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A novel reduced-order model for time-varying nonlinear flows arising from a resolvent
decomposition based on the time-mean flow is proposed. The inputs required for the
model are the mean-flow field and a small set of velocity time-series data obtained
at isolated measurement points, which are used to fix relevant frequencies, amplitudes
and phases of a limited number of resolvent modes that, together with the mean flow,
constitute the reduced-order model. The technique is applied to derive a model for the
unsteady three-dimensional flow in a lid-driven cavity at a Reynolds number of 1200
that is based on the two-dimensional mean flow, three resolvent modes selected at the
most active spanwise wavenumber, and either one or two velocity probe signals. The
least-squares full-field error of the reconstructed velocity obtained using the model and
two point velocity probes is of the order of 5 % of the lid velocity, and the dynamical
behaviour of the reconstructed flow is qualitatively similar to that of the complete
flow.
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1. Introduction

The development of reduced-order models (ROMs) to represent the physics of
fluid flows is a subject of considerable current interest in fluid mechanics. The
construction of such models is motivated e.g. by potential applications to flow control
for drag reduction and noise suppression (Brunton & Noack 2015). Spatial shapes
that serve as the bases for ROMs can be classified as mathematical, empirical or
physical modes. Mathematical modes form a complete basis by definition, and many
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ROMs based on expansion functions have been used for simple boundary conditions
(Busse 1991; Noack & Eckelmann 1994). Empirical ROMs such as the proper
orthogonal decomposition (POD, Berkooz, Holmes & Lumley 1993) or the dynamic
mode decomposition (DMD, Schmid 2010) arise from postprocessing of numerical or
experimental flow data. The present work expounds a novel ROM based on physical
modes emergent from the Navier–Stokes equations.

Noack, Morzynski & Tadmor (2011) proposed that linear global stability analysis
could be employed to obtain physical modes associated with linear dynamics from the
Navier–Stokes equations. Such analyses are based on a decomposition of the flow into
a steady or periodic laminar base flow and an infinitesimal perturbation that develops
in time, leading to an eigenvalue problem whose eigenvalues characterize the stability
of the base flow. The eigenmodes can be employed as spatial shapes to construct
ROMs. While computationally demanding if the base flow is three-dimensional,
spatially complicated, or the Reynolds number is large, methodologies for numerical
linear global stability analyses are becoming mature.

A different type of challenge arises from the application of global stability analysis
to turbulent or, more generally, to nonlinear flows. By nonlinear flows, we mean
unsteady flows in which there exist different frequencies that interact with each other;
feedback via the nonlinear terms in the Navier–Stokes equations is relevant. The key
step enabling global stability analysis of nonlinear flows is to consider the time-mean
flow as the base flow. Barkley (2006) applied global stability analysis to the wake of
a circular cylinder to study the shedding frequency at Reynolds numbers above the
onset of vortex shedding. It was observed that linear stability analysis of unstable
(symmetric) steady base flows provided frequencies and global modes different from
those observed in numerical simulations and experiments. However, when applied
to the mean flow, the method was able to predict frequencies and flow structures
similar to those observed in numerical simulations and experiments. More recently,
Oberleithner, Rukes & Soria (2014) applied the same methodology to jets. Despite
apparent successes of the method in these cases, global stability analysis applied to
mean flows can be considered dubious for two reasons.

The first reason is that time-averaged flows are not solutions of the Navier–
Stokes equations, but of the Reynolds-averaged Navier–Stokes (RANS) equations.
The closure problem is thus inherent in the approach and the unknown Reynolds
stress, arising from the interaction of turbulent fluctuations with the mean, must be
considered. One way to avoid this issue for weakly nonlinear flows is to employ the
assumption, proposed by Barkley (2006), that the forcing generated by the fluctuations
is steady; it only contributes as Reynolds stress in the mean-flow equation. Another
approach is to close the RANS equations via the Boussinesq hypothesis and employ
an Newtonian eddy viscosity to account for the Reynolds stress. However, this
applies only for fully developed turbulent flows in which the diffusion induced by
the turbulence can be approximated by an additional eddy viscosity. This approach
was introduced in conjunction with a triple decomposition by Hussain & Reynolds
(1970) in order to identify coherent flow structures in turbulent shear flows, and more
recently employed e.g. by Meliga, Pujals & Serre (2012) in an flow control context.
To our knowledge, no existing method is able to account for nonlinearity in flows
which are neither weakly nonlinear nor fully turbulent.

The second concern with mean-flow stability analysis is with its reliability. Sipp &
Lebedev (2007) replicated Barkley’s work on the cylinder mean flow, then applied the
same methodology to an open cavity flow. In the latter case, the predicted frequencies
did not match those observed in direct numerical simulation (DNS) and attributed the
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discrepancy to the relative strength of the mean flow and harmonics, linked to the
non-normality of the flow, such that the global modes obtained are non-orthogonal.
This is not a desirable characteristic when choosing a ROM, since the projection of
flow solutions onto global modes would be ill-conditioned, as discussed by Cerqueira
& Sipp (2014).

In the following we show that the resolvent analysis for turbulent flows developed
by McKeon & Sharma (2010) represents an alternative strategy to identify physical
flow structures in nonlinear flows. The methodology consists of an amplification
analysis of the Navier–Stokes equations in the frequency domain, yielding a linear
relationship between the velocity field at specific wavenumbers and the nonlinear
interaction between other wavenumbers via a resolvent operator. A singular value
decomposition (SVD) of the operator reveals that it acts as a very selective directional
amplifier of the nonlinear terms, and hence a low-rank approximation of the resolvent
is able to reproduce the dominant features of the flow. The time-mean flow must be
given as input.

Resolvent analyses have been successfully employed to qualitatively describe
the behaviour of flow structures in turbulent canonical flows (Sharma & McKeon
2013) and to identify sparsity effects in direct numerical simulation with periodic
finite-length domain (Gómez et al. 2014). The technique has also been applied to
model scalings in turbulent flows (Moarref et al. 2013) and to wall-based closed-loop
flow control strategies (Luhar, Sharma & McKeon 2014, 2015). We will explain how
the analysis circumvents the above-mentioned limitations of the mean-flow global
stability analysis in a ROM context. As an example, we demonstrate the potential
of this methodology by employing a two-dimensional resolvent formulation (Åkervik
et al. 2008; Brandt et al. 2011; Gómez et al. 2014) to obtain the relevant flow
features in a three-dimensional spanwise-periodic lid-driven cavity flow. For this
purpose, a ROM is derived by employing the mean flow and minimal temporal and
spatial spectral information.

Lid-driven cavity flows can possess complex features despite the simple geometry,
hence they serve as a model problem for many engineering applications dealing with
flow recirculation. From the work of Koseff & Street (1984), it is known that most
of the velocity fluctuation in the lid-driven cavity is caused by Taylor–Görtler-like
(TGL) vortices. The naming of these vortices is justified by resemblances of the
two-dimensional base flow and the corresponding three-dimensional features with the
respective flows in the Taylor and Görtler problems, as discussed by Albensoeder
& Kuhlmann (2006) in their study of the nonlinear stability boundaries of the flow.
Depending on the spanwise length and Reynolds number, different numbers of TGL
pairs of vortices can coexist in the flow. In the following, we select flow conditions
such that the flow possesses structures with distinct associated frequencies that interact,
but is far from a turbulent state. Resolvent analysis is be employed to construct a
reduced-order model of this type of flow.

2. Description of the flow

The spanwise-periodic lid-driven cavity flow with a square cross-section is governed
by the three-dimensional incompressible Navier–Stokes equations

@tû + û · rû = �rp̂ + Re
�1

r
2û, r · û = 0, (2.1a,b)

where Re is the Reynolds number based on the steady lid speed U and cavity depth
D, û = (u, v, w) is the velocity vector expressed in Cartesian coordinates (x, y, z) and

798 R2-3



F. Gómez, H. M. Blackburn, M. Rudman, A. S. Sharma and B. J. McKeon

x
y

zD

D

(a) (b)

FIGURE 1. Representation of TGL vortices in the lid-driven cavity flow at Re = 1200
and ⇤/D = 0.945; lid moves in the direction of arrow. Snapshot of isosurfaces of 20 %
max/min spanwise velocity of spanwise Fourier mode � = 3. (a) DNS, (b) resolvent-based
model. Animations of isosurfaces of DNS and model are shown in supplementary
movies 1 and 2 respectively, available at http://dx.doi.org/10.1017/jfm.2016.339.

p̂ is the modified pressure. The geometry is illustrated in figure 1(a), in which ⇤/D

denotes the periodic span of the cavity. No-slip boundary conditions are imposed at
the walls.

DNS of the incompressible lid-driven cavity flow has been carried out using a
spectral element–Fourier solver (Blackburn & Sherwin 2004). Nodal elemental basis
functions are used in the (x, y) plane while a Fourier expansion basis is employed
in the homogeneous direction (z). The flow solution can be written as a sum of
spanwise Fourier modes

û(x, y, z, t) =

X

�

u�(x, y, t)ei�z
+ c.c., (2.2)

with � a non-dimensional spanwise wavenumber normalized with the span ⇤. Based
on the nonlinear stability boundaries investigated by Albensoeder & Kuhlmann (2006),
we chose parameters Re = 1200 and ⇤/D = 0.945 for our simulations. This selection
provides an unsteady flow with multiple frequencies and three pairs of TGL vortices.
Figure 1(a) represents the spanwise velocity isosurfaces of the flow and three pairs
of vortices may be identified. The temporal behaviour of these vortices is shown in
supplementary movie 1, which presents animations of spanwise velocity isosurfaces.

Figure 2 presents the temporal evolution of the kinetic energy based on (2.2)
of the energetically relevant spanwise Fourier modes. This measure indicates when
the flow reaches a statistically steady periodic state. Data for t < 300 have been
discarded and flow statistics collected until those for the mean flow converged.
This two-dimensional flow is the basis of our subsequent resolvent analysis. Mode
� = 0 contains the mean flow while � = 3 consist of three pairs of TGL vortices.
Self-interaction of mode � = 3 provides energy to its harmonics, but the energy
associated with these modes is an order of magnitude smaller.

Spatial resolution convergence is achieved with a mesh consisting of 132 spectral
elements with polynomial degree Np = 9 in each of the (x, y) planes and 64 spanwise
Fourier modes. 500 time steps are employed to integrate a time unit D/U.
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FIGURE 2. Temporal evolution of the kinetic energy based on (2.2) of the three most
energetic spanwise Fourier modes. Mode � = 0 contains the mean flow while � = 3
consists of three pairs of TGL vortices. Self-interaction of mode � = 3 provides energy
to its harmonic � = 6.

3. Description of the model

3.1. Resolvent analysis

Here we extend the resolvent analysis of McKeon & Sharma (2010) for pipe flows
to the spanwise-periodic three-dimensional lid-driven cavity flow under consideration.
The flow is assumed to be statistically steady. A spanwise and time-averaged mean
flow u0,0 is obtained from the DNS and subtracted from the total velocity to leave
the fluctuating velocity u = û � u0,0, which may be decomposed as a sum of Fourier
mode in spanwise direction and time

u(x, y, z, t) =

X

�

X

!

u�,!(x, y)ei(�z�!t)
+ c.c. (3.1)

Both � and ! are real, and the continuous integral in frequency has been expressed
as a sum for simplicity. A similar decomposition may be applied to the nonlinear
terms, leading to f �,! = (u · ru)�,!. The introduction of these decompositions into
the Navier–Stokes equations (2.1) leads to

0 = f 0,0 � u0,0 · ru0,0 + Re
�1

r
2u0,0, (3.2)

i!u�,! = L�,!u�,! + f �,!, (3.3)

with L�,! being the Jacobian operator of the Navier–Stokes for each set of (�, !).
The equation corresponding to (�, !) = (0, 0) is known as the RANS equation and
the Reynolds stress f 0,0 denotes the interaction of the fluctuating velocity with the
mean. For clarity, the velocity is projected onto a divergence-free basis in order to
eliminate the pressure. Further rearrangement of (3.3) reads

u�,! = H�,! f �,!, (3.4)
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in which H�,! = (i ! � L�,!)�1 is known as the resolvent operator.

H�,!(x, y) =

2

664

D � @xu0 + i! @yu0 0 �@x

@xv0 D � @yv0 + i! 0 �@y

0 0 D + i! �i�
@x @y i� 0

3

775

�1

, (3.5)

with
D ⌘ Re

�1(@xx + @yy � �2) � u0@x � v0@y, (3.6)

and the mean flow and corresponding spatial derivatives must be provided for its
construction. The resolvent operator acts as a transfer function from nonlinearity
f �,! to velocity fluctuations u�,! in Fourier space. The nonlinear terms are hence
considered as the forcing that drives the fluctuations. The gain properties of the
resolvent are inspected via an SVD. The resolvent operator is factorized as

H�,! =

X

m

 �,!,m��,!,m�
⇤

�,!,m, (3.7)

with  �,!,m and ��,!,m representing optimal sets of orthonormal singular response
and forcing modes respectively. These modes are ranked by the forcing-to-response
gain, under the L2 (energy) norm, given by the corresponding singular value ��,!,m.
Here, the superscript ⇤ indicates conjugate transpose and the subscript m denotes the
ordering of the modes, from highest to lowest amplification.

The nonlinear forcing f �,! can be projected onto the orthonormal basis ��,!,m to
yield

f �,! =

X

m

��,!,m��,!,m, (3.8)

where the unknown scalar coefficients ��,!,m represent the forcing sustaining the
velocity fluctuations. The introduction of this linear combination in conjunction with
the SVD (3.7) into the fluctuating velocity equation (3.4) reads

u�,! =

X

m

 �,!,m��,!,m��,!,m, (3.9)

thus the velocity fluctuations in (�, !) can be represented as a linear combination
of singular response modes weighted by an unknown amplified forcing. Note that no
assumption other than a statistically steady flow has been employed in the derivation
of (3.9), which is an exact representation of the Navier–Stokes equations.

3.2. Rank-1 model reduction

A model reduction of the fluctuating velocity (3.9) can be carried out by considering
the values taken by the amplification ��,!,m. An inspection of these amplification
values reveals that the first singular value ��,!,1 is usually much larger than the second
one ��,!,2, hence the low-rank nature of the resolvent operator can be exploited to
yield a rank-1 model

u�,! ' �,!,1a�,!,1, (3.10)

in which the product of amplification and forcing is collapsed into an unknown
complex amplitude coefficient a�,!,1 = ��,!,1��,!,1. This rank-1 model has proved to
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be adequate in previous investigations on pipe and channel flows (McKeon & Sharma
2010; Moarref et al. 2013; Sharma & McKeon 2013; Gómez et al. 2014; Luhar et al.

2014). Under this rank-1 assumption, the total velocity can be written as

u(x, y, z, t) '

X

�,!

a�,!,1 �,!,1ei(!t��z)
+ c.c. (3.11)

We emphasize that this assumption is not required; any number of singular response
modes can be considered. However, this assumption provides a convenient model in
which the velocity fluctuations are parallel to the first singular response mode. In what
follows, we rename the singular response modes as resolvent modes.

3.3. Obtaining the amplitude coefficients

The amplitude coefficients a�,!,m are unknown in the model as a consequence of
the closure problem. The present approach can circumvent this issue by employing
minimal additional information, derived e.g. from DNS. Let us assume that the flow
presents a number N! of relevant frequencies !i. Under the rank-1 approximation,
it follows from (3.11) that the flow can be reconstructed as a linear combination of
resolvent modes

N!X

i=1

 �,!i,1(x)a�,!i,1ei!it = u�(x, t), (3.12)

at any spatial location, time t and wavenumber �. Owing to the use of Fourier
expansions in the spanwise direction, the closure problem can be decoupled for
each spanwise wavenumber �. The linear system (3.12) contains N! unknowns and
consists of 3(NxNy)

2
Nt scalar equations, with Nt being the number of time snapshots

considered, hence their solution is amenable to a least-squares approximation. While
the terms in (3.12) are complex, it may be decoupled into real and imaginary
equations. We note that 3(NxNy)

2
Nt � N!, hence the problem can be restricted to a

single spatial location x0 at a few instants Nt

N!X

i=1

 �,!i,1(x0)a�,!i,1ei!it = u�(x0, t). (3.13)

This has the advantage that the size of the problem is greatly reduced and the
temporal complexity is better captured. An interesting analogy to experiments that
will be introduced in § 4 is that only a single velocity probe is required to obtain the
unknown amplitude coefficients. The problem could be further reduced by considering
only one velocity component. The least-squares solution of (3.13) in matrix form is
given by

A� = +

� U�(x0, t), (3.14)

with the 3Nt ⇥ N! matrix  � containing the values of the resolvent modes at the
spatial location x0 and different times, the N! ⇥ 1 vector A� represents the unknown
amplitude coefficients, and the 3Nt ⇥ 1 vector U� contains the values of the velocity
at the spatial location x0 and different times. The superscript + denotes pseudoinverse.
As we will show next, the typical dimensions of the least-squares problem (3.14) are
small and their solution is straightforward.

The proposed method relies on the modes being non-negligible at the probe
positions, hence these locations should be chosen carefully. However, this limitation
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may be readily overcome by choosing a few probe positions at the locations of
maximum velocity for each mode. This also means it is possible to trivially fix the
amplitude coefficients from experimental data, since the probe locations are provided
by the peaks in the resolvent modes. One strength of the present method is that it
can recover relative phases between the resolvent modes.

In principle, the fitting of the amplitude coefficients could be carried out in physical
space, but in the present work we have exploited the fact that the probe data were
obtained from a DNS, hence a representation of the velocity signal in Fourier space
u�(x0, t) has been employed in (3.13) to fit simultaneously real and imaginary parts
of the resolvent modes. This has the advantage that two independent equations are
obtained at each time step considered. A least-squares fitting carried out in physical
space would need to consider twice the number of time steps to obtain the same
number of equations.

A least-squares fitting in Fourier space would not be possible if the probe data were
to be experimentally obtained. In that case, the fitting could be carried out directly in
physical space using (3.11) with probe data in physical space u(x0, t). As such, a
number N� of relevant wavenumbers �j could be simultaneously taken into account
to yield the linear system of real equations

N�X

j=1

N!X

i=1

 �j,!i,1(x0)a�j,!i,1ei(!it��jz0) + c.c. = u(x0, t), (3.15)

that could be solved in a least-squares sense as in (3.14).

4. Reduced-order model of the cavity flow

As outlined in § 2 the fluctuating velocity is generated by three pairs of TGL
vortices with different frequencies, hence it is reasonable to focus on � = 3. Note
that although figure 2 indicates non-zero fluctuating velocity at � = 0 and � = 6, we
will consider only � = 3. The ! = 0 contribution to the mode � = 0 is the mean
flow and it is taken into account as an input in the resolvent. On the other hand, the
spanwise velocity fluctuations in � = 0 are a consequence of employing a spanwise
periodic domain and lack physical meaning as they could have been suppressed
by imposing reflection symmetry at � = 0. The presence of endwalls would also
prevent the existence of these motions. The resolvent operator (3.5) shows that the
w component can be decoupled from the rest of components at � = 0, hence the
flow admits non-trivial solutions of (D + i!)w = 0 as oscillations with an infinite
span. The fluctuating velocity at � = 0 is dominated by w, hence the Reynolds stress
contribution to the mean flow (u0, v0) is negligible. Additionally, figure 2 indicates
that the energy contained in � = 6 is two orders of magnitude smaller than the energy
contained in � = 3, hence a model based on � = 3 can provide a good representation
of the fluctuating spanwise velocity.

The problem may be decoupled for each � as shown by (2.2). The first step in the
construction of the model consists of identifying the active frequencies in the flow.
Figure 3(a) presents the temporal evolution of the velocity component u at the location
x0 = (0.1, 0.1, 0) at � = 3 obtained from the DNS. A temporal Fourier transform of
this signal indicates three active frequencies !0 = 0, !1 = 0.76 and !2 = 1.52. An SVD
of the resolvent operator is carried out at � = 3 for each of these active frequencies in
order to obtain the corresponding (�,!) resolvent modes. The mean flow at Re = 1200
and ⇤/D = 0.945 obtained via DNS is employed in forming the resolvent.
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FIGURE 3. (a) Temporal evolution of the real part of the velocity component u at the
location x0 = (0.1, 0.1, 0) at � = 3 obtained via DNS. The dashed line indicates the
temporal evolution of the resolvent-based model at x0 with the probe location at the same
point. (b) DNS and model signals at x1 = (0.82, 0.95) with the probe location at x0.
(c) DNS and model signals at x2 = (0.4, 0.26) with the probe location at x0.

Note that the weightings of these spatial shapes are unknown. In order to address
this, the velocity values at x0 of these flow structures are fitted to the velocity shown
in figure 3 via the least-squares problem (3.14). This allows the amplitude of each
of the resolvent modes to be obtained and the construction of a reduced-order model
following (3.11). As was anticipated, the size of the least-squares problem (3.14) is
small. In the present case, 40 measures of the three velocity components in a probe
are employed to fit three frequencies, hence the size of the matrix  � in (3.14) is only
120 ⇥ 3.

The bars in figure 4 show the value of the amplitudes a�,!,1 of each of the three
modes considered at � = 3 obtained via the fitting. A large decrease of the amplitude
is observed with increasing frequency, justifying omission of higher harmonics. In
addition, figure 4 shows the distribution of the first, second and third singular value in
frequency. The rank-1 assumption is justified by the fact that the first singular value is
always orders of magnitude larger than the rest. We note that peaks in amplification
do not necessarily correspond to peaks in amplitude or, in this case, even to active
frequencies. This has been previous observed by Moarref et al. (2014) and Gómez
et al. (2015) in turbulent canonical flows. A connection with these amplification peaks
and the concept of optimal forcing can be found in the work of Monokrousos et al.

(2010).
Figure 5 shows a comparison between the fluctuating intensities obtained from

the DNS and the present reduced-order resolvent-based model. It is observed that
the regions of maximum fluctuating intensity predicted by the resolvent model are
in good agreement with those observed by DNS. Also, the values of the maximum
fluctuation intensities could be exactly recovered if the probe is located at the
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FIGURE 4. Bars correspond to the (scaled) amplitude of the resolvent modes associated
to each frequency at � = 3. Lines denote the distribution in frequency of the first, second
and third singular value at � = 3.
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FIGURE 5. Comparison of the fluctuating velocity intensities (root-mean-square) obtained
from (a–c) DNS and (d–f ) resolvent-based model. (a,d) urms, (b,e) vrms and (c, f ) wrms.

corresponding spatial location of the maxima. Additionally, we observe that the
maxima of fluctuating intensities are close to 7 % of the lid speed, hence these are
not negligible with respect to the mean flow.

Figure 3 shows the temporal evolution of the resolvent-based model at different
locations with a probe fixed at x0 and a comparison with the corresponding DNS
signals. These locations correspond to regions in figure 5 in which the x-velocity
component u is significant. We observe that the model accurately recovers the DNS
signal at the probe location, as was expected. Although small discrepancies in the
two other locations are visible, the shape and phase of the DNS signals are in good
agreement.

Figure 1(b) shows a reconstruction of the flow using the present resolvent-based
model. A good agreement between the model and the Fourier mode corresponding
to � = 3 obtained from DNS is observed. We observe that the flow structures
corresponding to the TGL vortices are well recovered. In order to quantitatively
measure the error of the model with respect to the DNS, we define a percentage
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Probe x0 1u (%) 1u (%) 1v (%) 1w (%)

A (0.1, 0.1, 0) 3.77 3.19 6.48 5.03
B (0.2, 0.2, 0) 3.97 3.19 6.77 5.74
C (0.5, 0.5, 0) 870.25 1138.03 1019.57 830.16
A + C — 3.77 3.18 6.47 5.04

TABLE 1. Measure of error of the model based on (4.1). Probe positions are shown
in figure 5(a).

error as
1u (%) = 100 ⇥ ku� � uR

�k/ku�k, (4.1)

where k ·k denotes L2 norm and uR

� is the resolvent-based model arising from the least-
squares approximation (3.14). Table 1 presents numerical values of the error using
different spatial locations for the probe.

As mentioned in § 3, the resolvent modes provide the spatial locations at which
the fluctuating velocity is expected to be significant. We observe a consistent error
of approximately 4 % by choosing probe locations based on this information, such as
the probes A and B. On the other hand, if the probe is placed in a location at which
the fluctuating velocity is small, such as probe C in the centre of the cross-section
cavity, the model can fail. However, this limitation can be overcome by employing
more than one probe. For instance, a combination of probes A + C yields an error of
approximately 4 %. As the number of probes employed increases, the fitting results
can be improved. This leads us to believe that the best results could be obtained if full
velocity snapshots are employed. We highlight that DMD of statistically steady data
provides a representation of the flow equivalent to the Fourier transform (2.2), hence
the present resolvent-based model would approach DMD as the number of probes and
the rank of the model increases. However, if complete velocity snapshots are available,
an empirical analysis such as DMD would be the best tool to obtain a representation
of the flow, since the model can be directly extracted from postprocessing of the
available data.

On the other hand, if only the mean flow and local (one probe) information
are available, the present method could be the tool of choice to construct a ROM.
An example of this scenario can be found in experiments dealing with canonical
geometries, such as pipe or channel flows. The mean flow is typically measured
using a hot-wire anemometer at different wall-normal distances in order to obtain
statistics of the entire profile. As such, snapshots of the flow are not obtained, but time
histories of the velocity at selected locations are available. Another scenario in which
only a mean flow and probe information are available would be a combination of
simulations and experiments. An approximation to the mean flow could be computed
via RANS, as in Meliga et al. (2012), while the spectral information could be
experimentally obtained from pressure or velocity measurements.

In terms of model reduction, the DNS consists of 32 Fourier modes in the spanwise
direction (64 planes), while the resolvent-based model has three modes (6 planes). A
similar model reduction would be obtained from Fourier analysis or DMD applied to
the DNS dataset. However, the DNS requires many planes because the nonlinear terms
are evaluated in physical space, hence a good resolution in the spanwise direction is
required, even if most of those 32 modes have zero amplitude.
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The present representation of the fluctuating velocity in conjunction with the mean-
flow equation (3.2) represents a low-dimensional dynamical system susceptible to flow
control studies. This flow control framework has been successfully employed by Luhar
et al. (2014, 2015) to investigate opposition flow control and the effect of compliant
walls in a turbulent pipe flow by incorporating additional forcing in the resolvent
equation (3.4). Despite the assumptions employed in those works, namely (i) mean
flow not affected by control, (ii) unit-broadband forcing, (iii) rank-1 model truncation
and (iv) statistically steady flow, the flow control results were satisfactory. We note
that the current approach makes unnecessary the assumption (ii); the present model
provides amplitudes to the resolvent modes. Removing the assumptions (i) and (iv)
remains a future challenge.

5. Conclusions

A reduced-order model of an unsteady lid-driven cavity flow based on the resolvent
decomposition has been developed. It requires only the mean flow and minimal
spectral information to help identify relevant frequencies. In the present application,
where the flow had a homogeneous direction, temporal information from a single
(but perhaps repositionable) probe was employed, but the most active spanwise
wavenumber was known in advance; in practice the identification of this wavenumber
would require simultaneous measurements from at least two traversable probes. Only
a single probe would be required to reconstruct a three-dimensional flow without a
homogeneous direction.

We have demonstrated that the model could predict the regions and values of the
fluctuating velocity intensities with an error of order 5 %. In addition, the model may
be improved by employing additional probes; the rank-1 approximation has proved
to be useful, but one may expect the error to reduce as the number of resolvent
modes is increased. As opposed to global stability analysis, no assumptions concerning
the nonlinear terms are involved in the derivation of the model. Hence, resolvent
analysis seems most appropriate for constructing ROM of flows which are neither
weakly nonlinear nor fully turbulent. The resolvent modes have an orthonormal basis,
hence the resulting ROM is not affected by non-normality of the operator. The size
of the least-squares problem to be solved in order to construct the ROM is related
to the number of active frequencies in the flow. A low-order representation of broad-
spectrum flows is left for future work.

While in the present work DNS was employed both to obtain the mean flow on
which the resolvent analysis was based and to provide calibration data, we emphasize
that in principle these two steps could be separated: the mean flow and spectral
information could be obtained independently.
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