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Abstract

We study the two-dimensional symmetry breaking transitions in the time-periodic flow generated in quiescent fluid b
cylinder with simple harmonic rectilinear translation in a direction normal to its axis. The base flow possesses two sym
a spatio-temporal symmetry and a spatial reflection symmetry about the axis of oscillation. Two distinct regimes of m
stability are identified through two-dimensional Floquet analysis. These correspond to (I) a pair of real Floquet mu
simultaneously crossing the unit circle atµ = +1 and (II) a pair of complex-conjugate multipliers crossing the unit cir
µ = e±iθ (a Neimark–Sacker bifurcation). In both transitions the spatial reflection symmetry of the base flow is broken
type I transitions, the spatio–temporal symmetry of the base flow is retained.
 2003 Elsevier SAS. All rights reserved.
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1. Introduction

The stability of flow generated in quiescent fluid by the rectilinear sinusoidal oscillation of a circular cylinder in a dir
normal to its axis has been the subject of both experimental studies [1–4] and also two-dimensional numerical investiga
The flow is of fundamental interest, and results have potential application to the study of loads on structures immersed
or other oscillatory flows.

Two dimensionless control parameters determine the state of this flow. These are the Keulegan–Carpenter numbKC =
2πA/D, and the Stokes number,β = D2/νT , whereA is the amplitude of motion,D is the cylinder diameter,T is the period
of oscillation, andν is the kinematic viscosity of the fluid. At low values ofKC andβ, the periodic flow is two-dimensiona
The visual observations of Honji [1] and Tatsuno and Bearman [3] demonstrated that the symmetry breaking transiti
the base flow occur through instabilities that have both two-dimensional and three-dimensional aspects. In previous
we have addressed some of the three-dimensional instabilities, using three-dimensional Floquet analysis. That work a
establish that some of the transitions, noted to be primarily two-dimensional in nature [3], are located quite accurately inKC, β)
control space when simulations are restricted to two space dimensions. While the two-dimensional flows are somet
unstable to three-dimensional perturbations, these instabilities do not appear to significantly influence the primarily two
sional symmetry-breaking transitions. In the present work, we restrict attention to two-dimensional bifurcations, and
two-dimensional Floquet analysis.

* Corresponding author.
E-mail address: hugh.blackburn@csiro.au (H. Blackburn).

0997-7546/$ – see front matter 2003 Elsevier SAS. All rights reserved.
doi:10.1016/j.euromechflu.2003.05.002



100 J.R. Elston et al. / European Journal of Mechanics B/Fluids 23 (2004) 99–106

The base flows have two two-dimensional symmetries. If the direction of motion of the cylinder is taken to be parallel to
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they axis, and the flow (U , V ) is generated in the (x, y) plane, the two symmetries possessed by this base flow are the s
reflection symmetry (reflection abouty = 0)

(U,V )(x, y, t) = (−U,V )(−x, y, t), (1)

and the spatio–temporal symmetry

(U,V )(x, y, t) = (U,−V )(x,−y, t + T/2). (2)

Our computations are all performed using primitive variables (velocity, pressure), but as visualisations will be present
form of vorticity contours, note that the corresponding symmetries for the out-of-plane vorticity componentΩ are

Ω(x,y, t) = −Ω(−x, y, t), (3)

Ω(x,y, t) = −Ω(x,−y, t + T/2). (4)

Fig. 1 shows base flows at two points in (KC, β) control space, and serves to illustrate their reflection symmetry (3).
Three types of flows which break the two-dimensional reflection symmetry (1), (3) have previously been observed

experiment and in two-dimensional direct numerical simulation (DNS) studies; these are exemplified in Fig. 2, which
instantaneous vorticity contours from two-dimensional DNS. At comparatively small values ofβ, the transition with increasin
KC is to a synchronous state (with period close to that of the base flow); this is illustrated in Fig. 2(a) – the transition br
reflection symmetry but not the spatio–temporal symmetry. The sign with which the flow breaks symmetry in thex-direction
is arbitrary (but constant with time), depending on initial conditions. At intermediate values ofβ, the symmetry breaking tha
occurs with increasingKC is to a quasi-periodic state, where the flow ‘flaps’ from side to side and sheds discrete vortic
secondary periodTs; this flow is illustrated in Fig. 2(b). The third kind of flow with broken symmetry (Fig. 2(c)), observe
higher values ofβ, has a chaotic nature, where, as in Fig. 2(b), discrete vortices are shed, and the flow ‘flaps’ from side
but at irregular intervals.

The curves of marginal stability for the two-dimensional symmetry breaking transitions in (KC, β) control space have bee
approximately established by prior experimental [3] and DNS [6] studies. As can be seen in Fig. 3, the experiments a
are in close agreement for the location of the transitions. In addition, this figure shows labels indicating the approximate
of some of the regimes defined by Tatsuno and Bearman [3]. RegimesA andB correspond (in the restriction to two-dimensio
al flows) to the vorticity contours shown in Fig. 1 (a) and (b), respectively, while regimesD, C andE are represented by th
vorticity contours of Fig. 2 (a), (b) and (c), respectively.

In the remainder of this work, we investigate two-dimensional bifurcations which break the pair of symmetries ex
by the base flows via two-dimensional Floquet analysis, and obtain the loci in (KC, β) control space of two kinds of two-di
mensional symmetry breaking bifurcations. The maximum Stokes number for the present investigations isβ = 100, and the
maximum Keulegan–Carpenter number isKC = 10.

(a) (b)

Fig. 1. Illustration of instantaneous vorticity contours for the base flows at (a) (KC = 7.0,β = 12.5), and (b) (KC = 3.5,β = 100). The flows are
shown at the instant of maximum travel in the vertical (y) direction, with the extent of peak-to-peak travel shown. Positive vorticity indic
by black contours, negative by grey.
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Fig. 2. Instantaneous vorticity contours from two-dimensional DNS, illustrating three variations in transition from the symmetrical bas
(a) Synchronous (T -periodic) regime, shown at (KC = 7, β = 13.5); (b) quasi-periodic regime, shown at (KC = 5, β = 40); (c) chaotic regime
shown at (KC = 4, β = 100).

Fig. 3. Boundaries between the two-dimensional symmetrical flows and those with broken symmetry, as established in the expe
Tatsuno and Bearman [3] (solid line) and two-dimensional DNS [6] (dashed line): above the lines, the flow breaks two-dimensional
symmetry (1), (3). LabelsA–E indicate approximately the locations of various flow regimes identified in [3].

2. Computational methodology

In Floquet stability analysis [7] aT -periodic base flow,U , is examined in conjunction with a perturbation,u′, to determine
whether the perturbation grows or decays in time. The evolution equations for the perturbation flow are the Navie
equations linearised about the base flow. Perturbation solutions,u′, can be written as a sum of componentsũ(t0)expσ(t − t0)

where ũ(t0) is a T -periodic Floquet eigenfunction, evaluated at arbitrary phaset0, and σ is a Floquet exponent. Floqu
multpliersµ are related to the Floquet exponentsσ by µ = expσT . In general, the exponentsσ and the multipliersµ can
either be real, or occur in complex-conjugate pairs. Instability occurs when a multiplier leaves the unit circle (|µ| � 1), or
equivalently when the real part of a Floquet exponent becomes positive.

The technique used here for Floquet analysis is a Krylov subspace method that examines the stability of the l
Poincaré map for the perturbation flow, and is detailed in [8]. Other applications of the numerical method may b
in [9–11]. These previous applications have been to three-dimensional perturbation flows, and where the flow bo
have either been locations of zero local acceleration of the base flow, or solid walls; a restriction to two spatial dim
and application to a domain where the local acceleration of the base flow is non-zero on far-field boundaries, enta
modification and special considerations, outlined below.

The base flow to be tested for stability is obtained by solving the two-dimensional incompressible Navier–Stokes e
in an accelerating reference frame, attached to the cylinder [12,13]. The reflection symmetry (1) of the base flow is en
solving in a half domain (see Fig. 4(a)), with symmetry boundary conditions along thex = 0 boundary. The base flow obtaine
in this way is integrated in time until it reaches a periodic state, after which it is projected (by reflection in the linex = 0) onto
the full domain mesh Fig. 4(b), and stored for Fourier time interpolation. Typically 64 time slices, equi-spaced in time o
base flow periodT , are used by the Floquet solver for this reconstruction of the base flow.
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Fig. 4. Domains and spectral element meshes used for computations. The centre panel, (b), shows the 164-element 40D × 40D domain, used
for Floquet stability calculations; panel (a) shows the corresponding half-domain used to produce symmetrical periodic base flow fie
(c) illustrates a sub-domain used to examine domain size effects on Floquet analysis.

Table 1
Convergence results for Floquet multipliers at (a) different polynomial interpolant orders with a 40D ×40D domain, wherep is the order of the
tensor-product interpolant function employed within each spectral element; (b) different domain sizes atp = 8. All simulations were conducte
at (KC = 3.65,β = 100.0)

(a) p 6 8 10 12
|µ| 1.147180 1.147338 1.147052 1.14648

(b) Domain size 20D × 20D 40D × 40D 60D × 60D 80D × 80D
|µ| 1.110241 1.147338 1.144826 1.14287

The boundary conditions applied to the velocity perturbation areu′ = 0 on all domain boundaries. This is a suitable bound
condition for the symmetry breaking Floquet modes, however these boundary conditions are not suitable for resolving
of marginal stability (µ = +1) that can exist in a Floquet analysis [7]: in the current problem, this mode represents th
acceleration field (∂tU ) of the base flow att = t0, which in general is non-zero on the far-field boundary. In practice,
incompatibility means that the method has difficulty resolving modes for which|µ| � 1, however, it is successfully able
resolve unstable two-dimensional modes, i.e., for|µ| > 1.

Spatial discretisation was carried out with spectral elements, with Lagrange interpolant shape functions based o
Lobatto–Legendre quadrature points. Interpolant order and domain size selections were carried out on the basis of co
results for Floquet multipliers at (KC = 3.65,β = 100.0) and summarised in Table 1: a polynomial interpolant orderp = 8 and
a domain size of 40D × 40D were selected for subsequent work. The domain size corresponds approximately to that
experiments of Tatsuno and Bearman [3]. As a further check of domain size effects, an analysis was carried out usin
smaller domain (Fig. 4(c), with the base flow computed on the 40D × 40D domain and projected onto this smaller domai
the resulting variation in|µ| was less than 0.3%, confirming that Floquet mode energy is concentrated near the cylinder

3. Results

Our investigation has determined that there is a single curve of marginal stability for the initial two-dimensional sym
breaking transitions, but the bifurcations on it fall into two distinct regimes. These two regimes correspond to (I) real
multipliers crossing the unit circle atµ = +1 (synchronous modes) and (II) complex-conjugate pairs of multipliers crossin
unit circle (quasi-periodic modes). We examine these two types of instability and their relation to the three types of sy
breaking behaviour found previously (Fig. 2) in the following sections.

3.1. Synchronous modes

The transition to synchronous flows with broken reflection symmetry (1), (3) occurs at comparatively low values ofβ, and
high values ofKC. In Fig. 5(a) we see instantaneous vorticity contours for the base flow at (KC = 7.0, β = 13.5) for the time at
which the cylinder is at its maximum displacement in they direction. Fig. 5(b) shows the vorticity contours of a critical Floq
eigenfunction at the same phase in the motion cycle. The eigenfunction breaks the reflection symmetry (3), and so
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Fig. 5. Vorticity contours illustrating a synchronous symmetry-breaking transition: (a) periodic base flow at (KC = 7.0, β = 13.5); (b) one of
the symmetrically related pair of marginally stable Floquet eigenfunction at the same set of control parameters; (c) DNS result at (KC = 7.0,
β = 15.0).

resulting flow. In Fig. 5(c) we show vorticity contours for a the saturated flow obtained at a slightly larger value ofβ, computed
using DNS initiated with the base flow perturbed by the leading Floquet eigenfunction.

The eigenfunction varies with phase in the motion cycle, and while it breaks reflection symmetry (3), it retains the
temporal symmetry (4), as does the perturbed flow. As the reflection symmetry can break in two ways, the unstable
modes come in left- and right-handed pairs, and there is correspondingly a pair of Floquet multipliers that cross the u
simultaneously atµ = +1.

The synchronous symmetry breaking appears to correspond well to the flow visualisation results presented for the
A → D, as described in [3]. RegimeD is also known as the ‘transverse street’ regime [2].

3.2. Quasi-periodic modes

At higher values ofβ, the first Floquet multipliers to cross the unit circle occur in complex-conjugate pairs, i.e.µ = e±iθ ,
so the bifurcation is of Neimark–Sacker type [14]. A secondary period,Ts, arises, so the resulting flows are – initially at le
– quasi-periodic, and evolve on 2-tori. While in general the new period is not neccessarily simply related toθ (which is not a
self-rotation number), in the cases examined here, we findTs = 2πT/θ . Both the Floquet multipliers and their eigenfunctio
arise in complex-conjugate pairs, but it is sufficient to examine either the real or imaginary parts of the eigenfunctions
can be obtained from the other by evolution in time byTs/4 [11]. Again, the eigenfunctions break the reflection symmetr
the base flow about the oscillation axis, and owing to the quasiperiodic nature of the solutions, the spatio–temporal s
is broken as well.

At moderate values ofβ andKC (corresponding to the the transitionA → C in Fig. 3), the saturated flow at (KC, β) values
slightly above critical evolves to a quasi-periodic state, where the secondary periodTs is linked to a slow flapping+x → −x

of the induced flow, and the shedding of discrete vortices. This behaviour is illustrated in Fig. 6, which shows the b
and (real part) Floquet eigenfunction at (KC = 4.60,β = 40.0), together with a snapshot of the quasi-periodic flow observe
(KC = 4.60,β = 44.2).

In order to establish the linkage between the phase angleθ obtained through Floquet analysis and the secondary perioTs,
spectral analysis of quasi-periodic time-series data (force exerted on the cylinder in DNS) was carried out, andTs extracted.
Fig. 7(a) illustrates the variation of|µ| with KC at β = 44.2: belowKCc = 4.515, the mode of marginal stability is the leadi
mode, while forKC > KCc, |µ| increases approximately linearly withKC. At KCc, the Floquet multiplier phase angle,θ � 0.5,
andθ → 0 with increasingKC (Fig. 7(b)). In Fig. 7(c) the secondary period computed simply fromTs = 2πT/θ is shown, and
compared to the secondary period computed from spectral analysis of the DNS data: it can be seen that at criticalit
periods match. AsTs/T ∼ 13, the vortex shedding period is clearly much longer than the cylinder oscillation period.

The Stokes number chosen for the above analysis,β = 44.2, corresponds to one of the flow visualisations (Fig. 13) in
which clearly exhibits periodic vortex shedding, nominally similar to the flow illustrated in Fig. 6(c). Although the Keul
Carpenter numbers differ slightly (KC = 4.40 in [3] compared toKCc = 4.515 here), and the results in [3] suggest that the fl
is subsequently unstable to three-dimensional secondary instabilities, this agreement in two-dimensional flow structu
transitionA → C is significant and reassuring. As was noted in [3], the sense of rotation of the shed vortices is the o
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Fig. 6. Vorticity contours for a transition across the critical transition curve from regimeA to C. Shown are: (a) periodic base flow at (KC = 4.60,
β = 40.0); (b) the real part of one of the complex-conjugate pair of critical Floquet modes at (KC = 4.60, β = 40.0); (c) DNS results at
(KC = 4.60,β = 44.2.)

Fig. 7. Illustration of the Neimark–Sacker bifurcation that occurs atβ = 44.2. In (a) the variation of|µ| with KC is plotted: solid circles
represent multipliers for the mode of marginal stability corresponding to∂tU , while open circles show magnitudes for a complex-conjug
pair of multipliers that cross the unit circle atKC = 4.515. In (b) the phase angle for the complex-conjugate pair of multipliers is plotted,
in (c) the secondary periods computed fromTs = 2πT/θ (solid line) are compared to those obtained from spectral analysis of DNS time-
data (×).

that which would be expected for a wake flow; instead, this is the instability of the jet-like streaming flow, outwards al
oscillation axis.

At higher Stokes numbers (up toβ = 100, the limit of our work), the stability analysis again shows that the initial bifurca
from the symmetric base flows occurs through a Neimark–Sacker bifurcation. To illustrate this point, we show in Fi
variation in magnitude and phase angle of the complex-conjugate pair Floquet multipliers along a traverse ofKC at β = 80.
Marginal stability here occurs atKC = 3.815, andθ ≈ 0.82 at onset.

At the higher Stokes numbers, the linear analysis suggests that the nonlinearly evolved flow should again be quas
and this is the case for (KC, β) pairs that lie very close to the linear bifurcation boundary. However, as the control param
move further from the bifurcation point, the two-dimensional flows become chaotic, as noted in Section 1, and s
Fig. 2(c). This behaviour may be associated with further instabilities either of the two-dimensional base states, or of th
periodic flows that arise through the Neimark–Sacker bifurcation, or it may be associated with interaction of the shed
with the far-field boundaries. We note that the behaviour is similar to that observed for regimeE in the experiments of [3].
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Fig. 8. The Neimark–Sacker bifurcation atβ = 80, showing variation of (a)|µ| and (b)θ with KC. In (a), filled circles indicate modes with re
Floquet multipliers, while open circles indicate modes with complex-conjugate pair multipliers.

Fig. 9. Diagram illustrating the curve of marginal stability for the two modes of two-dimensional symmetry breaking. The synchronou
regime I, which has a pair of real multipliers crossing the unit circle atµ = +1, is indicated by•, the quasi-periodic mode, regime II, wit
µ = e±iθ , by ◦, while the boundary for the transtionsA → D, A → C andB → E observed in experiments, [3], is indicated by the dashed l

It should be observed that for the higher Stokes numbers (β � 50), the two-dimensional base flows are first unstable
three-dimensional, rather than two-dimensional, perturbations [3,6] – in reality, regimeB has three-dimensional flows – s
these two-dimensional instabilities would in fact be secondary ones at high Stokes numbers. Nevertheless, two-dim
analysis appears to be sufficient to represent the underlying nature of the transitionB → E, as well asA → C andA → D.

3.3. Control-space locus

The results of our two-dimensional Floquet analyses for this problem are summarized in Fig. 9, which shows the
marginal stability for the synchronous and quasi-periodic modes in (KC, β) control space. The location of this curve agre
closely with previous experimental results [3] for the fundamentally two-dimensional transitions. The two regimes
correspond to the types of bifurcations mentioned previously: (I) a pair of real Floquet multipliers crossing the unit c
µ = +1 and (II) a pair of complex-conjugate multipliers crossing the unit circle (a Neimark–Sacker bifurcation). The tra
from regime I to II occurs atβ ≈ 18.

4. Conclusions

Two-dimensional Floquet stability analysis of symmetric periodic flows produced by an oscillating circular cy
accurately predicts the locations in (KC, β) space where two-dimensional symmetry is broken. There is a single cur
marginal stability, but two distinct regimes, which correspond to (I) pairs of real Floquet multipliers crossing the unit c
µ = +1, giving rise to left- and right-handed pairs of synchronous two-dimensional instability modes, and (II) comple
jugate pairs of multipliers crossing the unit circle, giving rise to quasi-periodic instability modes. Both instabilities bre
reflection symmetry of the base flows, while (I) retains their spatio–temporal symmetry. The quasi-periodic modes
shedding of discrete vortices into the flow – as noted previously [3], these correspond to jet-like, as opposed to w
instability of the streaming flow along the oscillation axis.

We have examined only the initial two-dimensional symmetry-breaking instabilities of these flows (i.e., those wh
break symmetry asKC or β are increased from low values), so there are possibly other modes to which the two-dime
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symmetrical flows are unstable asKC or β are further increased. Finally, we note that outside the range of control parameters
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considered here (particularly at largerKC), a number of other primarily two-dimensional instabilities have been reported
these remain to be approached through Floquet analysis.
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