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Domain decomposition with Robin boundary
conditions across a phase interface

Hugh M. Blackburn*

(Received 7 August 2000)

Abstract

Domain decompositions are typically pursued in order to split up
large elliptic boundary-value problems into a set of smaller problems
that can each be solved separately, with the solution to the larger prob-
lem obtained through iterative application of inter-domain boundary
conditions. Here we review a related problem that arises in the study
of unsteady advection-diffusion with two solvent phases. A boundary
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iteration scheme is devised and tested within the context of an ide-
alised Poisson problem. The method is then used in the simulation
of capillary chromatography and the results compared to an available
analytical solution.
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1 Introduction

The problem of transport of solute in a laminar flow within a coated tube
of circular cross section—a capillary separation column—was studied by
Aris [1], who provided analytical solutions for the transport and dispersion
rates. Aris also gave an analytical solution for the case where both the tube
and the coating are of arbitrary (but axially constant) section, with the re-
striction that one phase must completely surround the other; in topological
terms, the outer, ‘stationary’, phase must be doubly connected, the inner,
‘mobile’, phase can be either simply or doubly connected. In order to remove
these restrictions a numerical solution of the problem has been pursued.

At the interface between the mobile solute phase and the stationary coat-
ing phase, Robin mass-transfer conditions apply that result in coupling of
unsteady transport in the two domains. The tendency towards unequal static
partition of solute species between the two phases and the properties of the
interphase coupling results in the separation of different solute species; var-
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ious species are transported by the flow at different rates, as they spend
differing average amounts of time in the stationary phase.

We describe the physical problem to be studied and show that its discrete
analogue produces a set of Helmholtz equations that are coupled through the
Robin interphase boundary conditions. Two iterative methods for computing
the coupling are studied in the simplified setting of coupled two-dimensional
Poisson equations. Finally we demonstrate that the numerical method for
the advection—diffusion problem successfully simulates the transport and dis-
persion of solute within the column.

2 Physical description

The separation column is decomposed into two domains, one for the mobile
phase, and one for the stationary phase, as illustrated in Figure 1 for a col-
umn of rectangular section. Inert carrier gas flows within the mobile phase
domain, and it is assumed that the transport of the carrier and the solute are
uncoupled. The approach taken simulates transport over a length of tube for
which the pressure drop is minimal compared to the mean pressure; within
this length (e.g. 1000 tube diameters), the flow of carrier gas can be consid-
ered incompressible. The tube diameter is assumed to be sufficiently large
compared to the molecular mean free path that all species can be consid-
ered to be continua. (For a non-circular cross-section we define an equivalent
diameter as (4A/7)'/2, where A is the cross-sectional area.) The Reynolds
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number of the flow is low enough for the flow to be laminar.

2.1 Flow field

The flow of carrier gas is laminar, steady, and uniform in the z-direction.
Under these assumptions, the Navier—Stokes equations for the fluid flow re-
duce to a two-dimensional Poisson equation for the single velocity component

w(z,y)
2 _1 _dp
Vew = e on Qyy, (1)

where p is the pressure and p is the dynamic viscosity of the carrier gas.
Given the applied pressure gradient and viscosity, (1) is solved for w in the
mobile phase domain, Q,;, with boundary condition w = 0 at the wall (here,
the Q,,—Qg phase interface, I').

2.2 Solute transport

Transport for the concentration, ¢, of a sample species in the stationary phase
is governed by the unsteady diffusion equation

Jc
a = stzc on Qs, (2)



2 Physical description C268
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FiGUuRE 1: Diagram showing the cross-section of a separation column of
arbitrary shape; the column is uniform in the z (out-of-page) direction, which
is the direction of carrier gas flow.
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where Dg is the diffusion coefficient for species ¢ in the stationary phase.
In the mobile phase, transport of ¢ is governed by the unsteady advection—
diffusion equation

Jc dc 5
a—i—w%—DMV c on QM, (3)

where w is the gas phase velocity in the mobile phase, and D), is the diffusion
coefficient for species ¢ in the carrier gas.

The outer wall of the column (0€2g) is assumed inert and impervious to
¢, so the appropriate boundary condition to be applied at g is zero flux,
i.e. dc/On = 0, where 0/0n is a derivative taken in the outward normal
direction. Where domain symmetry can be used to simplify the problem,
the appropriate boundary condition is again specification of zero flux at the
symmetry plane.

2.3 Boundary conditions at the phase interface

At the phase interface I', special boundary conditions must be applied. These
have to account for the partition coefficient K., which expresses the equilib-
rium partition of concentration ¢ between the stationary and mobile phases;
cs = K.cyr in equilibrium. In addition, they have to account for equality of
fluxes of ¢ on each side of the interface, which in turn are proportional to the
disequilibrium cg — K.cpr. The appropriate conditions are [1]

8(:M 805

DMW = _Dsa—n = Km(Cs - KCCM)7 (4)
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where the directions of the unit outward normals, n, are equal and opposite
at the interface I' between 2), and €2g. Variation of the partition coefficient
K. between solute species is typically the primary determinant of species
separation rates, although the diffusion coefficients can also have a strong
influence.

The matching condition (4) can be rearranged to give a pair of Robin
boundary conditions that are applied simultaneously in €2,; and €g:

Oc K, K,

87]”\:[ + DM (CM—Cs/KC) :0 on QM,

Jc K,,

a—s + D—S(CS — K.cp) =0 on Qg. (5)

These have the generic form

dc
— + K(c—C)=0. 6
&4 K(e-0) (0

3 Discretisation

3.1 Fourier expansions

As the column is uniform in the axial (z) direction, it is advantageous to
assume that the problem is periodic in that direction, with periodic length



3 Discretisation 0271

L,:

c(x,y,z,t) = c(z,y,z+ L., t).
A slug of high concentration advected down the tube will seem to pass out
one end and return through the other. Provided the axial length scale of the
slug is always much shorter than the length of tube simulated, the results
will well represent the actual transport.

With the assumption of periodicity, the three-dimensional scalar field ¢
can be projected exactly onto a set of two-dimensional complex Fourier modes

L.
ale,.t) = 1 / (@, y, 2, t)e M dz (7)
with the Fourier series reconstruction
+oo
c(x,y,z,t) = Z e, y, t)eh, (8)
k=—o00

where i = (—1)"/2 and 8 = 27/L.. For numerical approximation, the set
of modes is truncated at some finite number M; if the solution is smooth
in the z-direction, the truncated approximation converges to the solution
exponentially fast [2]. After Fourier transformation, the equivalents of the
gradient and Laplacian operators become

= (0/0x,0/0y,ipk), V= ()0, |0y’ —0°k*) = V3, — Bk
and transport equations (2) and (3) become
oe

a—tk = DsﬁQék on Qs, (9)
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8ck

ot
for each Fourier mode k. Owing to the linearity of the original equations,
Fourier transformation completely decouples the various modes, which can
be evolved independently and/or concurrently. Thus the originally three-
dimensional problem is converted into a set of two-dimensional problems.

+ ifkwé, = Dy V3ee  on Q. (10)

3.2 Temporal evolution

A mixed explicit-implicit temporal evolution approximation is applied to
the transformed transport equations; a fully implicit scheme could be im-
plemented, but at the expense of requiring complex arithmetic. The tempo-
ral derivative of ¢ is approximated at time level n + 1 using a backward-
differencing scheme of order J

aé(n+1) 1 A(n+1) n—
TR 06} +Z% ! (11)

while the advective terms are approximated at time level n 4+ 1 using poly-
nomial extrapolation of order .J

iBkwel"™ ~ Bkw Z pgic 9 (12)

The discrete weights 7y, g, p, for schemes up to third order have been
tabulated by Karniadakis et al. [3]. Applying these approximations produces
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the following semi-discrete Helmholtz equations for the evolution of each
Fourier mode

J—1
- "o 272 Alnt1) _ 1 ~(n—q)
V2 + %k ) Q¢ on g, 13
( DAt ~ AtDg =Tt s (13)
J—1 J-1
- Yo 2,2\ An+1) _ BRw ~(n—q) 1 A(n—q)
V2, - k )
( Dyit P Dt Z:: N T q;aqc’“
(14)
on €2y, or in generalised form
(V2, = A) & = fi (15)

At this stage the overall structure of the discrete problem is apparent:
at each timestep there are two elliptic (Helmholtz) problems to be solved,
coupled through Robin boundary conditions at the phase interface. In order
to further define the discretisation we must adopt a numerical method for
solution of the elliptic problems.

3.3 (Galerkin spectral element method

To complete the discretisation, a Galerkin spectral element method is applied
to the modal Helmholtz equations (15), as well as to the Poisson problem (1)
for the velocity field w. To arrive at the Galerkin formulation, the partial
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differential equation is first multiplied by a weight or test function v and
integrated over the domain, following which the integral is symmetrised by
applying Gauss’ theorem. This procedure results in the so-called weak form
of the original equation. Applied to (15) this produces

VayCr - Vv + A2é0) dQ = frv dQ + %v dr, (16)
IS Jao=— [ fwaas [0

where 2 is either €23, or Q2g, and I' represents any boundary on which ¢ is
not directly specified, i.e. all boundaries in the present problem. One means
of accommodating Robin boundary conditions (6) on I is to insert them into
the last term in (16), and then to rearrange the result to give

/Q (Ve - Vayo + M) dQ + /F Képo dl = — /Q Fov O+ /F KCv dT.
(17)

A Galerkin problem results when the function space from which trial func-
tions ¢, and test functions v are drawn is the same. This must be a Sobolev-1
space for (17) to be guaranteed convergence [7]. For discrete solution a finite
number of functions are chosen, leading to a system of algebraic equations.
For solution in complex geometries, the domain is subdivided into a set of
simpler geometries (finite elements), with the test and trial functions having
compact support over adjoining elements. Typically the integrals in (17) are
approximated numerically using an appropriate Gauss rule.

The method is further defined by choosing a function space from which
the finite element test and trial functions are drawn. The conventional finite
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element method uses functions which are typically low-order polynomials.
The spectral element method [5] uses the same techniques as the conventional
finite element method but employs functions constructed from high order
orthogonal polynomials (e.g. Legendre polynomials) that satisfy a singular
Sturm—Liouville problem. For problems with smooth solutions, the spectral
element method generates approximations that converge exponentially to the
true solution as the polynomial order in each element is increased [4].

4 Iterative coupling

Coupling of the two domains can be accomplished iteratively. Techniques
developed for interdomain coupling in elliptic problems discussed in [6] are
designed for the case where there is a single global problem (e.g. with iden-
tical mechanical properties in each sub-domain) and also are not directly
applicable for domains coupled through Robin boundary conditions.

Two techniques were devised and tested in a simplified setting—a Poisson
equation V2c = —2 imposed on two domains covering the unit square: 0, =
[0, 1] % [0, 0.9], made up of four elements, g = [0, 1] x [0.9, 1], made up of two
elements. Homogeneous Dirichlet boundary conditions were imposed around
the periphery of the square, while over the interface (0,0.9)—(1,0.9)

0
IO 100[ear — 0.1cs] =0 on Q.
on
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0
% + 1000[cs — 10cp] =0 on Qg. (18)

One iteration technique is to treat (18) as Neumann boundary conditions,
using values of ¢;; and cg obtained on previous iterations as data, so that on
iteration (n)

ocsy) (1) (n-1) ocy’ (n-1) _ (n-1)
L —10000.1¢5 Y = i), =2 = 10000106 — oY) (19)
n n

In the Galerkin form of the discretised equations, these boundary terms con-
tribute only to the forcing. This iteration technique was found to be unstable,
even with under-relaxation.

An alternative is to interpret the boundary conditions as of Robin type,
so that in each sub-domain only the values of ¢ from the other side of the
interface are treated as data supplied by the previous iteration:

ocfy) (n-1) _ (w) dcy” (n-1) _ (w)
= 10000160 — o], S = 1000[10ch; Y — ). (20)

In this case, as indicated by (17), the values at step (n) are interpreted as
contributing to the system stiffness matrix, while those at (n — 1) contribute
to the forcing. This iteration technique was found to be convergent, and was
adopted for the remainder of the study. Iteration continues until the relative
change in the Lo-norm of the solution in each domain drops below a fixed
tolerance e. In the unsteady advection—diffusion problem, this sub-iteration
occurs every time step.
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To illustrate the solutions obtained for the model problem, a contour plot
of the value of ¢ is shown in Figure 2, which also shows element boundaries,
and the values of ¢ extracted along the line (0.5,0)—(0.5,1) are shown in
Figure 3. Values of ¢ are discontinuous over the interface at y = 0.9, and
it can be verified that the values and slopes satisfy (18). A convergence
tolerance € = 1 x 10~% was employed.

5 Analytical solutions for solute transport

Aris [1] provided detailed solutions for the case in which the cross-sectional
boundaries of all phases are concentric circles, with the mobile phase lying
between radii o and 71, the stationary phase between r; and r,. He was able
to show that the location of the first moment (mean) of the concentration
peak travels with speed

Wy (r} —r§) + W K (15 —17)

V pr—
(T% - T%) + KC(T% - T%)

where w; is the mean velocity in the inner phase, w, the mean velocity in
the outer phase. In the usual case where ry = 0 and Wy = 0, this reduces to
the standard result

2
U 1

V:_ :_
R TR

(21)
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F1GURE 2: Contour plot of ¢ for solution of a Poisson equation, with a mixed
boundary condition patch at (0,0.9)—(1,0.9). Straight lines show locations

of element boundaries.
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FIGURE 3: Values of ¢ obtained along a vertical centreline traverse of the
two domains in Figure 2.
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where k is the ‘retention factor’ K./3; in turn the ‘phase ratio’ 8 = r?/(r2 —

r?). Aris [1] also provided equations for the time rate of change of the higher
moments of the (radially-integrated) concentration profile, for example of
the variance o2, i.e. the peak-broadening rate. Here Aris’ equation (17) is

simplified for the case rq = W, = 0:

do? 2 w2 2k w2(r2 — r?)
— = D ! D 2 = )
&t 1+k{ M+K1DM}+1+I<:{ st T
]{32 T‘lw%
22
+(1+k:)3Kch’ (22)
where, with p = 7y /1
1+ 6k + 11k? C2p'Inp?/(p* = 1) = 3p*+ 1

K1 = Rg = (23)

181+ k)2 S(1+k)2(p? — 1)

In the mobile phase, domain radius ry, the carrier phase velocity at any
radius and its mean value are respectively

2 _ 2 2
ri—r dp . / T dp
w(r) I ( dz) , w o, wd o, d 3 ( dz) (24)

More generally, w is obtained through solution of (1).
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6 Simulation results

In order to test the numerical method developed for the coupled advection—
diffusion problem, the time rate of change of the location and spread of the
concentration peak compared to the analytical results (21) and (22) for one
set of parameters. The mobile phase region was 250 ym diameter, with a 1 ym
thick stationary phase coating. Spectral element meshes for the two domains
are illustrated in Figure 4; symmetry properties allow only a quarter of the
domain to be represented.

The flow in the column was set to have a mean velocity of 1m/s: for
laminar flow in a circular tube, the analytical result (24) for the velocity
profile is a parabola of revolution. The computed result for the velocity
profile with the analytical value of (dp/dz)/u had a maximum error of order
1078, with 9th order shape functions used in the spectral elements.

Diffusion coefficients were given representative values of Dy, = 40 x
1075m? /s, Dg = 10x 1072 m?/s. The partition coefficient was set as K. = 10,
and the mass transfer coefficient was chosen as K,,, = 1 m/s. Given these val-
ues, (21) predicts a mean transport velocity of 0.861594 m/s, and from (22),
do?/dt = 92.3263 x 1075 + 6.87980 x 107¢ + 0.206312 x 1075 = 99.4124 x
107%m? /s, showing the relative contributions of the three terms.

The length of tube used in the simulations was L, = 0.2m, with 64
data planes (32 Fourier modes) in the z-direction. An initial condition of a
Gaussian-shaped concentration pulse was set in €2,,, centred on the centre
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FI1GURE 4: Two-domain spectral element mesh for simulation of transport
in a separation column of circular section. There are five elements in the
mobile phase and two in the stationary phase—the two phases are shown
separated for clarity.
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point of the pipe, with a peak concentration of 1 (arbitrary units) and an
initial longitudinal variance o2 = 32 x 107 m?. The simulation was run for a
time of 0.1 s (4000 timesteps of 0.000025 s), with a second-order time-stepping
scheme, i.e. J =2 in (13) and (14). In the absence of the stationary phase,
the mean gas velocity would advect the concentration peak to the end of the
domain in the duration of the simulation.

Profiles of tube centreline concentration are shown in Figure 5 starting at
the initial condition, then at four times up to ¢ = 0.1s. The decline from the
initial peak is brought about by a combination of radial equilibration and
partition into the stationary phase of the initially Gaussian-shaped concen-
tration pulse. The effects of domain periodicity may just be observed for the
final profile. Clearly the partition between phases has the expected effect of
slowing the mean transport rate.

6.1 Numerical convergence

A number of variables contribute to the numerical convergence properties of
the solution. These include (i) the number and position of spectral elements;
(ii) polynomial order of the shape functions used within each element; (iii)
tolerance set on iterative coupling of mobile and stationary phase solutions;
(iv) the number of data planes in the z-direction; (v) time stepping order; (vi)
time step size. For the test problem defined above the most significant vari-
ables are items (iii) and (ii). The effects of these variables are demonstrated
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F1GURE 5: Tube centreline concentration profiles for flow in a column of

circular cross section. Partition coefficient K. = 10. Profiles are for times
t=0.0s, 0.025s, 0.05s, 0.075s, 0.1s.
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by examining the convergence of the position and spread of the concentration
peak. These are assessed using cross-sectional integrals of concentration in
the mobile phase. The mean and variance of the concentration profiles are
approximated numerically as

L L. N:—1 N.—-1
= 2C(z) dz/ C(z)dz ~ 2;C; Cj, (25)
Lz Lz Nz_l Nz—l
= [ [ [T ewa xS G- [T o,
0 0 5=0 j=0

(26)
where C(z) = Jq,, c(z) dQ is the cross-sectional integral of ¢ at location z,
computed using Gauss—Lobatto quadrature. Higher moments of the concen-
tration profile may be similarly approximated.

As an example of an examination of convergence, consider the effect of
changing the iterative coupling tolerance € at a fixed spectral element poly-
nomial order p = 9, as shown in Figure 6. The results appear to converge
satisfactorily at e ~ 1078, Similar effects are observed in plots of o2 versus t.

Other investigations have shown that variations in spectral element poly-
nomial order p have little observable effect on p and o2, within the range
p = 5-9. Likewise for variations in timestep At = 0.000025, 0.00005, 0.0001.
However, readily observable effects are apparent in the higher moments of
the concentration profile.
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FIGURE 6: Plot showing the effect of iterative coupling tolerance € on mean
transport rate.
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6.2 Mass conservation

The total mass of the solute should be conserved. At initial conditions, all
of the solute species resides in the mobile phase, but the distribution rapidly
evolves towards equilibrium partition, so that the ratio of the amounts in the
phases (stationary/mobile) is K./, while the total amount remains constant.
Figure 7 illustrates this rapid redistribution process. From the numerical
results at ¢ = 0.1s, the ratio of total amount of ¢ in the two phases is
0.16063, compared to K./ = 0.16064.

6.3 Peak transport and broadening rates

Following an initial transient phase lasting approximately 0.05s, the time
rates of change of 1 and 0% are observed to be approximately constant. Values
extracted from solutions at t = 0.05 and ¢t = 0.075 give

dp 01646527 — 0.1431127

= 0.861599m/s,

dt ~ 0.025
do?  39.45421 x 1076 — 36.96894 x 1076
~ =99.4109 x 10~ % m?
at 0.025 X 107 m?/s,

which compare very favourably to the analytical values of 0.861594 m /s and
99.4124 x 1075m? /s given by (21) and (22) respectively.
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FiGURE 7: Plot showing evolution of the partition of the volume integral of
the concentration with time.
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7 Conclusions

Starting from physical fundamentals, a numerical simulation method was de-
veloped for simulation of species transport in capillary chromatography. This
required development of a new iterative technique for domain decomposition
coupled across a phase boundary through Robin boundary conditions. Re-
sults demonstrate the success of the coupling method, and its application to
predicting mean transport and peak-broadening rates in capillary separation.
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