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Data-driven approach to design of passive flow control strategies
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An approach to designing passive devices for control of unsteady flows is presented. The
method requires only snapshots of the flow to be controlled as inputs. A temporal correlation
based on proper orthogonal decomposition of both fluctuating velocity and nonlinear forcing
serves to identify the spatial locations in which the forcing drives the different unsteady flow
features. The installation of a passive device in these spatial locations inhibits the fluctuating
motion. The potential of the methodology is demonstrated via the suppression of vortex
shedding in flow past a square cylinder, paving the way to the control of more complex
flows using passive devices. Connections in agreement with previous studies targeting the
same flow using different passive flow control strategies are provided.
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Control of flow past bluff bodies is of importance owing to potential benefits in suppressing
structural vibrations, mitigating acoustic noise, or reducing mean drag [1]. A large body of literature
[1–5] has dealt with the effective use of passive devices in the wake past a bluff body to stabilize
the fluctuating motion. The success of the passive devices, such as control cylinders or splitter
plates, relies on their simplicity and lack of power input, however the design of such devices often
requires a trial and error parameter sweep of different sizes, shapes, and locations owing to a lack
of understanding of the flow control mechanisms [1].

While the concept of structural sensitivity introduced by Giannetti and Luchini [6] provides some
physical insight into these mechanisms and allows design criteria for the use of passive devices,
obtaining the structural sensitivity is a linear analysis, and special treatment, modeling, and care
is required when dealing with unsteady or turbulent flows, far from a steady state. The structural
sensitivity can be understood as the required changes in a steady flow in order to prevent the
development of an unstable linear instability.

Here we introduce a generic methodology to design flow control strategies for unsteady flows
using passive devices. The main differences with respect to the concept of structural sensitivity are
that first, it directly deals with unsteady flows without assumptions and, second, the approach is data
driven, hence it does not require the knowledge of a steady state or mean flow; only snapshots of the
flow to be controlled are required to design a passive flow control strategy.

The theoretical framework underlying the present methodology is that of self-sustained flows
inspected via the resolvent analysis of McKeon and Sharma [7], in which nonlinear forcing drives
fluctuating velocities, which in turn generates nonlinear forcing. We focus on unsteady flows
governed by the incompressible Navier-Stokes equations in nondimensional form

∇ · û = 0, (1)

∂t û + û · ∇û = −∇p + Re−1∇2û, (2)

where Re is the Reynolds number based on reference velocity U and length scale D, û = (u,v,w)
is the velocity vector expressed in Cartesian coordinates (x,y,z), and p is the modified pressure.
A Reynolds decomposition can be applied to the total velocity û to yield a fluctuating velocity
u = û − u0 by subtracting the temporal and spatial mean flow u0. The introduction of this
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FIG. 1. Interpretation of the self-sustained flow framework. (a) Spectral formulation: The fluctuating
nonlinear forcing f ω acts as the forcing that drives fluctuating velocities uω, which in turn generates nonlinear
forcing. The time-average component of the nonlinear forcing, the Reynolds stress f 0, modifies the mean flow
u0 via the RANS equation. The feedback loop is completed with the mean flow characterizing the properties
of the resolvent operator Hω, i.e., how nonlinear forcing fluctuating drives the fluctuating velocity. (b) Discrete
time-domain formulation, using velocity POD modes ui and their correlated POD forcing f i . The operator R
establishes a linear relation between the two set of fluctuating POD modes.

decomposition in Eq. (2) and a time averaging lead to the Reynolds-averaged Navier-Stokes (RANS)
equation

∂t u0 + u0 · ∇u0 = −∇p + Re−1∇2u0 + f 0, (3)

with f 0 denoting the Reynolds stress. This represents the contribution to the mean flow of the
nonlinear interaction of the fluctuating velocity f̂ = u · ∇u. In a similar manner, the following
relationship for the fluctuating velocity is obtained:

∂t u(t) = Lu(t) + f (t), (4)

where L is the Jacobian of the NSE and f is the fluctuating nonlinear forcing. Equation (4) can be
Fourier filtered to any frequency ω to obtain

uω = Hω f ω, (5)

in which Hω = (−iωI − L)−1 is defined as the resolvent operator, with uω and f ω being the
Fourier-filtered fluctuating velocity and nonlinear forcing components at ω, respectively. The key
result of (5) is that it shows that the linear relationship between fluctuating velocity and fluctuating
nonlinear forcing is driven by the properties of the resolvent operator.

The combination of the RANS equation (3) with the resolvent relationship (5) leads to the classical
picture of self-sustained flows sketched in Fig. 1(a). The fluctuating nonlinear forcing f ω acts as
the forcing that drives fluctuating velocities uω, which in turn generates nonlinear forcing. The
time-average component of the nonlinear forcing, the Reynolds stress f 0, modifies the mean flow
u0 via the RANS equation. The feedback loop is completed with the mean flow characterizing the
properties of the resolvent operator Hω, i.e., how nonlinear forcing drives the fluctuating velocity.

The outline above highlights the role of the resolvent operator in the self-sustained flow
mechanisms. As such, a large number of recent papers have focused on the inspection of the
properties of this operator in different flow configuration, such as pipes [7], channels [8], lid-driven
cavities [9], cylinders [10], or backward-facing steps [11]. The key result in these investigations is
that, under the presence of a dominant physical mechanism, the resolvent behaves like a selective
directional amplifier. Consequently, a low-rank approximation of the operator can be exploited in
order to extract physical features or generate reduced-order models. On the other hand, the ability to
inspect of the resolvent operator is often limited due to its high dimensionality and limited availability
of computational resources, especially in the case of three-dimensional flows. While the assembly
and storage of the resolvent operator can lead to large computational memory requirements, its
alternative strategy, the study of the action of the operator via time stepping, can also lead to large
computational time requirements.

We propose an alternative data-driven strategy to circumvent the need to obtain the resolvent
operator while still making use of this self-sustained flow framework. The data-driven approach is
motivated by the empirical formulation in Fourier space proposed by Towne et al. [12], however
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the present approach differs from the empirical resolvent decomposition in that we do not attempt
a data-driven approach to inspect the resolvent operator. Although the obvious choice of data
representation for this framework would be their Fourier transform, a number of difficulties arise
when dealing with flow data in the form of snapshots. For instance, a Fourier transform of full data can
be expensive to compute and relevant flow features may be composed of several frequencies, leading
to several operations around the resolvent operator at different frequencies. For this reason, a more
general framework is introduced in order to deal with snapshot data in a more efficient way, while
maintaining the self-sustained framework. The temporal derivative ∂t is linear, hence it is possible
to write down a relationship between fluctuating velocity and nonlinear forcing in the form of

u(t) = R f (t), (6)

where R = (∂t − L)−1 can be understood as an impulse response function. Note that the particular
case of a periodic fluctuating velocity with frequency ω leads to ∂t = −iωI and the same resolvent
operator in Eq. (5) could be obtained. The operator R is unknown in principle, because it depends on
how the velocity changes in time, however the relationship (6) is the key to the investigation of flow
dynamics from a data-driven point of view. We assume a set of s snapshots of the fluctuating velocity

U(t) = [u(t1) u(t2) · · · u(ts)] (7)

and their corresponding fluctuating nonlinear terms, computed from f̂ = u · ∇u,

F(t) = [ f (t1) f (t2) · · · f (ts)]. (8)

A low-rank proper orthogonal decomposition (POD) obtained via singular value decomposition
(SVD) of the snapshot matrix U leads to

U(t) =
r∑

i=1

ψu
i (x)σu

i φu
i (t), (9)

where ψu
i (x) are the spatial POD modes, (σu

i )2 represents the average kinetic energy of the ith POD
mode, and φu

i (t) is the corresponding temporal evolution. Criteria for the selection of the rank r � s

are provided in what follows. The kinetic energy defined as the L2 norm

‖u‖2 =
∫

�

uT · u d� = uTMu (10)

is employed to perform POD, hence, in practice, a SVD is applied to the modified snapshot matrix
Û = √

MUT −1/2, where T is an identity matrix multiplied by the time span ts − t1. Note that,
for simplicity, we have not distinguished between continuous or discretized operators. This scaling
guarantees that the POD modes ψu

i (x) =
√
M−1ψ̂u

i (x) yield unit energy under the L2 norm and that
they are orthogonal to each other. Another key property is that the POD modes are also orthogonal
in time,

(ts − t1)−1
∫ ts

t1

φu∗
i (t)φu

j (t)dt =
{

1, i = j

0, i �= j,
(11)

hence it is trivial to show that the singular value (σu
i )2 corresponds to the average kinetic energy of

each POD mode. A POD can also be applied to the fluctuating forcing to obtain

F(t) =
r∑

i=1

ψ
f

i (x)σf

i φ
f

i (t), (12)
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in which the decomposition has been truncated to the same rank r as the POD velocity for simplicity.
The two POD-based models of velocity and nonlinear forcing can be substituted into (6) to yield

r∑
i=1

ψu
i (x)σu

i φu
i (t) = R

r∑
i=1

ψ
f

i (x)σf

i φ
f

i (t), (13)

in which the orthonormality in time can be exploited by multiplying both sides by φu
i (t) and averaging

in time to obtain

ψu
i (x)σu

i = R
r∑

j=1

ψ
f

j (x)σf

j Cij , (14)

where Cij is a matrix representing the correlation between the temporal evolution of the velocity
and the nonlinear forcing POD modes. This temporal POD-based filter step can be interpreted as
an analogous Fourier transform to obtain (5) from (4). In general, Cij is a dense matrix, however,
for the particular case of a periodic flow, Cij would be sparse owing to triadic interactions between
dominant and harmonic frequencies. In addition, it is required that for each ith velocity POD mode

r∑
j=1

C2
ij � 1, (15)

which represents the idea that the rank r is large enough to capture most of the nonlinear forcing
driving the fluctuating energy. For ease of explanation in the results that follow, we rewrite (14)
with each POD velocity mode as ui(x) = ψu

i (x)σu
i and their corresponding sum of correlated POD

forcing modes is substituted as

f i(x) =
r∑

j=1

ψ
f

j (x)σf

j Cij (16)

to yield

ui(x) = R f i(x), (17)

which represents a discrete-time-domain generalization of the original resolvent formulation [7], as
sketched in Fig. 1(b) as an aid to interpretation. In addition, the present framework is linked to the
work of Sharma et al. [13], where the resolvent operator is interpreted as the linear mapping between
velocity and forcing Koopman modes.

The present framework enables the identification of the forcing that excites the most energetic
structures in the flow in a time-domain context. The flow structure of f i(x) indicates the spatial
location where the nonlinear forcing drives each POD velocity mode ui . A clear passive flow
control strategy emerges from this observation: The self-sustained interactions can be interrupted
by suppressing the forcing. As such, a passive device could be placed in the spatial location where
f i(x) is significant in order to suppress the velocity fluctuations.

We remark that the use of passive device not only inhibits the fluctuations in a specific region,
but also modifies the operator R via changes in the mean flow. This issue is related to the work of
Luhar et al. [14,15], in which they modeled various active flow control strategies by acting on the
boundary conditions of the resolvent operator. The results were in good agreement with previous
investigations, despite no corrections being introduced in the mean flow. Consequently, the effect of
modifications of the mean flow on R can be disregarded in a first approximation.

Next we apply this strategy to the periodic flow past a square cylinder. This example represents a
good trade-off between complexity of flow structure and computational affordability and it has
already been employed in different flow control studies with passive devices [2–5]. A direct
numerical simulation of the flow at Re = 100 has been carried out using a spectral-element solver.
At this Re, the flow exhibits a Kármán vortex street with a dominant nondimensional frequency
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FIG. 2. Fluctuating velocity POD modes. Rows, from top to bottom, show the first, third, and fifth POD mode
(a) spatial structure ψu

i (x), showing vorticity ωz = ±0.5, (b) temporal coefficients φu
i (t), and (c) percentage of

kinetic energy corresponding to each POD mode. Note that because of the periodic nature of the flow, POD
modes emerge as pairs to account for real and imaginary parts. The mean fluctuating kinetic energy is defined
as Ek = ∑s

i=1 σ 2
i .

St = f D/U = 0.145. Details of the computation can be found in Ref. [16]; the simulations
are converged using the same unstructured mesh consisting of 236 elements with a polynomial
degree of 9 and a second-order time integration with a time step �t = 0.008. A fixed velocity is
imposed at the inlet û = (1,0), Neumann boundary conditions are applied at the outlet, and no-slip
conditions are imposed at the cylinder surfaces. The computational domain used is −16 < x < 20
and −16 < y < 16, where x = (0,0) corresponds to the cylinder centroid.

After achieving a periodic state in the simulation, 320 snapshots have been collected
equidistributed during 20 vortex shedding periods. The fluctuating component of each snapshot
has been computed by subtracting the mean flow and the nonlinear forcing snapshots have been
computed using the same spectral-element discretization of the DNS. In a similar manner to the
fluctuating velocity, the Reynolds stress f 0 must be computed and subtracted from the nonlinear
terms f̂ in order to get the fluctuating component f . A POD of the snapshot matrices has been
carried out using a randomized SVD [17]. The results of the POD for the velocity snapshot matrix
are summarized in Fig. 2. Because of the periodic nature of the flow, POD modes emerge as pairs to
account for real and imaginary parts and these could be merged into a single mode u′

i = ui + iui+1

using a complex variable. The kinetic energy of each POD mode σ 2
i , represented in Fig. 2(c),

indicates that the wake is strongly dominated by the first and second POD modes, which are also
associated with the main shedding frequency St = 0.145.

In order to control the wake, we focus on neutralizing the first and second POD modes by
identifying the corresponding forcing that excites that modes. Figure 3(a) shows the kinetic energy
corresponding to each the forcing POD modes φ

f

i (x) and Fig. 4 shows the correlation matrix of
these POD modes with the response POD modes. The correlation matrix C shows that the forcing
contribution to the first and second velocity POD modes comes from the third and fourth forcing
POD modes; C also highlights how the POD modes emerge as complex conjugate pairs. Note that
this particular matrix structure is caused by the periodicity of the flow; as such, this simple structure
is not expected in more complex flows. In addition, the correlation satisfies that

∑r
j=1 C2

ij � 1 for
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FIG. 3. (a) Percentage of kinetic energy corresponding to each forcing POD mode ψ
f

i (x). (b) Contour
levels (light gray to black indicate 25%, 50%, and 75%) of the correlated POD forcing mode | f 1 + i f 2|2
driving the oscillatory wake. (c) Snapshot of the uncontrolled flow at t = 740, showing streamwise velocity.
(d) Snapshot of the controlled flow at t = 740, showing streamwise velocity. The passive device is colored in
orange. (e) Temporal evolution of the streamwise velocity u at x1 = (10,1.8). (f) Temporal evolution of the
streamwise velocity u at x1 = (10,1.8).

all the considered POD modes, thus the r rank truncation is adequate. This result is consistent with
other POD Galerkin models [18], in which the need to consider more than two POD modes to
account for higher-order harmonics is highlighted.

Figure 3(d) presents the spatial structure of the correlated POD mode | f 1 + i f 2|2, constructed
from (16). This spatial structure consists of three lobes and indicates the locations in which the
forcing is produced. We note than the forcing is most concentrated in the central lobe, hence we
target that area with a passive device. As a proof of concept, we apply a body force −mû in a
rectangular subdomain (3.2 < x < 4.8,−0.15 < y < 0.15), colored in orange in Fig. 3(c). This
body force imposes the velocity to be zero in the application domain, so effectively it acts as a
passive device.

C

0.879 −0.477
−0.477 −0.879

0.677 −0.736
−0.736 −0.677

−0.543 −0.839
−0.839 0.543

FIG. 4. Structure of the correlation matrix C. The third and fourth forcing POD modes drive the periodic
wake (first and second velocity POD modes). The POD modes emerge as complex conjugates due to the flow
periodicity. All columns satisfy that

∑r

j=1 C2
ij � 1. Here ε represent elements of O(10−3).
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The effect of this device on the flow can be seen in Figs. 3(c)–3(e). In the absence of the device,
the flow exhibits periodic vortex shedding. However, if the device is installed in the wake, the flow
becomes steady in a few periods. This demonstrates the effectiveness of the proposed flow control
strategy.

We note that although the method does not provide the optimal shape and location to inhibit the
fluctuation, it provides a useful theoretical background for interpretation of many previous studies.
Thus a pleasing connection can be established between the present results and the successful appli-
cation of splitter plates to control the wake past a square cylinder at similar Reynolds numbers [2–5].

For instance, the spatial structure of the correlated forcing POD mode in Fig. 2(d) justifies why
the vortex shedding disappears only when the length of a splitter plate (attached to the cylinder) is
larger than 5D, as shown in Refs. [2,3]. Moreover, the present spatial structure also explains why
the attempted control with a splitter plate located between 2.37 < x < 3.2 by Doolan [4] proved
unsuccessful in suppressing unsteadiness; the fluctuating Reynolds stresses driving the wake were
generated further downstream.

The spatial structure in Fig. 2(d) is also in qualitative agreement with the study of Zhou et al.
[5] on suppressing the oscillatory motion of the wake by placing a vertical flat plate upstream of the
squared cylinder. Two conditions were required for the success of this flow control strategy: a spacing
between the vertical plate and the squared cylinder of at least 3D and a height of the vertical flat
plate larger than 0.7D. We hypothesize that in this case the square cylinder acted as a passive device
to suppress the fluctuating motion of the wake past the vertical flat plate, consistent with Fig. 2(d).

In conclusion, the results contained in this Rapid Communication demonstrate the success and
potential of the proposed approach to design passive flow control strategies. Furthermore, the
data-driven nature of the approach makes amenable the use of experimental data and the application
of this approach in more complex geometries can proceed similarly. Therefore, the present approach
opens up an avenue for the design of flow control using passive devices in a broad range of flows.
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F. GÓMEZ AND H. M BLACKBURN
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