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Three-dimensional instability and state selection in an oscillatory
axisymmetric swirling flow
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Previous studies of the flow created inside a cylindrical cavity~radiusR, heightH) of fluid by a
single rotating end wall have shown that over a range of cylinder aspect ratios 1.6&H/R&2.8, the
first unsteady flows to bifurcate with increasing Reynolds number retain axisymmetry, and
subsequent bifurcations break axisymmetry to give solutions with modulated rotating wave~MRW!
states. The underlying axisymmetric components of these MRW flows are nearly indistinguishable
from corresponding axisymmetric flows at the same Reynolds numbers. Of the three solution
branches so far identified for this flow atH/R52.5, only one both supports MRWs and has a simple
limit-cycle underlying axisymmetric flow. Here, we carry out three-dimensional Floquet stability
analysis of this branch of axisymmetric solutions and demonstrate that only a subset of the linearly
unstable MRWs are observed asymptotically at large times for full Navier–Stokes solutions.
Stability analysis of the time-average axisymmetric flow shows rotating wave~RW! instabilities that
are in many ways similar to the MRW Floquet modes. The orientation of the vorticity of the RW and
MRW structures implies that they are unlikely to originate as centrifugal instabilities, while
simplified inviscid shear flow stability analysis of the time-average velocity profiles suggests instead
that they arise as a result of inflectional instability of the swirling wall-jet flow contained by the
cylindrical walls of the cavity. ©2002 American Institute of Physics.@DOI: 10.1063/1.1509452#
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I. INTRODUCTION

The flow produced inside a cylindrical cavity by a sing
steadily rotating end wall is a prototypical swirling flow wit
interesting dynamical properties. The system possesses j
single geometrical symmetry~rotation about the axis, the
SO(2) symmetry! and has two control parameters, the c
inder aspect ratioL5H/R and the Reynolds number R
5VR2/n, whereH and R are the height and radius of th
cylinder, V is the angular velocity of the rotating end wa
andn is the kinematic viscosity of the fluid. The Ekman lay
produced by rotation of the end wall is diverted along t
stationary cylindrical walls to form a swirling wall-jet like
flow which is turned radially inwards, toward the axis, by t
stationary end wall, before swirling back along the axis
schematic of the flow configuration is presented in Fig. 1

Much of the early interest in this flow followed th
discovery1 that vortex breakdowns~regions of reversed axia
flow! could occur on the axis of the cavity. Subsequently
regimes for onset of vortex breakdowns~up to three regions
along the axis! were mapped in~L, Re! control space2—in
that work, Reynolds numbers for onset of breakdowns w
found to be low enough that the flows remained steady
time. The steady flow illustrated in Fig. 1~for L52.5) has a
double breakdown. It was also found thatL.1.2 is required
for breakdowns to occur.

At moderate aspect ratios, flows become unsteady w
further increase in Reynolds number above that require
produce vortex breakdown,2–4 but the flows retain axisym

a!Electronic mail: hugh.blackburn@csiro.au
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metry at the onset of unsteadiness. It is to be expected, h
ever, that unsteady states with rotating waves~RWs! should
also occur, as these are ubiquitous features ofSO(2) swirl-
ing flows.5,6 The issue of which kind of unsteadiness bifu
cates first as Reynolds numbers are increased at arbitraL
was resolved in a numerical study7 of general three-
dimensional perturbations to steady basic states.~The steady
solutions are also referred to as the ‘‘basic states’’ for th
flows, as they share the same ‘‘basic’’ symmetries,SO(2)
and time-translation, as the governing equations and bou
ary conditions.! At intermediate aspect ratios, 1.6,L,2.8,
the onset of unsteadiness occurs through a supercritical H
bifurcation to periodic axisymmetric flows. ForL,1.6, the
Hopf bifurcation is to a RW with wave numberk52, while
for L.2.8, it is to a RW withk54 ~and subsequently othe
wave numbers asL or Re are further increased!.7,8 At the
critical valuesL51.6 and 2.8, both types of Hopf bifurca
tions are possible, and the dynamics of the codimensio
double Hopf bifurcation behavior atL51.6 has been
investigated.9

The behavior subsequent to the initial Hopf bifurcati
to periodic axisymmetric flow at intermediate aspect rat
~and in particular, L52.5) has been the subject o
experiments,10 axisymmetric stability analysis of the equiva
lent steady flows,11 and both two-dimensional and three
dimensional direct numerical simulation ~DNS!
studies.10,12,13 The most fundamental conclusion derive
from the experiments and simulations is that the behavio
dominated by the axisymmetric component of the flow, ev
when three-dimensional RWs are present. This conclusio
supported by the observations that typically of order 99%
3 © 2002 American Institute of Physics
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3984 Phys. Fluids, Vol. 14, No. 11, November 2002 H. M. Blackburn
the flow kinetic energy is contained in the axisymmet
~wave numberk50) component of the flow after it become
three-dimensional,12 and that the major solution branche
and the frequency content of the axisymmetric componen
the associated flows are reproduced quite well by axis
metric simulations,10,13 as illustrated in Fig. 2.

Referring to Fig. 2, the experiments and axisymme
simulations show similar behavior in terms of number
solution branches, fundamental oscillation periods, and
extent of branches~the Re extents predicted by thre
dimensional DNS are in better agreement with t
experiments13!. The onset of unsteady behavior occu
through a supercritical Hopf bifurcation near Re527077,11,13

to axisymmetric periodic flows that are stable to thre
dimensional perturbations; this is theA solution branch, for
which the periodVT'36. Starting near Re53500, another

FIG. 1. Schematic of the flow configuration, a cylindrical container of flu
with a single rotating end wall, showing inset contours of streamfunction
a double vortex-breakdown flow.

FIG. 2. Solution branches of unsteady flows atL52.5. Fundamental oscil-
lation periodsVT for axisymmetric simulations~s!, as a function of Rey-
nolds number, with transitions between different solution branches indic
~Ref. 13!. Also shown are experimentally measured values—Ref. 10~j!.
Solutions on theV branch are quasiperiodic, with additional very-low
frequency modulations, while theA and M branches have periodic solu
tions. The dashed line at Re52707 indicates the Reynolds number for th
onset of unsteadiness. Solutions of theV and M branches support rotating
wave instabilities, while those ofA retain axisymmetry.
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solution branch can be observed; theM solution branch,
which in the axisymmetric restriction has periodic solutio
with VT'28.3 and which extends out to higher Reynol
number~at least Re54300, according to DNS results so fa
obtained13!. Solutions of this branch are unstable to RWs, t
energies of which are modulated in time by the underly
axisymmetric behavior, leading to so-called modulated ro
ing waves ~MRWs!. Overlapping theA and M solution
branches in Re extent is theV solution branch, withVT
'57, but with in addition a much longer period very lo
frequency~VLF! modulation. Of the three, the dynamics
the V branch are the most complex, with solutions bei
unstable to RWs over some~but not all! of its extent, in
addition to the VLF behavior, which exhibits a period
doubling cascade in the three-dimensional case.13

The relationship between theA, M , and V solution
branches and the predictions of axisymmetric stabi
analysis11 of the corresponding steady flows is interestin
The ~note: axisymmetric! stability analysis predicts that a
Reynolds numbers are increased, a succession of Hopf b
cations to unsteady states occur—atL52.5, the first three
bifurcations take place at Re52707, 3040, and 3150. Th
predicted frequency of the bifurcated state and its onset R
nolds number unambiguously link the first Hopf bifurcatio
with theA solution branch. Likewise the predicted frequen
associated with the third Hopf bifurcation links it to theM
solution branch. It might therefore be expected that th
would be a clear link between the states corresponding to
second Hopf bifurcation and the remaining,V, solution
branch, although this seems not to be the case. The beh
on theV branch suggests that it may have mixed-mode ch
acteristics, and it has been conjectured13 that it results from
interactions between various pairings of the first three Ho
bifurcated states.

In the present investigation we seek to more fully und
stand the three-dimensional instabilities of theM solution
branch; such a study is amenable to Floquet analysis14 as the
underlying axisymmetric state is periodic in time for R
*3600. TheV solution branch, on the other hand, is n
amenable to this analysis as the underlying states are q
periodic.

We commence a review of the observed behavior for
M solution branch with the axisymmetricM0 flows: as in
previous work13 a subscript denotes the azimuthal wa
number of the first harmonic of any three-dimensional b
havior, with index 0 denoting axisymmetric flows or flow
that are restricted to axisymmetry. While the periodic beh
ior of the A-branch flows is associated with oscillatory pu
sations of the axial vortex breakdown region, that of theM
branch is associated with a traveling-perturbation behav
with disturbances~including vortex breakdowns! propagat-
ing along the axis, outwards across the rotating end w
along the stationary walls, then axially in a repetitiv
cycle.4,11 This behavior is illustrated for the state at R
54000 by the phase-specific sectional streamlines~com-
puted in the meridional semiplane! shown in Fig. 3. Also
shown are the sectional streamlines for the time-average
and those for the corresponding steady flow, which ha
single small vortex breakdown.
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FIG. 3. Sectional streamlines in the meridional semiplane for axisymmetric flows at Re54000: ~a!–~d!, instantaneous flows at four phases of the limit cyc
and~e! time average for the periodicM 0 solution. Sectional streamlines of the basic state, i.e., the equivalent steady flow, are shown in~f!. In each panel, the
cylinder axis is on the left-hand side and the rotating end wall is at the bottom.
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Turning now to review the symmetry-breaking solutio
of the M branch, MRWs with fivefold or sixfold azimutha
periodicity have been observed as stable asymptotic stat13

The flows evolve to a subspace of the full solution space,
only Fourier modes that are harmonics of the lowest a
muthal periodicity survive asymptotically. In Fig. 4 theM5

andM6 states are illustrated for two solutions at Re54000.
The spatial structure of the two states is very similar, ap
from the difference in wave number; the distributions of
netic energy in the leading symmetry-breaking modes
similar in shape and location, and are associated with
swirling wall-jet flow clearly reflected in the contours of Fig
4~c!, rather than any near-axial features. Despite the temp
modulation in energy, the RWs precess around the cylin
cal container at constant speed,13 and in the same sense a
the end wall rotation, with angular velocityv50.132V.

II. OBJECTIVES AND APPROACH

The purpose of the present study is to provide thr
dimensional stability analysis of the axisymmetric flows
the M solution branch, and to link the results to the MR
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AI
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states so far observed. As the corresponding axisymme
flows are periodic, the findings commence with Floquet s
bility analysis. It is found that the MRW states observed
be asymptotically stable in DNS studies correspond alm
exactly to the most unstable Floquet modes, and a previo
unobserved asymptotic state is documented: a MRW wit
fourfold rotational symmetry, in addition to those with five
fold and sixfold symmetries.

Attention is then focused on three-dimensional stabi
of a time-average axisymmetric flow at Re54000, which is
found to support RWs over a comparable range of wa
numbers, and with larger growth rates, to those predicte
the Floquet analysis. The mode shapes are in good ag
ment. The three-dimensional stability of the correspond
steady axisymmetric flow at Re54000 is also examined
This flow marginally supports similar-shape RWs, wi
smaller growth rates and over a comparatively restric
band of wave numbers, but in addition is found to supp
two different modes, at wave numbersk51 andk52, that
are not unstable for the periodic or time-average flows.
nally, stability characteristics of the velocity profiles for th
e

FIG. 4. MRW solutions on theM solution branch at Re54000. Contours of kinetic energy in the time-average flow,^u"u&/2, are shown in~c!, while ~a!, ~b!
and~d!, ~e!, respectively, illustrate theM5 andM6 states:~b! and~d! show contours of time-average energy^ûk"ûk* &/2 in the leading nonaxisymmetric mod
(k55 andk56, respectively!, and~a! and~e! show isosurfaces of instantaneous azimuthal velocity for the two states. In~a! and~e!, the lower end wall rotates
in a clockwise sense when viewed from above, as in Fig. 1.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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time-average flow are examined using a Rayleigh-ty
analysis and it is concluded that the RW instability cor
sponds well to inviscid instability of the corresponding pa
allel wall-jet velocity profile.

III. NUMERICAL METHODS

The analytical techniques employed in this work are
associated with time-integration of the incompressible
steady Navier–Stokes equations

] tu52Au2“P1n¹2u,

“"u50, ~1!

in which Au represents nonlinear advection terms—equ
alently u"“u, “"uu, or (u"“u1“"uu)/2—andP5p/r.

The numerical techniques used to integrate~1! are
briefly outlined in Sec. III A. In the succeeding sectio
~Secs. III B–III E!, the techniques used to obtain steady
lutions and to perform stability analyses are described. Th
are based around time-integration of the Navier–Sto
equations and their linearized equivalents, and follow me
ods advanced by Tuckerman and Barkley~TB!.15 The modal
structure and boundary conditions for perturbation veloci
and pressures are discussed in Sec. III F. A resolution s
for Floquet stability analysis is presented in Sec. III G.

A. Spatial discretization and time integration

Spatial discretization is carried out in a cylindrical coo
dinate system, using spectral elements in the meridio
semiplane, coordinates (z,r ), and Fourier expansions in az
muth, coordinateu. The spectral element mesh employed
illustrated in Fig. 5. Time integration uses a mixed explici
implicit time-stepping scheme,16 and all simulations dis-
cussed here used second-order-time integration.

FIG. 5. Spectral element mesh used to discretize the meridional semip
Cylinder axis to the left-hand side, rotating end wall at bottom, 60 spec
elements.
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The method of solution of the discrete equations,
mesh, and the spatiotemporal resolution are all identica
those employed in previous studies.12,13The spectral elemen
mesh has 60 elements, and tensor-products of seventh-o
Gauss–Lobatto–Legendre~GLL! Lagrange shape function
are used within each element, providing a total of 3053
dependent mesh points in the discretization of the meridio
semiplane. To keep the overall account here reasonably b
the reader is referred elsewhere13 for a detailed description o
the method and resolution studies as applied to DNS. A re
lution study for Floquet stability analysis is supplied in Se
III G.

The use of Fourier expansions in azimuth means t
there is a one-to-one correspondence between wave nu
and Fourier mode index. This is convenient because,
noted previously, three-dimensional solutions in the f
range of wave numbers are observed to evolve to asymp
states that haveP-fold azimuthal rotation symmetries, i.e., t
invariant subspaces of the full set of Fourier modes
subspaces that leave the solution invariant after azimu
rotations throughn2p/P, nPI. By computing only with
Fourier mode indicesk5nP, solutions can be restricted t
an invariant subspace, while retaining the option of proje
ing back to the full set of Fourier modes if required. Th
feature is exploited in the state selection studies of Sec.

B. Operator notation

In order to condense the following treatment and to li
it with that of TB, the incompressible Navier–Stokes equ
tions ~1! are first rewritten in symbolic form

] tu52Au2“P1n¹2u

52~ I2“¹22
“• !Au1n¹2u ~2!

5Nu1Lu ,

where the pressure is treated as the solution of a Pois
equation that has the divergence of the advection term
forcing. The nonlinear operatorN now contains contributions
from both advection and pressure terms, while the linear
eratorL corresponds to viscous diffusion.

An operator that integrates~2! over an intervalDt is
written as

u~ t1Dt !5NSDt@u~ t !#. ~3!

For example, with mixed explicit–implicit Euler time
stepping this operator can be approximated using the ab
introduced symbolic notation as

NSDt'~ I2DtL !21~ I1DtN!, ~4!

however, the use of integration operators in what follows
not restricted to any particular approximate numerical imp
mentation. For the results to be presented here, the disc
time integrations were implemented with the same seco
order-time explicit–implicit scheme used in previou
work.12,13

In stability analysis, we wish to study the evolution of
perturbationu8 to a ‘‘base flow’’U, whereu5U1u8. Here,

ne.
al
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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the base flowU can be steady orT-periodic. The linearized
equivalent of~2! for an infinitesimal perturbationu8 can be
written as

] tu85]UNu81Lu 8, ~5!

where]UN1L represents the linearization~Jacobian! of N
1L about the base flowU. We will use the notation LNSDt

to denote an operator that integrates~5! over intervalDt, i.e.,
in analogy to~3!

u8~ t1Dt !5LNSDt@u8~ t !#. ~6!

Since LNSDt is linear, it can also be written

LNSDt5exp@Dt~]UN1L !#, ~7!

and interpreted as a matrix exponential operator.17 For an
Euler time step, the analog of the approximation~4! is

LNSDt'~ I2DtL !21~ I1Dt]UN!. ~8!

In order to convert a time stepping code that provides a
crete approximation to NSDt to one that approximate
LNSDt , the main modification required is to replace t
computation of Au with its linearized equivalent, e.g
u8"“U1U"“u8, although in addition the base flowU must
be supplied as data.

C. Steady-state solution

Newton’s method for solution of the steady incompre
ible Navier–Stokes equations

05NU1LU ~9!

is

~]UN1L !u85~N1L !U, ~10a!

U←U2u8. ~10b!

In practice, iterative methods must be used to invert~10a!,
but ]UN1L is poorly conditioned and convergence can
slow or nonexistent. Stokes preconditioning18 is used to im-
prove convergence: both sides of~10a! are multiplied by
operator (I2DtL )21Dt and rearranged to produce

@~ I2DtL !21~ I1Dt]UN!2I #u8

5@~ I2DtL !21~ I1DtN!2I #U. ~11!

Examining~4! and~8! we see that this is an approximation

~LNSDt2I !u85~NSDt2I !U, ~12!

and that the two sides of~12! are equivalent to increments i
the velocity fieldsu8 andU obtained by integrating either th
linearized or full Navier–Stokes equations over intervalDt.
Thus the iteration for steady solutions can exploit tim
integration methods originally devised for the unstea
Navier–Stokes equations.

Typically the time intervalDt here is much longer than
the time step used in the explicit–implicit time integratio
which is restricted by CFL stability considerations. That
the increments in~12! are approximated by discrete integr
tion over many time steps.

Experience with the method suggests that the
CGSTAB ~bi-conjugate gradient stabilized! algorithm
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AI
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available in the Templates package19 is somewhat superior in
performance to the Bi-CGS~bi-conjugate gradient squared!
algorithm used by TB to invert~12!.

D. Stability analysis of time-invariant flows

In studying the stability of time-invariant base flowsU,
obtained either through solution of~9! or as the time-average
of solutions to~2!, we wish to find the leading, i.e., mos
unstable, eigenvaluesg5x1 ic of

~]UN1L !u85gu8; ~13!

those with largest real partx. However, most available nu
merical methods obtain the dominant eigenvalues, i.e., th
of largest magnitude. To overcome this difficulty, we stu
instead the exponential of]UN1L through solutions of~5!,

u8~ t1Dt !5exp@Dt~]UN1L !#u8~ t ![LNSDt@u8~ t !#.
~14!

The dominant eigenvalues of exp@Dt(]UN1L )# correspond
to the leading eigenvalues of]UN1L . If g is an eigenvalue
of ]UN1L , the corresponding eigenvalue of exp@Dt(]UN
1L )# is G5exp(gDt), while the eigenvectors are the sam
Provided that time steps are sufficiently small, the discr
integration of ~5! over the ~larger! interval Dt provides a
good approximation to~14!.

The Arnoldi method20,15 is used to extract some numbe
~typically 2–4! of the most dominant eigenpairs of LNSDt .
In practice, data to compute a greater number (K, typically
8–12! of eigenpairs are carried in the Krylov sequenceu08 ,
LNSDtu08 , LNSDt

2 u08 ,..., LNSDt
K21u08 .

E. Floquet stability analysis of T-periodic flows

In Floquet stability analysis,17,21 the base flowU, and
through it the operator]UN1L , is T-periodic. Perturbation
solutions u8 can be written as a sum of componen
ũ(t)expst, where ũ(t) are theT-periodic Floquet eigen-
modes of]UN1L . Equivalent to the Floquet exponentss
are the Floquet multipliersm, wherem5expsT. Both s and
m are in general complex numbers, with nonzero imagin
components often indicating traveling-wave solutions
three-dimensional flows.

We now define the operator LNST which is equivalent to
~6! with time interval Dt5T, the period of the base flow
Integration over one base flow period provides the mapp

un118 5LNST~un8!, ~15!

whereun8(t01nT) is the perturbation aftern periods, starting
at an arbitrary initial phaset0 of the base flow. Operato
LNST is equivalent to the linearized Poincare´ map associated
with the base flow. The eigenvalues of LNST are the same as
the Floquet multipliers of]UN1L , while its eigenvectors are
the Floquet eigenmodesũ(t) evaluated at phaset0 of the
base flow.

The same Krylov subspace iteration used to extract
dominant eigenvalues of LNSDt is used to obtain those o
LNST . The only difference is that the data used to supply
T-periodic base flow are obtained through Fourier-series
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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construction from a limited number~typically 32! of time-
slices obtained using~3! for the full Navier–Stokes equa
tions.

F. Modal structure and boundary conditions
for perturbation fields

We will be solving for the three-dimensional normal i
stability modes of an axisymmetric swirling base flow in
cylindrical coordinate geometry, withU, V and W, respec-
tively, the axial, radial, and azimuthal components ofU. By
adopting Fourier decomposition of the normal modes in a
muth the stability analysis can be pursued on a Fourier-m
basis, i.e., an independent stability analysis is carried ou
each wave numberk. This converts a three-dimension
analysis into a set of two-dimensional analyses. A modifi
version of the original Navier–Stokes solver is used to in
grate~5! for the linearized evolution of a single perturbatio
Fourier mode.

In some applications21 the base flowU is both two-
dimensional, i.e., invariant in a third~homogeneous! spatial
coordinate, and two-component, i.e.,U[(U,V,0) possesses
only two nonzero components. The normal modes of a b
flow that is both two-dimensional and two-component a
invariant with respect to a change of sign in the homo
neous spatial coordinate. As a consequence, the gene
complex perturbation Fourier mode

ûk85~ ûk8 .R1 iûk8 .I,v̂k8 .R1 iv̂k8 .I,ŵk8 .R1 iŵk8 .I!,

p̂k85 p̂k8 .R1 ip̂k8 .I, ~16!

where .R and .I denote real and imaginary parts, respe
tively, and can be decomposed into two linearly independ
but equivalent solutions

ûk,18 5~ ûk8 .R,v̂k8 .R, iŵk8 .I!, p̂k,18 5 p̂k8 .R, ~17a!

ûk,28 5~ iûk8 .I, iv̂k8 .I,ŵk8 .R!, p̂k,28 5 ip̂k .I, ~17b!

only one of which need be computed—the other can be
tained through a phase shift ofp/2 in the homogeneous spa
tial coordinate. In the problem under study here,U is again
two-dimensional~axisymmetric! but now three-componen
~swirling!, and the reflection symmetry of the normal mod
is broken by the fact that the base flow has a nonzero
muthal velocity, hence the fully complex form of~16! must
be retained through the solution procedure.

On the solid walls of the cylindrical container, perturb
tion velocities are set to zero, and a ‘‘high-order’’ Neuma
boundary condition16 is applied to the perturbation pressur
On the cylinder axis (r 50), boundary conditions are wave
number dependent:13

k50: ] r û085 v̌085w̌085] r p̂0850;

k51: û185 v̌185] r w̌185 p̂1850; ~18!

k.1: ûk85 v̌k85w̌k85 p̂k850.

Here, the change of variablesv̌k85 v̂k81 iŵk8 , w̌k85 v̂k82 iŵk8
has been introduced in order to decouple viscous terms in
Fourier-transformed equivalents of~5!.22
Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AI
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G. Convergence results for Floquet analysis

Results of a convergence study for Floquet multiplie
conducted at Re54000, k55, are presented in Table I. Th
order of the~one-dimensional! GLL shape functions used to
form the tensor-product shape function basis within each
ement is represented byNp , while the total number of de-
grees of freedom for the 60-element mesh shown in Fig.
given byNtot . In each case the time stepDt5T/2048, and 32
time slices of theT-periodic base flow were used to provid
its Fourier series reconstruction. The results show that
magnitudes of the complex23 Floquet multipliers,umu, and
their angles,/a, have converged to three significant figur
at Np56, but the higher resolutionNp57 was selected to
compute all the results presented here, in order to be con
tent with the resolution used in previous DNS studies.12,13

IV. THE LOWER-RE LIMIT OF THE T-PERIODIC M0
BRANCH

Before commencing three-dimensional stability analy
of flows of theM0 branch, issues concerning the extent
the branch need to be clarified. As noted in Sec. I, theM
solution branch is clearly associated with the third unste
state to bifurcate from the steady basic state as Reyn
numbers are increased. That Hopf bifurcation occurs at
53150, but it can be concluded that the bifurcated states
unstable at these Reynolds numbers, as the branch cann
followed down below Re;3550~see Fig. 2!. Near that point,
solutions jump to theV branch, in both axisymmetric an
three-dimensional DNS.13 ~Solutions of theV0 branch al-
ways have one characteristic period near that of theM0

branchVT'28 in addition to theVT'57 values seen in
Fig. 2, and beating between the two frequencies accounts
the VLF at these Reynolds numbers.13!

Further axisymmetric simulations conducted here as p
of establishing theT-periodic base flows required for three
dimensional Floquet analysis of theM0 solutions indicate
that theM0 branch solutions lose stability through an ax
symmetric flip ~period-doubling! bifurcation at Reynolds
numbers in the range 3575–3600. This corresponds to a
negative, Floquet multiplier leaving the unit circle in th
Reynolds number range. At Re53575, the growth rates ar
very small, and velocity component histories appear alm
as period-doubled limit cycles, see Fig. 6. The growth ra
increase as Reynolds number is decreased below 3575
given sufficient integration time, all such period-doubled s
lutions asymptote to states on theV solution branch.

TABLE I. Results of a convergence study of Floquet analysis applied
Re54000, k55. Complex-conjugate Floquet multipliers are represented
a magnitudeumu and angle/a.

Np Ntot VT umu /a ~rad!

4 1025 28.285 1.3596 60.159 14
5 1581 28.260 1.4465 60.147 25
6 2257 28.281 1.4384 60.128 30
7 3053 28.282 1.4446 60.127 74
8 3969 28.281 1.4443 60.128 11
9 5005 28.281 1.4444 60.128 20
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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The lower-Re limit of the three-dimensional Floqu
analyses conducted in Sec. V is thus 3600. On the o
hand, an upper-Re limit, if it exists, of theM solution branch
has not been established, but it extends at least to
54300.13 The analyses here are confined to Re<4000.

V. FLOQUET ANALYSIS RESULTS

Floquet multiplier magnitudesumu are shown as function
of wave numberk in Fig. 7, for five Reynolds numbers com
mencing near the lower limit of theM0 branch. The envelope
of neutral-stability wave numbers is extracted to form t
basis for Fig. 8, in which is also shown the approxima
locus of the most-amplified wave numbers. The range
unstable wave numbers is broader than the wave numbe
asymptotic states from DNS, e.g., at Re54000, wave num-
bers k53 – 8 are all unstable, whereas onlyP55 and P
56 asymptotic states were previously observed.13 This point
will be taken up in greater detail in Sec. VI, however it c
be seen in Fig. 7 thatk55 andk56 have the greatest am
plification rates at Re54000.

The fact that the envelope of neutral stability is open
the observed low-Re end of theM0 branch reflects the fac
that the solutions of the branch are unstable in an axis
metric subspace, as well as to three-dimensional pertu
tions. Figure 7 suggests thatM0 can be stable to three
dimensional perturbations at lower Re, even though it
unstable to axisymmetric perturbations. New computatio
techniques enabling branch continuation of unstable li
cycle solutions are required before these issues can be
resolved.

Before turning to examine the shape of the unstable F
quet modes, their speed of precession around the conta
will be examined, as this can be computed from the~com-

FIG. 6. At the lower Re limit of theM 0 branch, the periodic axisymmetri
flow undergoes a flip bifurcation~period doubling! between Reynolds num
bers 3575 and 3600. Loci of radial,v, and azimuthal,w, velocity compo-
nents at (z/H54/5, r /R52/3).
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plex! Floquet multipliers. It is known from the previous DN
studies that the RWs precess around the azimuth of the
tainer with the same sense of rotation as the driven end w
The angular velocity of precession is close tov50.132V
for MRWs of both theV and M solution branches. The di
mensionless wave precession period, Tw /T
52p/(0.132VT), whereT is the period of the axisymmet
ric base flow. For the observed extent of theM0 branch,
VT'28.3, givingTw /T'1.68.

FIG. 7. Floquet multiplier magnitudes as functions of wave numberk and
Reynolds number Re.

FIG. 8. Locations of neutral stability wave numbers (kneut, solid lines! and
approximate locations of most amplified wave numbers (kpeak, dashed line!
as functions of Reynolds number Re. Dotted line indicates the approxim
Reynolds number at which period doubling of the axisymmetric base fl
occurs (Re'3575).
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The extraction of wave speed from the Floquet multip
ers is complicated by aliasing. Consider a complex Floq
multiplier m ~one of a complex-conjugate pair! expressed in
polar form as (umu,/a) where at firsta is taken not to be
aliased into the range@0,2p). If the passage of a RW throug
a single wave-number-k module takes a dimensionless p
riod Tw /(kT), the corresponding angular displacement
the wave in one base flow periodT is

a5
2pkT

Tw
, ~19!

however, we expectkT/Tw.1 ;k>1 so thata>2p. Now
consider aliasing:a will be aliased into the range@0,2p), so
that we have

FIG. 9. Period of Floquet mode precessionTw normalized by the base flow
period T as a function of wave numberk for unstable Floquet modes a
Re54000. Horizontal line at value 1.68 shows result from direct simulat
~Ref. 13!.
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a1n2p5
2pkT

Tw
, ~20!

wherenPI. Thus to compute a dimensionless wave prece
sion period from a complex Floquet multiplier we must us

Tw

T
5

2pk

a1n2p
, ~21!

for arbitrary n and considering both multipliers of a
complex-conjugate pair. The result of applying this analys
to the Floquet multipliers corresponding to unstable modes
Re54000 is shown in Fig. 9. Only values ofTw /T closest to
1.68 are represented, for these form a smooth curve wh
connected. It can be seen that the RW periods predicted
the unstable Floquet modes are an excellent match for
value observed in DNS studies, especially neark55 andk
56, from which the valueTw /T51.68 was derived.

Now the shape of the unstable Floquet modes is exa
ined; here again we concentrate on results for Re54000. The
distributions of kinetic energŷũk8"ũk8* &/2 in the meridional
semiplane for one of the complex-conjugate pairs of leadi
Floquet modes at Re54000 are shown in Fig. 10. By com-
parison with Fig. 2 it can be seen that the spatial distributi
of energies in the Floquet modes is generally similar to th
in the leading symmetry breaking modes in the DNS resu
and the agreement is best fork55 andk56, which are the
modes actually represented in Fig. 2. In most cases, per
bation energy is concentrated in regions remote from t
axis, although the disturbances move closer to the top of
container and its axis ask drops. That the RW period should
fall slightly as the wave number increases~Fig. 9! is consis-
tent with the observation that ask increases, RWs move to
larger radial locations while the time-average swirl veloci
increases more rapidly than linearly with radius.

Isosurfaces of vorticity magnitude for the unstable Flo
quet modes at Re54000 are shown in Fig. 11. The genera
locations of the isosurfaces agree with the regions of pe
energy shown in Fig. 10 but additional important informatio
is gained from the orientation of the structures. The fact th
these perturbation vortices are not aligned with the directi
FIG. 10. Instantaneous contours of kinetic energy^ũk8"ũk8* &/2 in the meridional semiplane for unstable Floquet modes at Re54000 in wave numbersk as
indicated. In each panel, the cylinder axis is to the left-hand side, rotating end wall at bottom.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 11. Isosurfaces of vorticity magnitude for unstab
Floquet modes at Re54000 in wave numbersk as in-
dicated. Isosurfaces are shaded according to the sig
the axial component of vorticity.
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of time-mean flow streamlines, but are oriented with t
time-mean streamlines crossing them at significant an
~typically near 45°) implies that the RWs do not result fro
centrifugal instability, as alignment is characteristic of ce
trifugal instabilities of the Taylor or Go¨rtler types. Similarly,
the fact that the perturbation vortices are counter-rota
shows that they do not result from crossflow instability.24

VI. STATE SELECTION

The fact that the spectrum of unstable wave numb
according to Floquet analysis is far broader than the asy
totically observed range from DNS (P55, P56) implies
there is a state-selection mechanism at work. The most lik
mechanism is a difference in growth rates, as the obse
states match perturbation wave numbers which are most
stable.

In order to help resolve this issue, further DNS inves
gations have been carried out for Re54000. At each unstable
wave number (k53, 4, 5, 6, 7, and 8!, the three-dimensiona
solution field is initialized with a combination of the axisym
metric base flow and the most unstable Floquet mode~at the
corresponding phase of the base flow!. The energy in the
perturbation is set to be small enough that the initial grow
of the instability is approximately exponential: the kine
energy of the perturbation was chosen to be smaller than
of the base flow by a factor of 1028.

First, computations are carried out in an invariant su
space of the full geometry~see the discussion of Sec. III A!.
Once asymptotic states are reached in the subspace, th
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lution is projected to an unrestricted space~one with all Fou-
rier modes!, perturbed slightly in thek51 mode with small-
magnitude Gaussian noise, and left to further evolve. I
observed that if the invariant-subspace solutions are sta
energies in all modeskÞnP will die away asymptotically,
otherwise another set of modes~those for a differentP) will
grow to replace the originally dominant set, which, after
transition period, dies away.

The outcomes of this investigation at Re54000 were
that solutions forP54, 5, and 6 were stable~i.e., a new
stable asymptotic state forP54 was found, in addition to
those already obtained atP55 and 6!, while the other states
made the following transitions:P53→6, P57→6, P58
→5. Althoughumu for k57, asymptotically unstable, is mar
ginally larger than fork54, stable, it appears that the sele
tion of asymptotic states is indeed largely determined by
magnitude of the multiplier associated with the lowe
harmonic Floquet Fourier mode.

VII. STABILITY ANALYSIS OF TIME-AVERAGE FLOW

Having established that the observed asymptotic MR
states are closely associated with the most-amplified Floq
modes, it is natural to wonder how important the parame
excitation (T-periodicity! of the base flow is in creating th
RW instabilities. To commence this investigation, we fi
examine the stability of the time-average axisymmetricM0

flow, again at Re54000—the time-average flow is illustrate
in Figs. 3~e! and 4~c!. While the time-average flow is not
solution of the Navier–Stokes equations, it may be an app
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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priate state to serve as the basis of an examination of
instabilities, particularly if these are not tightly coupled
the time variation of the periodicM0 states.

Eigenvalue information from the stability analysis is pr
sented in Fig. 12. The real parts,x, of the leading eigenval-
ues are shown as functions of wave numberk in Fig. 12~a!,
where for purposes of comparison the real parts log(umu)/T of
the corresponding Floquet exponents, derived from the
54000 values of Fig. 7~a!, are also represented. It can b
seen that peak growth rates for the time-average flow
approximately double those for the periodic flow, and
slightly wider range of wave numbers is unstable. There
one major branch of solutions~for k>3) which carries the
unstable modes; the isolated modes atk51 and k52 are

FIG. 12. Stability analysis of time-average flow at Re54000. The real and
imaginary partsx and c of the leading eigenvalues are indicated as fun
tions of wave numberk by solid symbols and a line in~a! and~b!, in ~a!, the
open symbols and dashed line indicate the real part of the correspon
Floquet exponents. RW precession periods derived fromc are shown in~c!.
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W

e

re

is

stable. The imaginary parts,c, of the leading eigenvalues
which indicate wave precession speed, are shown in
12~b!, and it can be seen that to a very good approximatio
linear relationship exists between precession speed and w
number for the unstable modes. Dimensionless RW peri
are computed asTw /T52pk/cT and shown in Fig. 12~c!:
the predicted periods agree very well with the DNS obser
tions ~and also with values derived from Floquet analysis,
Fig. 9!.

Mode shapes~eigenvectors! from the stability analysis
of the time-average flow are presented as contours of kin
energy for the unstable modes in Fig. 13. At the same w
numbers, the shapes of the unstable modes are quite sim
to those for the Floquet modes seen in Fig. 10. A perspec
view showing isosurfaces of vorticity magnitude for the mo
unstable mode,k56, shown in Fig. 14 confirms the struc
tural similarity to the equivalent Floquet mode~cf. Fig. 11!.

VIII. STABILITY ANALYSIS OF STEADY FLOW

Now that we have seen that the unstable modes of
time-average axisymmetric flow bear a high degree of si
larity with the equivalent Floquet modes, we turn to stabil

FIG. 14. Isosurfaces of vorticity magnitude for the most unstable modek
56) of the time-average flow at Re54000. Isosurfaces are shaded acco
ing to the sign of the axial component of vorticity.

-

ing
FIG. 13. Contours of kinetic energy in the meridional semiplane for unstable modes of the time-average flow at Re54000 in wave numbersk as indicated.
In each panel, cylinder axis is to the left-hand side, rotating end wall at bottom.
P license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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analysis of the steady flow at Re54000. In contrast to the
time-average flow, the steady flowis an exact, though un
stable, solution to the Navier–Stokes equations. See Fig.~f!
for the sectional streamlines of the steady flow; while
flow is generally similar to the time-average flow shown
Fig. 4~e!, there are differences in detail, most prominen
that the steady flow has a single axial vortex breakdo
while the time average does not. The steady solution use
the basis of the stability analysis was obtained using
Newton method described in Sec. III C, initialized with th
time-average flow.

Results derived from eigenvalues are shown in Fig.

FIG. 15. Stability analysis of steady flow at Re54000. Real,x, and imagi-
nary,c, parts of most unstable eigenvalues are shown as functions of w
numberk in ~a! and~b!. RW precession periods derived fromc are shown in
~c!. Solid and open symbols are used to denote different mode branch
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It can be seen that there are a number of solution branche
can be assumed from the good agreement with the obse
RW periods@see Fig. 15~c!# that the solution branch tha
carries the three~marginally! unstable eigenvalues~for k
54, 5, and 6! corresponds to modes found in both the F
quet analysis and in the analysis for the time-average fl
This expectation is strengthened by the mode shapes
vealed by the kinetic energy contours, Fig. 16, and by i
surfaces of perturbation vorticity magnitude, Fig. 17.

In addition to this main unstable solution branch it c
be seen that also modes fork51 andk52 are unstable—the
structure for these modes is quite different than that for
RWs previously observed. Energy for thek51 mode is sig-
nificant near the axis, and would lead to precession of a
vortex features.8 A point of cross-reference is with the prev
ous stability analysis of steady flows,7 carried out fork<5,
which shows similar results: all studied wave numbers
cept for k53 are predicted to be unstable to RWs atL
52.5, Re54000.

ve

.

FIG. 17. Isosurfaces of vorticity magnitude for the most unstable modek
55) of the steady flow at Re54000. Isosurfaces are shaded according to
sign of the axial component of vorticity.
FIG. 16. Contours of kinetic energy in the meridional semiplane for leading modes of the steady flow at Re54000 in wave numbersk as indicated. Leading
mode fork53 is stable, others are unstable.
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IX. STABILITY ANALYSIS BASED ON VELOCITY
PROFILES OF THE TIME-AVERAGE FLOW

Finally we turn to simple stability analyses based
velocity profiles of the time-average axisymmetric flow,
RW instabilities of this flow are closely linked to the MRW
of the periodic axisymmetric flow. Again, the analysis is c
ried out for Re54000. The velocity profiles selected for th
work were extracted on a radial traverse atz/H54/5, at
approximately the same elevation where energies in RWs
at their highest.

The profile of azimuthal velocity can be analyzed f
centrifugal instability with the aid of Fig. 18. Rayleigh’s cr
terion for axisymmetric centrifugal instability is tha
] r(r

2w2),0, wherew is the azimuthal component of veloc
ity. With reference to Fig. 18~c!, we observe that this quan
tity is indeed negative forr *0.9R, and is most negative nea
r /R50.95. As Rayleigh’s criterion is for axisymmetric ce
trifugal instabilities, it is not entirely appropriate to the ta
of predicting RW instabilities. But the fact that the radi
location of a centrifugal instability indicated by this analys
is relatively remote from the observed RW locations (r /R
;2/3) helps to reinforce the conclusion, already sugges
from the observed alignment of the RW structures, that c
trifugal instability is not the primary cause of the RWs.

Another basis for analysis is suggested by the obse
tion that the time-average azimuthal velocity profile in F
18~a! is inflectional. While again the method is not entire
appropriate, we can analyze the stability of the velocity p
file taken as a parallel shear flow. This means that w
curvature effects, as well as streamwise changes in velo
profile, are taken to be unimportant. Fjørtoft’s stabil

FIG. 18. Centrifugal stability analysis of axisymmetric time-average a
muthal velocity profiles for Re54000. Profile data obtained on a radi
traverse atz/H54/5: ~a! azimuthal,w, velocity profile;~b! profile of angu-
lar momentumr 2w2; ~c! first radial derivative ofr 2w2.
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criterion25 is that ] rr V(V2Vs)<0 is a necessary conditio
for inviscid instability of parallel shear flows. HereV is a
velocity magnitude andVs is its value at a~radial! location
whereV is inflectional.

The axial,u, and azimuthal,w, velocity components of
Fig. 19~a! are combined to form an approximate wall-paral
velocity magnitudeV5(u21w2)1/2 profile in Fig. 19~b!. Its
second radial derivative is shown in Fig. 19~c!, placing the
inflection location at r /R50.84. The discriminant for
Fjørtoft’s criterion is assembled and plotted in Fig. 19~d!. It
can be seen that] rr V(V2Vs)<0 over a wide radial range
0.5&r /R&0.95. Despite the approximations in the applic
tion of the analytical technique, this result strongly sugge
that RWs are primarily associated with an inviscid infle
tional instability.

X. DISCUSSION AND CONCLUSIONS

Floquet stability analysis of axisymmetric periodic flow
on theM0 solution branch provides linearly unstable MRW
perturbations which agree well with the asymptotic satura
states observed in DNS studies, both in terms of the loca
of the symmetry-breaking perturbations and in their p
dicted precession speeds. While MRW perturbations are

-

FIG. 19. Shear flow stability analysis of axisymmetric time-average velo
profiles for Re54000. Profile data obtained on a radial traverse atz/H
54/5: ~a! axial, u, and azimuthal,w, velocity profiles;~b! profile of V
5(u21w2)1/2; ~c! second radial derivative ofV; ~d! discriminant for
Fjørtoft’s stability criterion.
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stable over a wider range of wave numbers than is occu
by the observed asymptotic states~for which the set of
P-fold rotational symmetries is nowP54, 5, and 6 atL
52.5, Re54000), the observed states correspond well to
MRW instabilities at the most-amplified wave numbers. T
orientation of the MRW vorticity~Fig. 11! strongly suggests
that the instability is not primarily centrifugal in origin.

Stability analysis of the time-average flow shows tha
too is unstable to RWs, and as the peak growth rates
higher than those for the MRWs found in the Floquet ana
sis, is more unstable than the original periodic flow fro
which it was derived. The fact that the RW instability occu
over a similar range of wave numbers, with similar mo
shapes and precession rates as is found for the Floquet a
sis, emphasizes the strong connection between the insta
ties of the time-average and periodic flows—the parame
excitation of the periodic flow is not a primary contributin
factor, although it does act to reduce peak growth rates
the wave number of the most-amplified perturbation.

Stability analysis of the corresponding steady flow ag
provides RWs that are unstable over a similar range of w
numbers as are observed asymptotically to be stable stat
the DNS, but the connection with the Floquet analysis
much weaker than is the case for the time-average flow
more diverse range of basic mode shapes is unstable th
the case for either the periodic or time-average flow. The
of unstable wave numbers agrees well with that of an ea
study of steady flows.7

The RWs most probably arise as a result of an invis
inflectional instability of the swirling wall-jet velocity pro
file. Although the velocity profile would also support ce
trifugal instability near the cylinder wall, the radial location
of the inviscid inflectional instability is in better agreeme
with the observed MRW locations. In addition, as mention
previously, the fact that the vorticity of the MRWs does n
have streamwise alignment also suggests that centrifuga
stability is not responsible for the instability. This is in co
trast with results from another study,26 where although the
velocity profiles are both inflectional and centrifugally u
stable, tight near-wall vortex structures align with the tim
mean flow streamlines, suggesting centrifugal or crossfl
instability is the primary cause of RWs in that case.

Vortex breakdown in itself does not appear to be direc
significant in producing the RW instabilities. This can be s
because the energy of the RW modes is almost always
removed from the axis~except for thek51 mode of the
steady flow in which will cause the vortex breakdown regi
to precess around the axis8!, and because the time-avera
flow has no vortex breakdown.

This work has dealt primarily with stability analysis o
the M solution branch. While flows of theV solution branch
are also unstable to RWs over some of its Re extent, they
not amenable to Floquet analysis owing to the quasiperio
nature of the axisymmetric solutions. It is possible that s
bility analysis of the time-average flows would yield use
information about the possible set of MRW states—thus
only MRWs with fivefold rotational symmetry have bee
observed for theV branch.
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The origin of theV solution branch itself is still an open
question. In earlier work, it was conjectured that it resu
from mixtures of pairs of the first three axisymmetric mod
to depart from the basic~axisymmetric, steady! state through
Hopf bifurcations. Results presented here, in Sec. IV, sug
~but do not conclusively establish! another possibility: that it
arises through an axisymmetric flip bifurcation instability
solutions of theM0 branch. It is tempting to believe thi
relationship exists, at least in part on the basis of the
quency content of solutions of theV0 branch—the two domi-
nant periods are close to that of theM0 branch, and its
doubling.13
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