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The possibility of creating reduced-order models for canonical wall-bounded tur-
bulent flows based on exploiting energy sparsity in frequency domain, as proposed
by Bourguignon et al. [Phys. Fluids 26, 015109 (2014)], is examined. The present
letter explains the origins of energetically sparse dominant frequencies and provides
fundamental information for the design of such reduced-order models. The resolvent
decomposition of a pipe flow is employed to consider the influence of finite domain
length on the flow dynamics, which acts as a restriction on the possible wavespeeds
in the flow. A forcing-to-fluctuation gain analysis in the frequency domain reveals
that large sparse peaks in amplification occur when one of the possible wavespeeds
matches the local wavespeed via the critical layer mechanism. A link between am-
plification and energy is provided through the similar characteristics exhibited by the
most energetically relevant flow structures, arising from a dynamic mode decomposi-
tion of direct numerical simulation data, and the resolvent modes associated with the
most amplified sparse frequencies. These results support the feasibility of reduced-
order models based on the selection of the most amplified modes emerging from the
resolvent model, leading to a novel computationally efficient method of representing
turbulent flows. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4900768]

A compact representation of turbulent pipe flow based on compressive sampling has been
recently carried out by Bourguignon ef al.! This representation relies on sparsity properties of the
flow in frequency domain, in the sense that only a small number of frequencies, widely spaced, are
energetically dominant. Correspondingly, the success of the applicability of compressive sampling
techniques to turbulent flows indicated that these flows admit a sparse representation which is
inherent to the discrete treatment of wall-bounded turbulence. As a consequence, sparsity patterns
in frequency of the energy spectrum of turbulent pipe flow have been identified through compressive
sampling of Fourier transformed velocity fields obtained via direct numerical simulations (DNS).'
These findings enable the possibility of novel efficient reduced-order models based on selecting
energetically dominant modes from this set of sparse frequencies, which could provide progress in
the quest for further understanding or controlling wall-bounded turbulent flows.

The present work focuses on an investigation of the origin and understanding of these energy
sparsity patterns, based on a turbulent pipe flow from a DNS dataset computed for Rt = 314. An
extension of the input-output amplification analysis of the resolvent framework? able to deal with
finite period length domains in an implicit way is employed for this purpose. Previous success of
the resolvent model developed by McKeon, Sharma, and co-workers2° covers the identification of
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coherent structures and the reproduction and scaling of wall-bounded turbulence features by means
of the interaction of such coherent structures. Furthermore, this model permits the decomposition
of the velocity fields as a sum of weighted resolvent modes associated with a particular set of
wavenumbers and frequencies, which favor sparse decompositions of the velocity fields, as shown
by Bourguignon et al.' Additionally, this energy-based decomposition is directly obtained from the
Navier—Stokes equations, as opposed to other data-dependent models, such as proper orthogonal
decomposition (POD)’ or dynamic mode decomposition®? (DMD). As an aid to understanding,
standard time domain frequency and DMD analyses are carried out on the turbulent DNS data and
the results obtained are compared to the resolvent model.

An extension to the resolvent model is elaborated below. The pipe flow is governed by the
incompressible Navier—Stokes equations in non-dimensional form,

V-a=0, 1)

ou

5+ﬁ-Vﬁ= —Vp + Re 'V, )
where Re is the Reynolds number based on the bulk velocity and pipe diameter D, & = (u, v, w) is
the velocity vector expressed in cylindrical coordinates (x, r, 6) and p is the modified pressure. The
mean flow uy = (up, 0, 0) is obtained from the DNS and subtracted from the total velocity to leave
the fluctuating velocity u = @ — uy, which may be decomposed as a sum of Fourier modes,

u(x, r,0, 0= / u, ,(x, )" dw 3)

where n and w are the non-dimensional azimuthal wavenumber and the temporal frequency respec-
tively. Similarly, the nonlinear convective terms are Fourier-transformed as f, , = (u - Vu), .
Notice that, in contrast with the classical one-dimensional resolvent formulation,> homogeneity of
the pipe flow in the axial direction has not been exploited and the axial coordinate x has not been
Fourier-transformed into an axial wavenumber k, thus this two-dimensional resolvent formulation
permits the general analysis of flows non-homogeneous in the axial direction as well as taking into
account the finite length of the computational periodic domain employed in the DNS. While initially
it appears redundant to introduce a two-dimensional formulation for a smooth straight pipe flow, we
will demonstrate that this treatment allows new insight to be gained from a numerical point of view
in a convenient way, as this model possesses the same computational domain as that employed in
the DNS. Nevertheless, we are aware that a careful use of the classical resolvent would yield the
same outcome by imposing discrete axial wavenumbers, as will be demonstrated.

A manipulation of (2) with the above Fourier decompositions of the fluctuation velocity yields
the linear relation

un,w(xv r) = Hn,cufn,w(xs r) s (4)

for each (n, w) combination. The operator H,, ,, is known as the resolvent and depends solely on the
mean flow and its spatial derivatives; it acts as a transfer function between the fluctuating velocity
and the nonlinear terms, in which the nonlinear terms are considered as the forcing that drives the
fluctuations. A singular value decomposition (SVD) of the resolvent operator

Hn,w = Z 'P;Lw‘moin,w.m¢:_w,m (5)

provides an optimal set of orthonormal singular response modes ¥, , », and singular forcing modes
®n.,m that are ordered by the forcing-to-response amplification given by the corresponding singular
value o, ., ». Here, the subscript m denotes the order of resolvent mode. To relate this gain analysis
to the velocity fields, each Fourier projection of the nonlinear terms is decomposed as a sum of
singular forcing modes

an,w = Z Xn,w,m¢n,a).M7 (6)
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where the unknown forcing coefficients x, ., » represent the nonlinear interactions sustaining the
turbulence. The fluctuating velocity field is then reconstructed as a weighted sum of singular response
modes

u(x, r,0,1) = / 3 tnwmOnwmPnwmx. e do. (7)
@ noom
We note that the response modes ¥, ., and forcing modes ¢, ., are functions of both
radial and axial coordinates, unlike the one-dimensional resolvent method.>™ For simplicity in
the interpretation of the resolvent results shown throughout this letter, the low-rank nature of the
resolvent,” &, ,, | 3> 0. .2 can be employed in order to approximate the velocity field as

ux,r, 0,1) ~ / D X010 1 (6, 1) deo ®)
@ g

Notice that in contrast to other dynamic reduced-order models based on Galerkin projection of
the NSE, as in Noack et al.,'? the present analysis is based on the assumption of the mean flow in a
statistically steady state. In this context, note that the mean equation reads

l10~Vll()—f0—Vp0—R671V2U()=0, &)

thus the mean flow is a steady solution of this mean equation in the presence of fy and no assumptions
concerning stability or linearization of the flow are required. Further technical details of this analysis
can be found in McKeon et al.?

The resolvent operator H, ,, is discretized following an approach similar to the one described
by Trefethen'! for cylindrical coordinates; a Chebychev spectral collocation method is employed
along the pipe diameter, while uniform grid and Fourier differentiation matrices are used in the
periodic axial direction. Although the computational cost associated with this discretization rises
from O(er) to (’)(erNf), with N, and N, being the resolution in the radial and axial direction,
respectively, SVD computations of the resolvent operator can still be performed in reasonable times
on standard laptops at the present Reynolds number.

The DNS dataset employed for the present work and the mean flow uy have been computed
from DNS data of pipe flow with length L = 27t D at Re = 10000 (R* = 314 based on friction veloc-
ity) obtained using a spectral element—Fourier numerical discretization in cylindrical coordinates'?
with a second-order velocity-correction scheme for time integration.'> Although the present resol-
vent formulation is two-dimensional, the present pipe mean flow remains one-dimensional, hence
uy = uy(r).

McKeon et al.? suggested that the energetically important wavenumbers in these flows are
conservatively estimated using a range of scales 0.1 < k < 27 R*/100, 27/0.1 < n < 27 R*/10, and
10/ug™(r = 0) < ¢ < 1, ¢ being the wavespeed normalized with the pipe centerline velocity and k
the axial wavenumber. Applying this to the current pipe flow at Rt = 314 leads to a conservative
estimation of 0.1 < k < 10, 1 < n < 100, and 0.02 < w/27 < 2.02. The minimum axial wavenumber
is restricted by the pipe length and in this study is k = 2mw/L = 1. Notice that all allowable axial
wavenumbers in the model are integer multiples of this fundamental axial wavenumber.

Figures 1(a) and 1(b) show the distribution of the principal amplifications o, 4, 1 in the subset of
azimuthal wavenumbers 7 selected here using the one-dimensional and two-dimensional resolvent
models, respectively. Figure 1(a) is produced by searching the maximum amplification at a given
(w, n) across a continuum set of axial wavenumbers k via a one-dimensional resolvent model,
whereas Figure 1(b) is constructed with the two-dimensional resolvent model by imposing a finite
length L =27 D. We note that Figure 1(b) can also be constructed with the one-dimensional model by
only using integer multiples of the fundamental axial wavenumber corresponding to the pipe length.
While Figure 1(a) shows only a smooth decay in amplification as the azimuthal wavenumbers and
frequencies increase, Figure 1(b) presents a sparsity in the amplification with frequency, which is
more clearly seen at small azimuthal wavenumbers. For brevity of exposition, all the remaining
analysis and results will focus on the azimuthal wavenumber n = 2.

Figure 2 shows a cross-section of the distribution of amplification from Figure 1(a) and 1(b)
obtained at n = 2, featuring a peaky behavior of the two-dimensional resolvent model (see solid



101703-4 Gomez et al. Phys. Fluids 26, 101703 (2014)

6
4
2
0
I 1 il_5
0.0406 0.5 1 1.5
w/2m
40
6
4
<
20 >
0
2
0.0406 0.5 1 1.5 2
w/2m
(b)

FIG. 1. Distribution of resolvent amplification log;y(0y,w,1) in the energetically active subset of azimuthal wavenumbers
n and frequencies w/2m for the first singular vector m = 1 at R = 314. (a) One-dimensional resolvent model. (b) Two-
dimensional resolvent model.

line in Figure 2). The existence of the local amplification peaks can be explained in the two-
dimensional resolvent discretization context; while the two-dimensional model effectively restricts
the search to wavespeeds ¢ = w/kug(r = 0) corresponding to integer multiples of the fundamental
axial wavenumber k = 27/L = 1, the one-dimensional resolvent model searches the maximum
amplification across a continuous range of axial wavenumbers k and thus of mode wavespeeds.
Consequently, Figure 2 shows that the one-dimensional model provides a monotonically decaying
amplification (see dotted-dashed line in Figure 2).
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FIG. 2. Distribution of amplification o, «, 1 in /27 at azimuthal wavenumber n = 2 for the principal singular mode m = 1
at Rt = 314. A, B, and C marks are explained in Figure 3.
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FIG. 3. One-dimensional resolvent amplification versus wavespeed c. Wavespeed ¢ is changed by varying k and keeping
frequency w/2m fixed. Shown for azimuthal wavenumber n = 2 at R* = 314. Vertical dashed lines indicate the discrete
wavespeeds corresponding to integer multiple of the fundamental axial wavenumber k = 27/L. A, B, and C marks denote the
amplification values corresponding to the two-dimensional resolvent in Figure 2. (a) w/27r = 0.1826. (b) w/2x = 0.2739.
(c) w2 = 0.3652.

In order to further explain the origin of the local amplification peaks, Figure 3 shows one-
dimensional resolvent amplification versus the wavespeed at different frequencies w/2w and az-
imuthal wavenumber n = 2, and, at the same time, the possible wavespeeds at that same frequency
if a two-dimensional resolvent model is employed. Figures 3(a) and 3(c) demonstrate that a peak in
amplification in the two-dimensional resolvent occurs when one of the possible wavespeeds matches
a maximum of amplification in the one-dimensional model (marks A and C). Similarly, as seen in
Figure 3(b), a local minimum occurs when a maximum distance of the available wavespeeds from
the frequency corresponding to the peak is achieved (mark B).

Notice the distinction between the dimensionality of the resolvent and the axial wavenumber
discretization effects. In the one-dimensional resolvent, the modes at a given (k, n, @) are ranked by
singular value alone and can assume either a continuous or a discrete set of axial wavenumbers. In
contrast, the most amplified modes emerging from the SVD of the two-dimensional resolvent for a
given (n, w) are ranked across different axial wavenumbers k and singular value indices m simulta-
neously with the additional limitation that the axial wavenumbers can only belong to a discrete set,
consisting of integer multiples of the fundamental axial wavenumber restricted by the pipe length.
As a result, a discrete selection of axial wavenumbers combined with the one-dimensional resol-
vent would generate the same sparse amplification in frequency as the two-dimensional resolvent,
cf. Figure 3.

As explained by McKeon and Sharma,?> the maximum amplification in the one-dimensional
model takes place at the critical wall-normal location where the wavespeed coincides with the
local mean velocity. Figure 3 indicates that the critical layer occurs at a wavespeed ¢ >~ 0.9, which
corresponds to a radial location » ~ 0.22. This result, combined with the restriction of possible
axial wavenumbers, enables the prediction of the peak locations in a two-dimensional context. For
example, Table I lists the frequencies corresponding to the observed amplification peaks in Figure 2
and their theoretical prediction based on the critical layer framework,> where a clear correspondence
is found between the two lists of frequencies.

In the absence of a link between amplified frequencies and energetically dominant frequencies
without assumption on the nonlinear contributions x, ., 1, a temporal Fourier analysis of the DNS
data has been carried out in order to provide insight into this relationship. Given that the largest
response occurs at the critical layer, the streamwise velocity at » = 0.22 has been selected for the
analysis. Figure 2 shows also the power spectral density (PSD) of the streamwise velocity of the
Fourier mode n = 2 at the critical layer. The good agreement between the most amplified frequencies
and the most energetic frequencies provides further evidence to the link between amplified modes
and energetically dominant modes.
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TABLE I. Comparison between observed frequencies corresponding to amplification peaks and their theoretical prediction
using the critical layer framework. Listed for azimuthal wavenumber n = 2 at R* = 314. Critical layer is located at r = 0.22
with wavespeed c(r = 0.22) = 0.9.

Streamwise wavenumber k 1 2 3 4 5 6
Observed w/27 from Figure 2 0.1826 0.3653 0.5479 0.7508 0.9334 1.1364
Predicted /27 = 0.9kuy(r = 0)/27 0.1826 0.3652 0.5478 0.7304 0.9130 1.0956

A DMD analysis has been applied to the Fourier mode n = 2 of the same direct numerical
simulation dataset in order to obtain flow structures. The DMD algorithm based on the SVD of
the snapshot matrix® has been used and the employed dataset consists of 1200 DNS snapshots
equispaced during O(45) wash-out times. Figure 2 also shows the norm of the most energetically
relevant DMD Ritz vectors and their associated frequencies, which also agrees with the frequencies
predicted by the resolvent model and those found by PSD analysis. Notice that although each bar
in Figure 2 is associated with a complex DMD eigenvalue, they appears in pairs because each one
corresponds to a different sense of azimuthal rotation (£n). Another interesting observation is that
the norms of these energetically relevant modes do not significant differ. This indicates that the
nonlinear forcing coefficients x,, ., | have a significant influence on the energy distribution. This
effect is also observed in the PSD results, as the magnitudes of the peaks are not directly proportional
to the corresponding amplification, i.e., the energy corresponding to the second local peak is higher
than in the first one.

Figure 4 represents isosurfaces of the DMD eigenmodes associated with the first three am-
plification peaks and their comparison with their corresponding resolvent modes predicted by the
two-dimensional resolvent model. A very good agreement between these structures can be observed.

e R, Sy
ol LAaR’
P NP

FIG. 4. Comparisons between resolvent modes (/eft) and DMD modes (right) at same frequencies w/2mw = 0.1826 (top) w/2w
= 0.3652 (middle) w/2w = 0.5479 (bottom) at n = 2. Colored isosurfaces indicate 4-1/3 of maximum streamwise fluctuating
velocity.
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Consistently with the critical layer mechanism, each dominant mode presents an axial wavenumber
proportional to its associated frequency, maintaining the critical wavespeed ¢ =~ 0.9, as Figures 3(a)
and 3(c) indicate, and their largest amplitude is located around the critical layer. Notice that, despite
the fact that no axial wavenumber restriction has been imposed on the resolvent modes, the resol-
vent modes only present a single axial wavenumber, as Figure 4 also shows. In contrast, the DMD
modes feature the same dominant axial wavenumber with a contribution of higher wavenumbers,
corresponding to other resolvent modes.

In conclusion, it has been shown that the sparsity in frequency observed by Bourguignon et al.!
is a consequence of a finite length periodic domain in the DNS and this property can be exploited; a
link between the most amplified sparse frequencies predicted by the resolvent model and the most
energetically relevant frequencies in DNS have been provided. Therefore, the energy sparsity in
frequency domain and their associated flow structures can be employed in the design of reduced-
order models of turbulent flows based on the selection of the most amplified modes emerging from the
resolvent decomposition, with the potential to drastically decrease the computational costs required
to represent turbulent flows. Mathematically, this leads to reducing the resolvent decomposition in
(8) as

U, 10,0 Y Xnw1Onw U (x, e T Aw (10)
(w,n)eS

where S denotes the energetically relevant subset of (w, n) wavenumbers, which can be identified
by means of the present two-dimensional discretization. The small size of S and thus, the potential
to reduce computational expense, can be inferred from a comparison between Figures 1(a) and 1(b).
It has been observed that the forcing coefficients x,, » » play a major role in the energy distribution
in frequency. The study of these unknown nonlinear contributions x,, .. », Which are the last step
necessary for the completion of the reduced-order model (10), is currently under way by means of
projections of the response modes onto the DNS dataset.

Finally, we recall that the mean velocity profile is required as input data for the resolvent. As a
consequence, a successful representation of the fluctuating velocity based on (10) will self-sustain
and thus recover the mean velocity characteristics that were assumed in the resolvent.
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