugate pair of critical Floquet moddsGa=(4.60, 8 = 40.0); (c) DNS results at
(KC=4.60,8=442)
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Fig. 7. lllustration of the Neimark—Sacker bifurcation that occurg at 44.2. In (a) the variation ofu| with KC is plotted: solid circles
represent multipliers for the mode of marginal stability corresponding &t while open circles show magnitudes for a complex-conjugate
pair of multipliers that cross the unit circle €€ = 4.515. In (b) the phase angle for the complex-conjugate pair of multipliers is plotted, while
in (c) the secondary periods computed fr@g= 27 T/6 (solid line) are compared to those obtained from spectral analysis of DNS time-series
data (x).

that which would be expected for a wake flow; instead, this is the instability of the jet-like streaming flow, outwards along the
oscillation axis.

At higher Stokes numbers (up o= 100, the limit of our work), the stability analysis again shows that the initial bifurcation
from the symmetric base flows occurs through a Neimark—Sacker bifurcation. To illustrate this point, we show in Fig. 8 the
variation in magnitude and phase angle of the complex-conjugate pair Floquet multipliers along a trate®sat gf= 80.

Marginal stability here occurs #C = 3.815, and) ~ 0.82 at onset.

At the higher Stokes numbers, the linear analysis suggests that the nonlinearly evolved flow should again be quasi-periodic,
and this is the case foKC, B) pairs that lie very close to the linear bifurcation boundary. However, as the control parameters
move further from the bifurcation point, the two-dimensional flows become chaotic, as noted in Section 1, and shown in
Fig. 2(c). This behaviour may be associated with further instabilities either of the two-dimensional base states, or of the quasi-
periodic flows that arise through the Neimark—Sacker bifurcation, or it may be associated with interaction of the shed vortices
with the far-field boundaries. We note that the behaviour is similar to that observed for fedgintiee experiments of [3].
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Fig. 8. The Neimark—Sacker bifurcation @t 80, showing variation of ()| and (b)d with KC. In (a), filled circles indicate modes with real
Floguet multipliers, while open circles indicate modes with complex-conjugate pair multipliers.
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Fig. 9. Diagram illustrating the curve of marginal stability for the two modes of two-dimensional symmetry breaking. The synchronous mode,
regime |, which has a pair of real multipliers crossing the unit circlg at 41, is indicated by, the quasi-periodic mode, regime II, with
w=et? byo while the boundary for the transtioas— D, A — C andB — E observed in experiments, [3], is indicated by the dashed line.

It should be observed that for the higher Stokes numberg 60), the two-dimensional base flows are first unstable to
three-dimensional, rather than two-dimensional, perturbations [3,6] — in reality, r&jinas three-dimensional flows — so
these two-dimensional instabilities would in fact be secondary ones at high Stokes numbers. Nevertheless, two-dimensional
analysis appears to be sufficient to represent the underlying nature of the traBsitidh) as well asA — C andA — D.

3.3. Control-space locus

The results of our two-dimensional Floquet analyses for this problem are summarized in Fig. 9, which shows the curve of
marginal stability for the synchronous and quasi-periodic modeK@) g) control space. The location of this curve agrees
closely with previous experimental results [3] for the fundamentally two-dimensional transitions. The two regimes shown
correspond to the types of bifurcations mentioned previously: (1) a pair of real Floquet multipliers crossing the unit circle at
u =41 and (Il) a pair of complex-conjugate multipliers crossing the unit circle (a Neimark—Sacker bifurcation). The transition
from regime | to Il occurs ag ~ 18.

4, Conclusions

Two-dimensional Floquet stability analysis of symmetric periodic flows produced by an oscillating circular cylinder
accurately predicts the locations iK€, 8) space where two-dimensional symmetry is broken. There is a single curve of
marginal stability, but two distinct regimes, which correspond to (I) pairs of real Floquet multipliers crossing the unit circle at
u = +1, giving rise to left- and right-handed pairs of synchronous two-dimensional instability modes, and (II) complex-con-
jugate pairs of multipliers crossing the unit circle, giving rise to quasi-periodic instability modes. Both instabilities break the
reflection symmetry of the base flows, while (1) retains their spatio—temporal symmetry. The quasi-periodic modes produce
shedding of discrete vortices into the flow — as noted previously [3], these correspond to jet-like, as opposed to wake-like,
instability of the streaming flow along the oscillation axis.

We have examined only the initial two-dimensional symmetry-breaking instabilities of these flows (i.e., those which first
break symmetry akC or g are increased from low values), so there are possibly other modes to which the two-dimensional
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symmetrical flows are unstable K€ or 8 are further increased. Finally, we note that outside the range of control parameters
considered here (particularly at large€), a number of other primarily two-dimensional instabilities have been reported [2];
these remain to be approached through Floquet analysis.
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