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Previous studies of the flow created inside a cylindrical cafriigiusR, heightH) of fluid by a

single rotating end wall have shown that over a range of cylinder aspect ratis$l1R5<2.8, the

first unsteady flows to bifurcate with increasing Reynolds number retain axisymmetry, and
subsequent bifurcations break axisymmetry to give solutions with modulated rotatingd MBV¢)

states. The underlying axisymmetric components of these MRW flows are nearly indistinguishable
from corresponding axisymmetric flows at the same Reynolds numbers. Of the three solution
branches so far identified for this flowldf R=2.5, only one both supports MRWSs and has a simple
limit-cycle underlying axisymmetric flow. Here, we carry out three-dimensional Floquet stability
analysis of this branch of axisymmetric solutions and demonstrate that only a subset of the linearly
unstable MRWSs are observed asymptotically at large times for full Navier—Stokes solutions.
Stability analysis of the time-average axisymmetric flow shows rotating WRW8 instabilities that

are in many ways similar to the MRW Floguet modes. The orientation of the vorticity of the RW and
MRW structures implies that they are unlikely to originate as centrifugal instabilities, while
simplified inviscid shear flow stability analysis of the time-average velocity profiles suggests instead
that they arise as a result of inflectional instability of the swirling wall-jet flow contained by the
cylindrical walls of the cavity. ©2002 American Institute of Physic§DOI: 10.1063/1.1509452

I. INTRODUCTION metry at the onset of unsteadiness. It is to be expected, how-
ever, that unsteady states with rotating wae#/s) should

The flow produced inside a cylindrical cavity by a single a|so occur, as these are ubiquitous featureS ©2) swirl-
steadily rotating end wall is a prototypical swirling flow with jng flows®>*® The issue of which kind of unsteadiness bifur-
interesting dynamical properties. The system possesses justagtes first as Reynolds numbers are increased at arbitrary
single geometrical symmetrirotation about the axis, the \was resolved in a numerical studyof general three-
SO(2) symmetry and has two control parameters, the cyl- gimensional perturbations to steady basic stdfEse steady
inder_aspect ratioA=H/R and the Reynolds number Re go|utions are also referred to as the “basic states” for these
=QOR?/v, whereH andR are the height and radius of the flows, as they share the same “basic” symmetriB€X2)
cylinder, Q) is the angular velocity of the rotating end wall, anq time-translation, as the governing equations and bound-
andv is the kinematic viscosity of the fluid. The Ekman layer ary conditions. At intermediate aspect ratios, k6\<2.8,
produced by rotation of the end wall is diverted along theyhe onset of unsteadiness occurs through a supercritical Hopf
stationary cylindrical walls to form a swirling wall-jet like pifurcation to periodic axisymmetric flows. For<1.6, the
flow which is turned radially inwards, toward the axis, by the Hopf bifurcation is to a RW with wave numbé=2, while
stationary end wall, before swirling back along the axis. Aq, A>2.8, itis to a RW withk=4 (and subsequently other
schematic of the flow configuration is presented in Fig. 1. \yave numbers as or Re are further increaspl® At the

~ Much of the early interest in this flow followed the cyiical valuesA =1.6 and 2.8, both types of Hopf bifurca-
discovery that vortex breakdowngegions of reversed axial tions are possible, and the dynamics of the codimension-2
flow) could occur on the axis of the cavity. Subsequently they,,ple Hopf bifurcation behavior an=1.6 has been
regimes for onset of vortex breakdowfqup to three regions investigated.
along the axiswere mapped ir(A, Re) control spacé—in The behavior subsequent to the initial Hopf bifurcation
that work, Reynolds numbers for onset of breakdowns werg, herindic axisymmetric flow at intermediate aspect ratios
found to be low enough that the flows remained steady Nand in particular, A=2.5) has been the subject of
time. The steady flow illustrated in Fig.(for A=2.5) has & gyerimentd? axisymmetric stability analysis of the equiva-
double breakdown. It was also found thiet-1.2 is required o steady flowd! and both two-dimensional and three-
for breakdowns to occur. _dimensional  direct numerical  simulation (DNS)

At moderate aspect ratios, flows become unsteady Wity §iesl01213 The most fundamental conclusion derived
further increase in Reynolis number above that required 1§,y the experiments and simulations is that the behavior is
produce vortex breakdow;" but the flows retain axisym- gominated by the axisymmetric component of the flow, even
when three-dimensional RWs are present. This conclusion is
dElectronic mail: hugh.blackburn@csiro.au supported by the observations that typically of order 99% of
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/’—\ solution branch can be observed; the solution branch,
which in the axisymmetric restriction has periodic solutions
with QT~28.3 and which extends out to higher Reynolds
number(at least Re=4300, according to DNS results so far
obtained®). Solutions of this branch are unstable to RWs, the
energies of which are modulated in time by the underlying
axisymmetric behavior, leading to so-called modulated rotat-
ing waves (MRWSs). Overlapping theA and M solution
branches in Re extent is thé solution branch, withQT
~57, but with in addition a much longer period very low
frequency(VLF) modulation. Of the three, the dynamics of
the V branch are the most complex, with solutions being
unstable to RWs over somi@ut not al) of its extent, in
addition to the VLF behavior, which exhibits a period-
doubling cascade in the three-dimensional ¢dse.
The relationship between th&, M, and V solution
[9) branches and the predictions of axisymmetric stability
analysié! of the corresponding steady flows is interesting.
FIG. 1. Schematic of the flow configuration, a cylindrical container of fluid The (note axisymmetri¢ stability analysis predicts that as
with a single rotating end wall, showing inset contours of streamfunction forReynoldS numbers are increased, a succession of Hopf bifur-
a double vortex-breakdown flow. cations to unsteady states occur—Aat 2.5, the first three
bifurcations take place at R&2707, 3040, and 3150. The
predicted frequency of the bifurcated state and its onset Rey-

the flow kinetic energy is contained in the axisymmetric ) ) i . :
(wave numbek=0) component of the flow after it becomes nolds number unambiguously link the first Hopf bifurcation

three-dimensiondf and that the major solution branches with the A solution branch. Likewise the predicted frequency

and the frequency content of the axisymmetric component ot?tssouated with the third Hopf bifurcation links it to thé

the associated flows are reproduced quite well by axisym§olution branch. It might therefore be expected that there

metric simulationd®13as illustrated in Fig. 2. would be a clear link between the states corresponding to the

Referring to Fig. 2, the experiments and axisymmetricsecond Hopf bifurgation and the remaininy, solution .
simulations show similar behavior in terms of number ofbranch, although this seems not to be the case. The behavior

solution branches, fundamental oscillation periods, and RaN th_e\/_ branch _suggests that it may have r_mxed-mode char-
extent of branchesthe Re extents predicted by three- acteristics, and it has been conjectdrethat it results from
dimensional DNS are in better agreement with theinteractions between various pairings of the first three Hopf-
experiments). The onset of unsteady behavior occursb'furcated states.

through a supercritical Hopf bifurcation near Re7074:13 In the present investigation we seek to more fully under-
to axisymmetric periodic flows that are stable to three-Stand the three-dimensional instabilities of thie solution

dimensional perturbations; this is tiiesolution branch, for branch; such a study is amenable to Floquet anaiaisthe

which the period)T~36. Starting near Re3500, another underlying axisymmetric state is periodic in time for Re
P g =3600. TheV solution branch, on the other hand, is not

amenable to this analysis as the underlying states are quasi-
periodic.
We commence a review of the observed behavior for the
M solution branch with the axisymmetrid, flows: as in
previous work® a subscript denotes the azimuthal wave
number of the first harmonic of any three-dimensional be-
havior, with index 0 denoting axisymmetric flows or flows
that are restricted to axisymmetry. While the periodic behav-
ior of the A-branch flows is associated with oscillatory pul-
o o sations of the axial vortex breakdown region, that of ke
3000 3500 2000 branch is associated with a traveling-perturbation behavior,
Re with disturbancegincluding vortex breakdownspropagat-
ing along the axis, outwards across the rotating end wall,

FIG. 2. Solution branches of unsteady flowsAat 2.5. Fundamental oscil- . . . "
along the stationary walls, then axially in a repetitive

lation periodsQT for axisymmetric simulation$O), as a function of Rey- 11 - ' e
nolds number, with transitions between different solution branches indicate@ycle: This behavior is illustrated for the state at Re

(Ref. 13. Also shown are experimentally measured values—Ref(l)D =4000 by the phase-specific sectional streamlifesm-
Solutions on theV branch are quasiperiodic, with additional very-low- puted in the meridional semiplanshown in Fig. 3. Also
frequency modulations, while th& and M branches have periodic solu- h th tional streamlines for the time-aver flow
tions. The dashed line at R&707 indicates the Reynolds number for the shown are the seclional strea . eslo € e-a e agello
onset of unsteadiness. Solutions of Me&ndM branches support rotating @Nd those for the corresponding steady flow, which has a

wave instabilities, while those d& retain axisymmetry. single small vortex breakdown.
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| (b) t = T (d)t=3T/4 (e Time—avege (f) Steady

FIG. 3. Sectional streamlines in the meridional semiplane for axisymmetric flows=-a4®®: (a)—(d), instantaneous flows at four phases of the limit cycle
and(e) time average for the periodM, solution. Sectional streamlines of the basic state, i.e., the equivalent steady flow, are sk@wim i@ach panel, the
cylinder axis is on the left-hand side and the rotating end wall is at the bottom.

Turning now to review the symmetry-breaking solutions states so far observed. As the corresponding axisymmetric
of the M branch, MRWs with fivefold or sixfold azimuthal flows are periodic, the findings commence with Floquet sta-
periodicity have been observed as stable asymptotic sthtesbility analysis. It is found that the MRW states observed to
The flows evolve to a subspace of the full solution space, i.ebe asymptotically stable in DNS studies correspond almost
only Fourier modes that are harmonics of the lowest aziexactly to the most unstable Floquet modes, and a previously
muthal periodicity survive asymptotically. In Fig. 4 thés  unobserved asymptotic state is documented: a MRW with a
andMg states are illustrated for two solutions at=R&00.  fourfold rotational symmetry, in addition to those with five-
The spatial structure of the two states is very similar, apariold and sixfold symmetries.
from the difference in wave number; the distributions of ki- Attention is then focused on three-dimensional stability
netic energy in the leading symmetry-breaking modes argf 5 time-average axisymmetric flow at R4000, which is
similar in shape and location, and are associated with thgynd to support RWs over a comparable range of wave
swirling wall-jet flow clearly reflected in the contours of Fig. numbers, and with larger growth rates, to those predicted in
4(c), rather than any near-axial features. Despite the tempor%e Floquet analysis. The mode shapes are in good agree-
modulation in energy, the RWs precess around the cylindriment The three-dimensional stability of the corresponding
cal container at constant spe€dand in the same sense as steady axisymmetric flow at Re4000 is also examined.

the end wall rotation, with angular velocity=0.132(). This flow marginally supports similar-shape RWs, with
Il OBIECTIVES AND APPROACH smaller growth rates and over a comparatively restricted
: band of wave numbers, but in addition is found to support

The purpose of the present study is to provide threetwo different modes, at wave numbérs-1 andk=2, that
dimensional stability analysis of the axisymmetric flows onare not unstable for the periodic or time-average flows. Fi-
the M solution branch, and to link the results to the MRW nally, stability characteristics of the velocity profiles for the

B

(d) (e)

(a)

FIG. 4. MRW solutions on th&1 solution branch at Re4000. Contours of kinetic energy in the time-average fiawy)/2, are shown ir(c), while (a), (b)
and(d), (e), respectively, illustrate thbls andMg states:(b) and(d) show contours of time-average enexgy-0j )/2 in the leading nonaxisymmetric mode
(k=5 andk= 6, respectively, and(a) and(e) show isosurfaces of instantaneous azimuthal velocity for the two stat@s.dnd(e), the lower end wall rotates
in a clockwise sense when viewed from above, as in Fig. 1.
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1 The method of solution of the discrete equations, the

mesh, and the spatiotemporal resolution are all identical to

those employed in previous studiés->The spectral element

0.8 | mesh has 60 elements, and tensor-products of seventh-order

Gauss—Lobatto—Legend(&LL) Lagrange shape functions

are used within each element, providing a total of 3053 in-

dependent mesh points in the discretization of the meridional

o semiplane. To keep the overall account here reasonably brief,

N the reader is referred elsewh&teor a detailed description of

the method and resolution studies as applied to DNS. A reso-

lution study for Floquet stability analysis is supplied in Sec.

L I G.

The use of Fourier expansions in azimuth means that

0.2 - \ \ there is a one-to-one correspondence between wave number
l

0.6 -

04 -

and Fourier mode index. This is convenient because, as
{ noted previously, three-dimensional solutions in the full
ol : range of wave numbers are observed to evolve to asymptotic
(I B states that havB-fold azimuthal rotation symmetries, i.e., to
0 0.5 1 invariant subspaces of the full set of Fourier modes—

r/R subspaces that leave the solution invariant after azimuthal
o . _rotations throughn2=z/P, nel. By computing only with
FIG. 5. Spectral element mesh used to discretize the meridional semiplan

Cylinder axis to the left-hand side, rotating end wall at bottom, 60 spectraFOLmer mOde indice=n P_' SOlu“_OnS can be _resmCted _to
elements. an invariant subspace, while retaining the option of project-

ing back to the full set of Fourier modes if required. This

) . ) . feature is exploited in the state selection studies of Sec. VI.
time-average flow are examined using a Rayleigh-type

analysis and it is concluded that the RW instability corre-g_operator notation
sponds well to inviscid instability of the corresponding par-
allel wall-jet velocity profile.

In order to condense the following treatment and to link
it with that of TB, the incompressible Navier—Stokes equa-
Il. NUMERICAL METHODS tions (1) are first rewritten in symbolic form

The analytical techniques employed in this work are all ~ du=—Au—VP+vV2u
associated with time-integration of the incompressible un-

steady Navier—Stokes equations =—(1=VV 2V )Au+»V2 @
du=—Au—VP+ vV, =Nu+Lu,
V-u=0, (1) where the pressure is treated as the solution of a Poisson
in which Au represents nonlinear advection terms—equiv-eq”ation that has the divergence of the advection terms as
alently u-Vu, V-uu, or (u-Vu+V-uu)/2—andP=p/p. forcing. The nonlinear operatdf now contains contributions

The numerical techniques used to integrdfe are from both advection and pressure terms, while the linear op-

briefly outlined in Sec. IIlA. In the succeeding sections eratorL corresponds to viscous diffusion. _
(Secs. Il B—III B), the techniques used to obtain steady so- AN operator that integrate?) over an intervalAt is
lutions and to perform stability analyses are described. Thes@lttén as
are based around time-integration of the Navier—Stokes _
equations and their linearized equivalents, and follow meth- Ut A =NSy[ut)]. &
ods advanced by Tuckerman and Bark{@B)."> The modal  For example, with mixed explicit—implicit Euler time-
structure and boundary conditions for perturbation velocitiestepping this operator can be approximated using the above-
and pressures are discussed in Sec. Il F. A resolution studyitroduced symbolic notation as
for Floquet stability analysis is presented in Sec. Il G.

NSy ~(1—AtL) " 1(1+ AtN), (4)

A. Spatial discretization and time integration however, the use of integration operators in what follows is

Spatial discretization is carried out in a cylindrical coor- not restricted to any particular approximate numerical imple-
dinate system, using spectral elements in the meridionahentation. For the results to be presented here, the discrete
semiplane, coordinategz,f), and Fourier expansions in azi- time integrations were implemented with the same second-
muth, coordinate). The spectral element mesh employed isorder-time explicit—implicit scheme used in previous
illustrated in Fig. 5. Time integration uses a mixed explicit—work.1%13
implicit time-stepping schem®, and all simulations dis- In stability analysis, we wish to study the evolution of a
cussed here used second-order-time integration. perturbationu’ to a “base flow” U, whereu=U+u’. Here,
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the base flowJ can be steady oF-periodic. The linearized available in the Templates packagis somewhat superior in
equivalent of(2) for an infinitesimal perturbation’ can be performance to the Bi-CG®i-conjugate gradient squaned
written as algorithm used by TB to invertl2).

U’ =dyNu'+Lu’, ®) D. Stability analysis of time-invariant flows
where dyN+L represents the linearizatigdacobiah of N
+L about the base flow. We will use the notation LN
to denote an operator that integratesover intervalAt, i.e.,
in analogy to(3)

In studying the stability of time-invariant base flows
obtained either through solution (8) or as the time-average
of solutions to(2), we wish to find the leading, i.e., most
unstable, eigenvalueg= y +iy of

u’(t+At)=LNS,[u'(1)]. (6)
| o | (AuN+L)u’ = '; (13
Since LNS; is linear, it can also be written
_ those with largest real pajit. However, most available nu-
LNS,=exg At(dyN+L)], (7)

merical methods obtain the dominant eigenvalues, i.e., those
and interpreted as a matrix exponential operdtdfor an  of largest magnitude. To overcome this difficulty, we study

Euler time step, the analog of the approximatidhis instead the exponential @f,N+ L through solutions of5),
LNSy e~ (1= AtL) (1 +AtdyN). (®) U (t+ A1) =exgd At(duN+L)Ju’ () =LNS4[u’(1)].
In order to convert a time stepping code that provides a dis- (14)

crete approximation 0 Ng to one that approximates rnq gominant eigenvalues of dyi(duN+L)] correspond
LNS,;, the main modification required is to replace the,[0 the leading eigenvalues 6fN+L. If yis an eigenvalue
computation of Au with _its Iin_e_arized equivalent, e.g., of a,N+L, the corresponding eigenvalue of &xf(3,N
u’-VU+U-Vu', although in addition the base flow must L)] is T'=exp(yAt), while the eigenvectors are the same.
be supplied as data. Provided that time steps are sufficiently small, the discrete
integration of (5) over the(largep interval At provides a
good approximation t@l14).

Newton’s method for solution of the steady incompress-  The Arnoldi metho®*°is used to extract some number
ible Navier—Stokes equations (typically 2—4 of the most dominant eigenpairs of LNS
In practice, data to compute a greater numbey typically

C. Steady-state solution

0=NU+LU © 8-12 of eigenpairs are carried in the Krylov sequensge
is LNS,u), LNS,Up,..., LNSS tug.
+ "=(N+
(GuN+L)u"=(N+L)U, (103 E. Floquet stability analysis of  T-periodic flows
U—u-u'. (10b

In Floquet stability analysi&’?! the base flomU, and
In practice, iterative methods must be used to inv&@g,  through it the operatodyN+L, is T-periodic. Perturbation
but 9yN+L is poorly conditioned and convergence can besolutions u’ can be written as a sum of components
slow or nonexistent. Stokes preconditionifigs used to im-  T(t)expot, whereT(t) are the T-periodic Floquet eigen-
prove convergence: both sides @03 are multiplied by modes ofdyN+L. Equivalent to the Floquet exponenis
operator (—AtL) At and rearranged to produce are the Floquet multiplierg, whereu=expoT. Both o and
_ , wp are in general complex numbers, with nonzero imaginary

[(1=AtL) A1+ AtoyN) 1] components often indicating traveling-wave solutions in
=[(1—-AtL) " 1(1+AtN)—1]U. (11 three-dimensional flows.

We now define the operator LNSvhich is equivalent to
(6) with time interval At=T, the period of the base flow.
(LNSp—hHu'=(NSy— U, (12 Integration over one base flow period provides the mapping

Examining(4) and(8) we see that this is an approximation to

and that the two sides ¢12) are equivalent to increments in u’,,=LNSy(u/), (15)

the velocity fieldsu” andU obtained by integrating either the

linearized or full Navier—Stokes equations over interd&l ~ whereu/(to+nT) is the perturbation after periods, starting

Thus the iteration for steady solutions can exploit time-at an arbitrary initial phas¢, of the base flow. Operator

integration methods originally devised for the unsteadylLNS: is equivalent to the linearized Poincarap associated

Navier—Stokes equations. with the base flow. The eigenvalues of LN&re the same as
Typically the time intervalAt here is much longer than the Floquet multipliers of N+L, while its eigenvectors are

the time step used in the explicit—implicit time integration, the Floquet eigenmodé&d(t) evaluated at phask of the

which is restricted by CFL stability considerations. That is,base flow.

the increments irf12) are approximated by discrete integra- The same Krylov subspace iteration used to extract the

tion over many time steps. dominant eigenvalues of LN is used to obtain those of
Experience with the method suggests that the Bi-LNS;. The only difference is that the data used to supply the

CGSTAB (bi-conjugate gradient stabilizgd algorithm  T-periodic base flow are obtained through Fourier-series re-
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construction from a limited numbetypically 32 of time- TABLE |. Results of a convergence study of Floquet analysis applied at

slices obtained usingB) for the full Navier—Stokes equa- Re=4000, k=5. Complex-conjugate Floquet multipliers are represented by
a magnituddy| and angleZ a.

tions.
- Np Niot QT |4l Za (rad

F. Modal structure and boundary conditions p 1025 28,285 13596 015914
for perturbation fields 5 1581 28.260 14465  +0.14725
We will be solving for the three-dimensional normal in- 6 2257 28.281 1.4384 +0.128 30
stability modes of an axisymmetric swirling base flow ina ’ 3053 28.282 1.4446 =0.12774
cylindrical coordinate geometry, witbl, V and W, respec- 8 3969 28.281 1.4443 +0.12811
y g Y ' » Tesp 9 5005 28.281 1.4444 +0.128 20

tively, the axial, radial, and azimuthal componentdJofBy
adopting Fourier decomposition of the normal modes in azi-
muth the stability analysis can be pursued on a Fourier-mode
basis, i.e., an independent stability analysis is carried out ¢- Convergence results for Floquet analysis

each wave numbek. This converts a three-dimensional Results of a convergence study for Floquet multipliers

analysis into a set of two-dimensional analyses. A modifiedconducted at Re4000, k=5, are presented in Table I. The
version of the original Navier—Stokes solver is used to intebrder of the(one_dimensionajGLL Shape functions used to
grate(5) for the linearized evolution of a single perturbation form the tensor-product shape function basis within each el-
Fourier mode. ement is represented by, , while the total number of de-

In some applicatiorfs the base flowU is both two-  grees of freedom for the 60-element mesh shown in Fig. 5 is
dimensional, i.e., invariant in a thirhomogeneoysspatial given byN,,,. In each case the time sté&yt=T/2048, and 32
coordinate, and two-component, i.el=(U,V,0) possesses time slices of theT-periodic base flow were used to provide
only two nonzero components. The normal modes of a basgs Fourier series reconstruction. The results show that the
flow that is both two-dimensional and two-component aremagnitudes of the complékFloquet multipliers,|«|, and
invariant with respect to a change of sign in the homogetheir angles/ «, have converged to three significant figures
neous spatial coordinate. As a consequence, the generaly N,=6, but the higher resolutiohl,=7 was selected to
complex perturbation Fourier mode compute all the results presented here, in order to be consis-
tent with the resolution used in previous DNS studfets’

Op=(0y R+i0} 0,0 R+id) .3, W) R+i .J),

|5|’(= f){( R+ ileL J, (16) IV. THE LOWER-RE LIMIT OF THE T-PERIODIC M,
o BRANCH
where R and J denote real and imaginary parts, respec-

tively, and can be decomposed into two linearly independent Before commencing three-dimensional stability analysis

but equivalent solutions of flows of theMg branch, issues concerning the extent of
the branch need to be clarified. As noted in Sec. I, Mhe
O 1= (O R0 R W . T), Pra=Pi- R, (178 solution branch is clearly associated with the third unsteady
. . n - R A state to bifurcate from the steady basic state as Reynolds
Oy o= (i0y 7,10y T, Wy . R), Py o=iPk.7, (17b

numbers are increased. That Hopf bifurcation occurs at Re

only one of which need be computed—the other can be ob=3150, but it can be concluded that the bifurcated states are

tained through a phase shift @f2 in the homogeneous spa- unstable at these Reynolds numbers, as the branch cannot be

tial coordinate. In the problem under study heeis again ~ followed down below Re-3550(see Fig. 2 Near that point,

two-dimensional(axisymmetrig but now three-component Solutions jump to thev branch, in both axisymmetric and

(swirling), and the reflection symmetry of the normal modesthree-dimensional DN’ (Solutions of theV, branch al-

is broken by the fact that the base flow has a nonzero aziWays have one characteristic period near that of Mg

muthal velocity, hence the fully complex form ¢£6) must branchQQT~28 in addition to theQQT~57 values seen in

be retained through the solution procedure. Fig. 2, and beating between the two frequencies accounts for
On the solid walls of the cylindrical container, perturba- the VLF at these Reynolds numbefs,

tion velocities are set to zero, and a “high-order” Neumann Further axisymmetric simulations conducted here as part

boundary conditiotf is applied to the perturbation pressure. Of establishing thé-periodic base flows required for three-

On the cylinder axis(=0), boundary conditions are wave- dimensional Floquet analysis of thé, solutions indicate

number depender®: that theM, branch solutions lose stability through an axi-
symmetric flip (period-doubling bifurcation at Reynolds
k=0: 9,00=04=Wo=0,pp=0; numbers in the range 3575—3600. This corresponds to a real,
o o negative, Floquet multiplier leaving the unit circle in this
k=1: 0;=01=0,W;=p;=0; (18

Reynolds number range. At R8575, the growth rates are
k>1: Q[=0,=W,=p,=0. very small, and vel(_)ci_ty component histories appear almost
as period-doubled limit cycles, see Fig. 6. The growth rates
Here, the change of variablég =0, +iW,, W,=0,—iW, increase as Reynolds number is decreased below 3575, but
has been introduced in order to decouple viscous terms in thgiven sufficient integration time, all such period-doubled so-
Fourier-transformed equivalents (&).?2 lutions asymptote to states on tklesolution branch.
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FIG. 7. Floquet multiplier magnitudes as functions of wave nunkband
FIG. 6. At the lower Re limit of theV, branch, the periodic axisymmetric Reynolds number Re.
flow undergoes a flip bifurcatiofperiod doubling between Reynolds num-
bers 3575 and 3600. Loci of radial, and azimuthalw, velocity compo-

ts at ¢/H=4/5, r/R=2/3). - : .
hents at ¢ ' ) plex) Floquet multipliers. It is known from the previous DNS

studies that the RWs precess around the azimuth of the con-
The lower-Re limit of the three-dimensional Floquet tainer with the same sense of rotation as the driven end wall.
analyses conducted in Sec. V is thus 3600. On the othefhe angular velocity of precession is closede=0.132()
hand, an upper-Re limit, if it exists, of tié solution branch  for MRWs of both theV and M solution branches. The di-
has not been established, but it extends at least to Rmensionless wave precession period, T,,/T

=43002° The analyses here are confined to<R€©00. =27/(0.132QT), whereT is the period of the axisymmet-
ric base flow. For the observed extent of thk, branch,
V. FLOQUET ANALYSIS RESULTS OT~28.3, givingT,, /T~1.68.

Floquet multiplier magnitudeig| are shown as functions
of wave numbek in Fig. 7, for five Reynolds numbers com- 10 .
mencing near the lower limit of thigl ; branch. The envelope L _
of neutral-stability wave numbers is extracted to form the - ’
basis for Fig. 8, in which is also shown the approximate -
locus of the most-amplified wave numbers. The range of 8-
unstable wave numbers is broader than the wave numbers ¢ i
asymptotic states from DNS, e.g., at-R&00, wave num-
bersk=3-8 are all unstable, whereas off=5 andP 5
=6 asymptotic states were previously obsert&this point - —_ .
will be taken up in greater detail in Sec. VI, however it can - : — .
be seen in Fig. 7 thét=5 andk=6 have the greatest am-
plification rates at Re4000.

The fact that the envelope of neutral stability is open at :
the observed low-Re end of thé, branch reflects the fact Tt
that the solutions of the branch are unstable in an axisym- Py _
metric subspace, as well as to three-dimensional perturba - .
tions. Figure 7 suggests thall, can be stable to three- - 1
dimensional perturbations at lower Re, even though it is L oo T
unstable to axisymmetric perturbations. New computational 0 3400 3600 3800 4000
techniques enabling branch continuation of unstable limit Re
cycle solutions are required before these issues can be fully
resolved. FIG. 8. Locations of neutral stability wave numbeks,, solid lineg and

Before turning to examine the shape of the unstable I:l()g\pproximate locations of most amplified wave numbégg{, dashed ling
as functions of Reynolds number Re. Dotted line indicates the approximate

qL_Jet mOdeSv_their speeq of precession around the containREynolds number at which period doubling of the axisymmetric base flow
will be examined, as this can be computed from tbem-  occurs (Re=3575).

peak
(=]

l

\

kneut’
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2 T ' T ' T ' T 27kT
r . a+n2w= ,
Tw

(20

1.68 R e S wherenel. Thus to compute a dimensionless wave preces-
15 _ sion period from a complex Floquet multiplier we must use

I ] Tw 2wk

s . T a+n2#w’ (1)

1 _ for arbitrary n and considering both multipliers of a

L g complex-conjugate pair. The result of applying this analysis

- q to the Floquet multipliers corresponding to unstable modes at

r 1 Re=4000 is shown in Fig. 9. Only values ®f, /T closest to

1.68 are represented, for these form a smooth curve when

connected. It can be seen that the RW periods predicted for

L 4 the unstable Floquet modes are an excellent match for the

L g value observed in DNS studies, especially near5 andk

r 1 =6, from which the valud,,/T=1.68 was derived.

0 : ' ; ' ; ' ; Now the shape of the unstable Floquet modes is exam-

ined; here again we concentrate on results fo=R@00. The

distributions of kinetic energy T, * )/2 in the meridional

FIG. 9. Period of Flogquet mode precessibp normalized by the base flow  semiplane for one of the complex-conjugate pairs of leading

period T as a _function_ of wave numbeéx for unstable Floqqet ques a_t Floquet modes at Re4000 are shown in Fig. 10. By com-

Re=4000. Horizontal line at value 1.68 shows result from direct simulation . . . . . P -

(Ref. 13. parison yv|th_ Fig. 2 it can be seen t_hat the spatla_l d_lstrlbut|on
of energies in the Floquet modes is generally similar to that
in the leading symmetry breaking modes in the DNS results,
and the agreement is best fo=5 andk= 6, which are the

The extraction of wave speed from the Floquet multipli- modes actually represented in Fig. 2. In most cases, pertur-

ers is complicated by aliasing. Consider a complex Floquebation energy is concentrated in regions remote from the

multiplier « (one of a complex-conjugate paixpressed in  axis, although the disturbances move closer to the top of the

polar form as [u|,Z ) where at firsta is taken not to be container and its axis dsdrops. That the RW period should

aliased into the rangd,2m). If the passage of a RW through fall slightly as the wave number increas@sg. 9) is consis-

a single wave-numbed-module takes a dimensionless pe-tent with the observation that dsincreases, RWs move to

riod T, /(kT), the corresponding angular displacement ofjarger radial locations while the time-average swirl velocity

T,/ T

05 - —

the wave in one base flow periddis increases more rapidly than linearly with radius.
2 7kT Isosurfaces of vorticity magnitude for the unstable Flo-
a= (29 guet modes at Re4000 are shown in Fig. 11. The general

Tw locations of the isosurfaces agree with the regions of peak
however, we expedtT/T,,>1 Vk=1 so thate=27. Now  energy shown in Fig. 10 but additional important information

consider aliasinga will be aliased into the rangd,27), so  is gained from the orientation of the structures. The fact that
that we have these perturbation vortices are not aligned with the direction

k=3 k=4 k=5 k=6 k=17 k=8

FIG. 10. Instantaneous contours of kinetic enef@y-T,* /2 in the meridional semiplane for unstable Floquet modes at4®€0 in wave numberk as
indicated. In each panel, the cylinder axis is to the left-hand side, rotating end wall at bottom.
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FIG. 11. Isosurfaces of vorticity magnitude for unstable
Floguet modes at Re4000 in wave numberk as in-
dicated. Isosurfaces are shaded according to the sign of
the axial component of vorticity.

of time-mean flow streamlines, but are oriented with thelution is projected to an unrestricted spdoee with all Fou-
time-mean streamlines crossing them at significant angleser mode$, perturbed slightly in th&=1 mode with small-
(typically near 45°) implies that the RWs do not result from magnitude Gaussian noise, and left to further evolve. It is
centrifugal instability, as alignment is characteristic of cen-observed that if the invariant-subspace solutions are stable,
trifugal instabilities of the Taylor or Gtler types. Similarly, energies in all modek#nP will die away asymptotically,
the fact that the perturbation vortices are counter-rotatingptherwise another set of modéhkose for a differenP) will
shows that they do not result from crossflow instabffty. grow to replace the originally dominant set, which, after a
transition period, dies away.
The outcomes of this investigation at R&000 were
that solutions forP=4, 5, and 6 were stablé.e., a new
The fact that the spectrum of unstable wave numberstable asymptotic state fa?=4 was found, in addition to
according to Floquet analysis is far broader than the asymphose already obtained Bt=5 and 6§, while the other states
totically observed range from DNSPEDS, P=6) implies  made the following transitions®=3—6, P=7—6, P=8
there is a state-selection mechanism at work. The most likely-5. Although|u| for k=7, asymptotically unstable, is mar-
mechanism is a difference in growth rates, as the observeginally larger than fok=4, stable, it appears that the selec-
states match perturbation wave numbers which are most umion of asymptotic states is indeed largely determined by the
stable. magnitude of the multiplier associated with the lowest-
In order to help resolve this issue, further DNS investi-harmonic Floguet Fourier mode.
gations have been carried out for-R&€000. At each unstable
wave numberk=3, 4, 5, 6, 7, and B the three-dimensional
solution field is initialized with a combination of the axisym-
metric base flow and the most unstable Floquet mad¢he Having established that the observed asymptotic MRW
corresponding phase of the base flowhe energy in the states are closely associated with the most-amplified Floquet
perturbation is set to be small enough that the initial growthmodes, it is natural to wonder how important the parametric
of the instability is approximately exponential: the kinetic excitation (T-periodicity) of the base flow is in creating the
energy of the perturbation was chosen to be smaller than th&W instabilities. To commence this investigation, we first
of the base flow by a factor of 16. examine the stability of the time-average axisymmelvig
First, computations are carried out in an invariant subflow, again at Re4000—the time-average flow is illustrated
space of the full geometrisee the discussion of Sec. II)A in Figs. 3e) and 4c). While the time-average flow is not a
Once asymptotic states are reached in the subspace, the solution of the Navier—Stokes equations, it may be an appro-

VI. STATE SELECTION

VII. STABILITY ANALYSIS OF TIME-AVERAGE FLOW
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FIG. 14. Isosurfaces of vorticity magnitude for the most unstable mkde (
=6) of the time-average flow at Re1000. Isosurfaces are shaded accord-
ing to the sign of the axial component of vorticity.

0 ; ' "1 ' é ' é ' 1'0 T (e) stable. The imaginary partg, of the leading eigenvalues,

k which indicate wave precession speed, are shown in Fig.
12(b), and it can be seen that to a very good approximation a

imaginary partsy and ¢ of the leading eigenvalues are indicated as func- - - :
tions of wave numbek by solid symbols and a line i®) and(b), in (a), the number for the unstable modes. Dimensionless RW periods

open symbols and dashed line indicate the real part of the correspondir@'€ Com_pUted a$w/T:27k/¢T and Sh'_:)W” in Fig. 12):
Floquet exponents. RW precession periods derived figaame shown ir(c). the predicted periods agree very well with the DNS observa-

tions (and also with values derived from Floquet analysis, cf.
Fig. 9.
priate state to serve as the basis of an examination of RW Mode shapegeigenvectorsfrom the stability analysis
instabilities, particularly if these are not tightly coupled to of the time-average flow are presented as contours of kinetic
the time variation of the perioditl, states. energy for the unstable modes in Fig. 13. At the same wave
Eigenvalue information from the stability analysis is pre- numbers, the shapes of the unstable modes are quite similar
sented in Fig. 12. The real partg, of the leading eigenval- to those for the Floquet modes seen in Fig. 10. A perspective
ues are shown as functions of wave numken Fig. 12a),  view showing isosurfaces of vorticity magnitude for the most
where for purposes of comparison the real parts|JdyT of  unstable modek=6, shown in Fig. 14 confirms the struc-
the corresponding Floquet exponents, derived from the Reural similarity to the equivalent Floquet modef. Fig. 11).
=4000 values of Fig. (&), are also represented. It can be
seen that peak growth rates for the time-average flow e 1 STABILITY ANALYSIS OF STEADY ELOW
approximately double those for the periodic flow, and a
slightly wider range of wave numbers is unstable. There is Now that we have seen that the unstable modes of the
one major branch of solutiongor k=3) which carries the time-average axisymmetric flow bear a high degree of simi-
unstable modes; the isolated modeskatl andk=2 are larity with the equivalent Floquet modes, we turn to stability

k=4 k=5 k=6 k=7 k=8 k=9 k=10

FIG. 13. Contours of kinetic energy in the meridional semiplane for unstable modes of the time-average flem@®®a wave numberk as indicated.
In each panel, cylinder axis is to the left-hand side, rotating end wall at bottom.
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FIG. 17. Isosurfaces of vorticity magnitude for the most unstable mkde (
=5) of the steady flow at Re4000. Isosurfaces are shaded according to the
sign of the axial component of vorticity.
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k It can be seen that there are a number of solution branches; it
FIG. 15. Stability analysis of steady flow at R4000. Realy, and imagi can be assumed from the good agreement with the observed
. 1o, . X - . . .
nary, ¢, parts of most unstable eigenvalues are shown as functions of wavBW perlods[see Fig. 1&)] that the solution branch that

numberk in (a) and(b). RW precession periods derived fraprare shownin ~ carries the thregmarginally unstable eigenvaluegfor k
(c). Solid and open symbols are used to denote different mode branches. =4, 5, and 6 corresponds to modes found in both the Flo-

quet analysis and in the analysis for the time-average flow.

This expectation is strengthened by the mode shapes re-
analysis of the steady flow at R&000. In contrast to the vealed by the kinetic energy contours, Fig. 16, and by iso-
time-average flow, the steady flow an exact, though un- surfaces of perturbation vorticity magnitude, Fig. 17.
stable, solution to the Navier—Stokes equations. See Hig. 4 In addition to this main unstable solution branch it can
for the sectional streamlines of the steady flow; while thebe seen that also modes for 1 andk=2 are unstable—the
flow is generally similar to the time-average flow shown in structure for these modes is quite different than that for the
Fig. 4(e), there are differences in detail, most prominently RWs previously observed. Energy for the-1 mode is sig-
that the steady flow has a single axial vortex breakdowmificant near the axis, and would lead to precession of axial
while the time average does not. The steady solution used a®rtex feature§.A point of cross-reference is with the previ-
the basis of the stability analysis was obtained using theus stability analysis of steady flodis;arried out fork<5,
Newton method described in Sec. Il C, initialized with the which shows similar results: all studied wave numbers ex-
time-average flow. cept for k=3 are predicted to be unstable to RWs /at

Results derived from eigenvalues are shown in Fig. 15=2.5, Re=4000.

k=1 k=2 k=3 k=4 k=5 k=6

FIG. 16. Contours of kinetic energy in the meridional semiplane for leading modes of the steady flow400Ren wave numberk as indicated. Leading
mode fork=3 is stable, others are unstable.
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IX. STABILITY ANALYSIS BASED ON VELOCITY
PROFILES OF THE TIME-AVERAGE FLOW

Finally we turn to simple stability analyses based on
velocity profiles of the time-average axisymmetric flow, as
RW instabilities of this flow are closely linked to the MRWs
of the periodic axisymmetric flow. Again, the analysis is car-
ried out for Re=4000. The velocity profiles selected for this
work were extracted on a radial traversezAH=4/5, at

approximately the same elevation where energies in RWs ari

at their highest.

The profile of azimuthal velocity can be analyzed for
centrifugal instability with the aid of Fig. 18. Rayleigh’s cri-
terion for axisymmetric centrifugal instability is that
3,(r?w?) <0, wherew is the azimuthal component of veloc-
ity. With reference to Fig. 18), we observe that this quan-
tity is indeed negative for=0.9R, and is most negative near
r/R=0.95. As Rayleigh’s criterion is for axisymmetric cen-
trifugal instabilities, it is not entirely appropriate to the task
of predicting RW instabilities. But the fact that the radial
location of a centrifugal instability indicated by this analysis
is relatively remote from the observed RW locationgR
~2/3) helps to reinforce the conclusion, already suggeste

from the observed alignment of the RW structures, that cen-

trifugal instability is not the primary cause of the RWs.

Another basis for analysis is suggested by the observa

tion that the time-average azimuthal velocity profile in Fig.
18(a) is inflectional. While again the method is not entirely

appropriate, we can analyze the stability of the velocity pro-

H. M. Blackburn
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file taken as a parallel shear flow. This means that wall-

curvature effects, as well as streamwise changes in veloci

G. 19. Shear flow stability analysis of axisymmetric time-average velocity
rofiles for Re=4000. Profile data obtained on a radial traversez/at

proflle, are taken to be unimportant. FJ@rtOﬂ'S Stablllty =4/5: (a) axial, u, and azimuthalw, velocity profiles;(b) profile of V

(a)

(b)
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FIG. 18. Centrifugal stability analysis of axisymmetric time-average azi-
muthal velocity profiles for Re4000. Profile data obtained on a radial
traverse az/H=4/5: (a) azimuthal,w, velocity profile;(b) profile of angu-

lar momentuntw?; (c) first radial derivative of 2w?.

=(u?+w?)¥2% (c) second radial derivative o¥; (d) discriminant for
Fjartoft’s stability criterion.

criterior?® is that d,,V(V—V.) <0 is a necessary condition
for inviscid instability of parallel shear flows. HeM is a
velocity magnitude and/; is its value at gradia) location
whereV is inflectional.

The axial,u, and azimuthaly, velocity components of
Fig. 19 are combined to form an approximate wall-parallel
velocity magnitudev = (u?+w?)'2 profile in Fig. 19b). Its
second radial derivative is shown in Fig.(&9 placing the
inflection location atr/R=0.84. The discriminant for
Fjartoft's criterion is assembled and plotted in Fig(d)9 It
can be seen that,V(V—V,)=<0 over a wide radial range,
0.5=r/R=<0.95. Despite the approximations in the applica-
tion of the analytical technique, this result strongly suggests
that RWs are primarily associated with an inviscid inflec-
tional instability.

X. DISCUSSION AND CONCLUSIONS

Floquet stability analysis of axisymmetric periodic flows
on theM, solution branch provides linearly unstable MRW
perturbations which agree well with the asymptotic saturated
states observed in DNS studies, both in terms of the location
of the symmetry-breaking perturbations and in their pre-
dicted precession speeds. While MRW perturbations are un-
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stable over a wider range of wave numbers than is occupied The origin of theV solution branch itself is still an open
by the observed asymptotic statéfer which the set of question. In earlier work, it was conjectured that it results
P-fold rotational symmetries is now=4, 5, and 6 atA from mixtures of pairs of the first three axisymmetric modes
=2.5, Re=4000), the observed states correspond well to théo depart from the basi@xisymmetric, steadystate through
MRW instabilities at the most-amplified wave numbers. TheHopf bifurcations. Results presented here, in Sec. IV, suggest
orientation of the MRW vorticity(Fig. 11) strongly suggests (but do not conclusively establishnother possibility: that it
that the instability is not primarily centrifugal in origin. arises through an axisymmetric flip bifurcation instability of
Stability analysis of the time-average flow shows that itsolutions of theMg branch. It is tempting to believe this
too is unstable to RWs, and as the peak growth rates are€lationship exists, at least in part on the basis of the fre-
higher than those for the MRWs found in the Floquet analy-duency content of solutions of th& branch—the two domi-
sis, is more unstable than the original periodic flow fromnant _pergds are close to that of tié, branch, and its
which it was derived. The fact that the RW instability occursdoubling:
over a similar range of wave numbers, with similar mode
shapes and precession rates as is found for the Floquet anal CKNOWLEDGMENTS
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