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Heat or mass transfer from spherical particles in oscillatory flow has important applications in
combustion and spray drying. This work provides a parametric investigation of drag forces
experienced by, and transport of a passive scalar from, an isolated rigid fixed sphere in steady and
oscillatory axisymmetric flows. At SchmidPrandt) number of 1, oscillatory flows with Reynolds
numbers in the range 1-100 and oscillation amplitudes in the range 0.05-5 sphere diameters are
investigated using numerical simulation. Scalar concentration is uniform on the surface of the sphere
and zero in the far field. Coefficients of peak drag for steady and oscillatory flows are presented and
compared to values obtained from Basset’s analytical solution for Stokes flow, and the relative
contributions of the added mass, Stokes drag, and Basset history terms are examined. At the higher
Reynolds numbers and amplitudes, it is found that the time-average mass transfer rate can be more
than double that for diffusion in quiescent fluid, or in Stokes flow. Time-average ShelMosdelj
numbers for oscillatory flows asymptote to the Stokes limit at low oscillation amplitude, regardless
of Reynolds number. An unexpected result is that at intermediate Reynolds numbers and oscillation
amplitudes, it is possible to depress the time-average mass-transfer coefficient slightly below that for
Stokes flow. Within the Reynolds number range considered, Sherwood—Nusselt numbers in steady
flow are found to be always higher than for an oscillatory flow of the same root-mean-gcuare
velocity. © 2002 American Institute of Physic§DOI: 10.1063/1.1510448

I. INTRODUCTION transfer from spheres in oscillatory fld®,often for com-
paratively low Reynolds and SchmidPrandt) numbers,
Heat or mass transfer from spherical particles in oscillamost of the published investigations have been based in
tory flow has important applications, for example, in com-physical experimentsee a review of work up to 1976, and
bustion and spray drying. As an idealization of the situationas such have typically dealt with Reynolds numbers above
encountered in applications, where there may be many pafhe onset of wake transition, and comparatively high Schmidt
ticles in more or less close proximity, giving rise to a non-pnympers. A single preliminary numerical study of scalar
uniform far-field velocity and concentration of scalar, in this transport in low to moderate Reynolds number oscillatory
work we will consider scalar transport from a single isolatedf|qy past a sphere has appeatédhose results indicate an
sphere in a background flow with rectilinear oscillation. Theunexpected, apparently unbounded, increase in time-average
scalar value is assumed to be uniform and steady on thgca|ar transport as oscillation amplitudes are reduced to low
surface of the sphere, and zero in the far-field. values for all Reynolds numbers considered. A fundamental
Scalar and momentum transport are two aspects to thigypectation is that at finite Reynolds numbers, flows will
problem that are rarely dealt with together, perhaps in parg,nroach oscillatory Stokes flow as oscillation amplitudes
because of the largely experimental basis of previous work ipnroach zero. A corresponding expectation for scalar trans-
the area. A number of investigations of both steady and 0S50yt js that it uncouples from the flow field and asymptotes to
cillatory flows past spheres at low to moderate Reynoldghe “siokes flow limit,” i.e., the same uniform radial diffu-
numbers, exist® but these have dealt with fluid dynamical gjon found in quiescent fluid. These expectations are con-
aspects, without considering scalar transport. Even so, Ngmed by the analytical resulfg:141®
systematic parametric studies that document force coeffi- 1,0 dimensionless groups are required to uniquely iden-
cients for spheres in oscillatory flows at moderate Reynoldﬁfy the oscillatory flow past a sphere: here they are chosen as
numbers and amplitudes have appeared. Studies dealing jfe Reynolds numbeRe=U,.,D/v and the amplitude ratio
detail with scalar transport are largely confined to steadyA/D, whereU,,, is the maximum freestream flow spe,
flow.®"*? Analytical results have been developed for transient o sphere diametar,is the fluid kinematic viscosity and
scalar transport from spheres at low Peclet numbetsand A s the amplitude of freestream fluid particle motion. In
a nu_mencgl study at finite Rey_nolds and Peclet n“mbersbscillatory flows, U = wA, in which w is the angular fre-
dealing V‘s"th a step change in scalar value, has alsgency of oscillation, while in the steady flows also consid-
appear(_ad. _ o _ ered herelU . is taken as the freestream speed. The Rey-
While there is technological interest in heat and masg,g|qs number and amplitude ratio are sometimes combined
in a Stokes numbeSt=wD?/v=Re&/(A/D).
dElectronic mail: hugh.blackburn@csiro.au The passive scalar can be thought of either as tempera-
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ture or mass concentration; the two can be considered 8F4

equivalent at the same numerical values of Prandtl and CdZWv €)
Schmidt (S9 number, owing to the analogous behavior of P max” . ]
heat and mass transfer. The remainder of the discussion wil® drag force is exerted by pressure and viscous traction
be couched in terms of Schmidt and Sherw¢8b numbers T

for mass diffusivity and transport coefficient, respectively, FdZZWf e -{np—un-[Vu+(Vu) J}rds, (4)
with the understanding that these are interchangeable W”\Vvheren is the domain unit outward normag, is the unit

Prandhtl and Nusselé number_s. ical i L xial vector and the integral is taken around the perimeter of
The current study comprises a numerical investigation o@e sphere outline in the meridional semiplane of the cylin-

scalar and momentum transport from a sphere in both steagy;.5| coordinate system. The Sherwood number is computed
and oscillatory incompressible flows in the range of Rey- g9

nolds numbers £Re<100. Flow oscillation amplitudes fall
in the range 0.05A/D<5. The Schmidt number here is _ 2 fn-Vcrds (5)
taken to be unity, a value that is broadly representative of D*(Cax—C-) '

of Sherwood numbers computed, and behavioral trends, capnjle (cyclic) peak values are indicated &. Both time-

be also considered typical for this application. In addition, aspean and peak values were computed from cubic spline in-
the value is relatively close to the Prandtl number for air, thaerpolations of time series data.

results and trends will be approximately correct for heat

transfer from spheres in air flows. C. Time integration
In steady uniform flow, sphere wakes are steady and axi-

symmetric at Reynolds numbers up Re;;~210, where a

supercritical bifurcation to nonaxisymmetric, but still steady, n e - h
flow occurs®*” Subsequently, a supercritical Hopf bifurca- time-splitting scheme based on backwards differentigtton.

tion to oscillatory wake flow occurs ®e.,~273.7 As the The original scheme was designed to integrate the momen-

maximum Reynolds number for both steady and oscillatory/uM €quationsl) alone; changes have been made as required
flow in the current study waRe= 100, and oscillation am- to incorporate scalar transport: scalar convection is handled
plitudes restricted to less than five sphere diameters, it ha&XPlicitly while diffusion is handled implicitly. A second-
been assumed that the oscillatory flow retains axisymmetny?rder-time variant of the method was employed for all cal-

The Navier—Stokes and scalar transport equatidns
and(2) are integrated in time using a mixed explicit—implicit

Floguet analysis will be required in order to help resolve thisculations.
issue. o o
D. Spatial discretization
Il. NUMERICAL METHOD An axisymmetric cylindrical-geometry spectral element

method was employed for spatial discretization. Expansion
. . - functions within each element are tensor products of
The continuum equations for unsteady diffusion in anLagrange polynomials that use the Gauss—Lobatto—

A. Continuum equations

unsteady incompressible flow are Legendre(GLL) points as knots. The adaption of the stan-
1 dard spectral element method to a cylindrical coordinate sys-
du+N(u)=——-Vp+ovVau, with V.-u=0, (D) tem has some similarities to previous formulatiénis.
p Helmholtz problems that arise in the time-split are symme-
d,c+C(u,c)=aVZc, 2) trized by pre-multiplication by, while any remaining sin-

h is fluid veloci dc | | irati gular terms on the axis are set to zero. This approach has
whereu is fluid velocity andc Is scalar concentratiom, p, been shown to preserve exponential convergence for axisym-

andv, respectively, the fluid’s pressure, density, and kine, i syokes problenfé:23An extension of the method has

matic viscosity,a=v/Sc the scalar diffusivity. In the case Peen made to nonaxisymmetric flodss.

that .the scalar is temperature, the. effect of dissipation O Where integral quantities such as drag forces and surface
kinetic energy on scalar transport is assumed to be neg“ﬂuxes are required, e.g., i#) and(5), these were computed

g|ble6 The nonlmsa}r and coSvec?ve ‘e”'.“f]”) andC(u,T:) t using Gauss—Lobatto quadrature. Azimuthal vorticity was
can be composed in a number of waysich are equivalen computed from the velocity field via collocation differentia-

for continug; here “skew-symmetric” forms are employed, ; ;

: - B tion during post-processing.

e, N(u)=(u-VutV-uu)/2, C(u,c)=(u-Vc+V-uc)/2. Mesh design for the present application in oscillatory
In_the prese_nt applicationl) and(2) are so_lved in-a (_:ylm- flows is a compromise between the extremely fine radial
drical coordinate system where tlxecoordinate is aligned resolution required near the sphere, particularly for low os-

with .and ther coordinate is normal to.the axial d|rect|_on. cillation amplitudes and high Reynolds numbers, and a large
Far-field flows are parallel to the coordinate system axis. domain size required for flows and scalar transport approach-
ing the Stokes limit. The spectral element mesh adopted for
the results presented here meets both these requirements, as
Drag coefficients are computed using the peak freeFig. 1 illustrates. The domain-size extents of this mesh are
stream flow speed Xmax/D= %50, I hax/D=50, and the layer of elements nearest

B. Derived coefficients
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FIG. 2. Relative difference between the computed time variation of coeffi-
F cient of drag force acting on a sphere in oscillatory flowRat=1, A/D
15 =0.05 and that given by Basset's analytical solution for unsteady Stokes
L flow.
1E
05 E higher Reynolds numbers, it was decided to cse 0 at the
T far-field boundary for all flows, and employ a large domain
C size in order to compensate. It can be assumed that the maxi-
't P T B B L mum error in the scalar transport results presented here is
-2 -1 0 1 2

dominated by this assumptiofiZ) provides a representative

FIG. 1. Spectral element mesh, upper: full mesh, 146 elements; lower: degglye of 1%. based on the domain size employmb also

tail, close to sphere. Dimensions are given in terms of sphere diabeter . ’

the inner-most layer of elements is 0.D2thick. Fig. 3. Also, the largest errors can be assumed to occur at
the lower Reynolds numbers.

the sphere wall is 0.0R thick in the wall-normal direction. F- Verification and resolution studies

Other meshes of smaller extenkf,/D==20, I'ya/D In order to verify the performance of the computational

=20) and lesser near-wall refinement have also been enmnethod in oscillatory flow, we first compare the time varia-

ployed during testing and check runs. tion of drag coefficient atRe= 1, A/D=0.05) with Basset's
analytic solution for drag force in unsteady Stokes ffow.

2 24

Sinwt— msme R—eCOSwt

E. Boundary conditions

At solid walls, no-slip boundary conditions are applied Cag=
to velocity variables, and a nonzero scalar concentratigR
is prescribed. In the case of oscillatory flow, time-varying

. . . 8
velocities and zero scalar concentration are prescribed at far- ®)

field boundaries. For steady flovv_, a constant. velocity andg the asymptotic unsteady coefficient of drag predicted by
zero scalar value are set on far-field boundaries except thgasset's solution for a sphere immersed in flow with

outflow boundary, where zero normal gradients of Ve|00ityfreestrean(axial) velocity U = wA cosat. The four contribu-
and scalar variables are applied, and the pressure is set {@8ns to the total drag it8) result from:

zero. For all boundaries other than the steady-flow outflow, a ) ) o
“high-order” pressure boundary conditi®his obtained by (1) The pressure grat_ju_ent required to accel_erate the fluid in
taking the dot product of the domain unit outward normal  the free-stream—if instead, the sphere is made to oscil-

with the momentum equations to produce late in quiesce_nt fluid, this term is zero; o
9,p=pn-(—N(U)— VXV XU-au), the force required to accelerate the volume of fluid dis-

placed by passage of the sphere: This is the “added
mass” term;

4
- 3A/D

12 ,
- WSW( ot— 17/4),

e @

where the rotational form of the viscous term exploits the

solenoidality of the velocity. This formulation allows the (3)
time-split to retain the same accuracy as the differencing
scheme used to integratgu. On the axis, the appropriate (4)
boundary conditions argé,u=v=d,c=d,p=0, whereu is
the axial andv the radial velocity component.

It should be noted that the far-field boundary condition
for scalar concentration in the Stokes flow limit is

Coo=CrmaD/2(X?+ 1212, 7)

Stokes drag, the only term that does not disappear in
steady motion;

forces due to the cumulative effect of vorticity diffused
from the surface of the sphere in its past motion—this is
the “Basset history” term, and more precisely stated it is
only this term that is due to Basset.

The relative difference between the numerical Navier—
Stokes solution and Basset's Stokes solution is shown in

This would be a valid approximation at low Reynolds num-Fig. 2. The maximum relative difference is approximately
bers and oscillation amplitudes, but as most interest is at théx 10”4 and has an approximately sinusoidal variation in
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TABLE |. Results of spectral element order convergence tests conducted at
Re= 100,A/D =0.05.N,, GLL shape function ordeé\d, peak coefficient

of drag; Sh, cycle-average Sherwood numbér, o, €, peak values at
x/D=0.65,r/D=0.1.

0.8 -

Np C, Sh a i ¢

43.607 2.4202 0.17583 0.035974 0.779 22
43.986 2.4796 0.174 04 0.031 867 0.768 76
43.983 2.4784 0.17418 0.031 829 0.768 83
43.983 2.4780 0.174 18 0.031 832 0.768 87
43.983 2.4778 0.17418 0.031831 0.768 88

0.6 -

oo N

E/C max
=
o

04

since all values were converged to three significant figures or
better at this level. Where it was considered prudent, these
computations were backed up with spot-checks udihg
=6, but no significant differences to thé,=4 solutions
were detected. For the steady flow results to be presented in
0 1 5 3 4 5 Sec. lll,N,=8 was used, as asymptotic values could readily

r/D be obtained without significant demand on computer re-
source.

0.2 -

FIG. 3. Profiles of time-average scalar concentration obtained or-tte
traverse forA/D=0.05. The profiles asymptote towards the Stokes flow

limit as Reynolds number is decreased. Profiles R@<20 are visually |||. STEADY FLOW

indistinguishable. The slight systematic deviation from the exact Stokes flow

limit is caused by the use of the far-field boundary conditior=0 as The same spectral element mesh as designed for oscilla-

opposed to the Stokes valog,/2(x*+r?)"*—see Sec. Il E. tory flows (Fig. 1) was used to compute the steady-flow re-
sults.

time, although the third harmonic makes a significant contri-A. Force coefficients
bution. The maximum value is nearly identical to that com-
puted in an earlier studyat a lower Reynolds number but the
same oscillation amplitudeRe=0.1, A/D=0.05).

At low oscillation amplitudes, the scalar transport as-
ymptotes to the Stokes flow limit.e., uniform radial diffu-
sion as Reynolds numbers approach z&rd@his effect is
observed in Fig. 3, which shows profiles ©falong the line
x=0 for A/D=0.05: at the lowest Reynolds numbers, the
profiles asymptote towards the Stokes flow liflitit see the
remarks in Sec. Il E concerning the effects of boundary con- L
ditions on errors

Additional evidence of the correct operation of the com-
putational method is given by the good agreement with re- 10 D\\ C,=24 +4 _

. . . . . Re Rel/3
sults previously obtained in steady flows, as discussed ir x% /
Y
Rt

Figure 4 shows coefficients of drdgptal, viscous and
pressurg as functions of Reynolds number over the range
1=<Re<100. Viscous drag is the dominant component until
Reynolds numbers just above 100 are reached, where pres-
sure drag is about to become dominant. In Fig. 4, lines show-
ing values for Stokes’ solutionQy=24/Re) and Oseen’s

Sec. Ill. "o o
Mesh resolution studies have been carried out at eact RN
limit of the (Rg A/D) control space for which oscillatory -~ o " &&
flow results are presented. Only those f®e=100, A/D i °, ©
=0.05 are given here, in Table I, as they demonstrated the ° g K\x
greatest variation with GLL shape function ordsk,. The 1
results were collected after sufficient number of flow oscil-
lations had taken place for the flow to reach an asymptotic
state. This was especially important at thee& 100, A/D - .
=0.05) combination, where over 10000 oscillation cycles
were required for the reported scalar transport results to be
come asymptotic to within five significant figures. All re- 0.1 vl il el
ported oscillatory flow results are for a time step that is 0.1 1 10 100
1/1000th of an oscillation period, i.eAt=0.002r/ w. o Re )
Subsequen 1o the resolution studies, a GLL polynomial®,% Senere reg coeffcetsfor steay fu, s 2 freton of eyl
orderN,=4 was selected to obtain the results of parametric. — —. oseen's approximation——; fitted curve, — —, Cy=24Re
investigations of oscillatory flow to be presented in Sec. IV, +4/Re®. Independent computational results, Refs. 2 and 3.

T
(o]

T T
¥
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10 ] ] L ALILLL] B approximate 1/3-power law, at least upRe= 100, accord-
i / T ing to the results shown in Fig. 5. A blending-function ap-
i proach provides the following fit:
| Sh= [22.693+ (1475? el/3)2.693] l/2.693t (10)

8 Although originally fitted to the Stokes flow limit and
present computational data only, this is seen in Fig. 5 to also
match well with the analytical resulfsdown to lower Rey-
nolds numbers—the new correlati¢hO) is virtually indis-

§ tinguishable from the lowR e asymptotic expansion values.

Sh

Stokes limit

IV. OSCILLATORY FLOW

A. Time-dependent flows and scalar transport

1 T T T Here we examine instantaneous contours of azimuthal
0.1 1 10 100 vorticity and scalar concentration in subsets of the computa-
Re tional domain for three points in theRE A/D) control
FIG. 5. Sphere Sherwood number ®c=1.0 in steady flow, as a function SPace. In each case, the contours illustrate flows for half a
of Reynolds number. Computed valu®,asymptotic expansior®ef. 12,  motion cycle at 1/16th-period phases, starting at tim® in
——; correlation(Ref. 19 for 1<Re<400, - - - -; fitted curve,— — — Uu=u coSwt.
(Sh=[226934 (1.475Re!3)2.693)1/12.699 max . _ B )
Figure 6 illustrates the flow atRe=100, A/D=0.05);
the highest Reynolds number, lowest amplitude case. Essen-
tially all the vorticity remains in nearly spherical-shell
approximatioR® are also displayed, and it can be seen thaboundary layers, extremely close to the sphere, with vorticity
the computed results asymptote to values for Oseen’s ap? each shell alternating in sign on a traverse normal to the
proximate solution at the lowest Reynolds numbers. A simpléphere surface. The slight asymmetry of vorticity in the axial
and accurate corelation for the total coefficient of drag, up tdlirection, most visible in Figs. (6)-6(f), is the key feature

Re=100, is given by of the vorticity field that distinguishes this from an equiva-
lent Stokes flow. The difference from Stokes flow is more
24 4 readily apparent in the general shape of the scalar contours
Co==+ ?g 9 . . . . . .
Re R [Figs. Gi)—6(p)], which besides having a small axial asym-

metry, are distinctly prolate at locations remote from the
sphere.

Figure 7 illustrates the flow aRe=20, A/D=0.5). The
ynolds number is smaller than for the previous case by a
factor of five, which in part accounts for the larger radial
E’\‘éngth scales at which the vorticity alternates in sign on
traverses outward from the surface of the sphere. Despite the

reduced Reynolds number, the effects of advection of vortic-

ity are more noticeable in Fig. 7 than they are in Fig. 6,
owing to the increased oscillation amplitude. Interestingly,
while there is distinct axial asymmetry in the contours of
scalar concentration, the departure from shells of spherical
shape(although not necessarily centered on the sphiere

Figure 5 shows the Sherwood number as a function ofreatest at radii of the order of one sphere diameter from the

Reynolds number. At low Reynolds numbers, the Sherwoodarigin. An additional interesting feature of this case is that
number asymptotes to the Stokes flow liffit*Sh=2, and  the time-average Sherwood number is actually depressed
for Re<10 the computed values are in excellent agreemenslightly below the Stokes flow limit, one of the small number
with results obtained foSc=1 using matched asymptotic of cases where this is dgee Sec. IV D
expansions? The computed values are in reasonable agree- The effects of advection on transport of both vorticity
ment with a previously published correlatiplags.(5—(25), and scalar concentration are clearly evidentRad= 100,
Clift, Grace, and Webé¥] fitted to numerical results for a A/D=5, as shown in Fig. 8. Both vorticity and scalar con-
wide range of Schmidt/Prandtl numbers available up to 1975centration are swept sufficiently far from the sphere in each
and which forRe<1 (below its quoted range of applicabil- motion cycle that contours show local maxima, remote from
ity) agrees poorly with the analytical resultsAs Reynolds  the surface of the sphere, that have evolved during previous
numbers increase, tieh—Re relationship asymptotes to an cycles.

For purposes of comparison, values @f obtained in
two independent computational studidsire also presented
in Fig. 4, and it can be seen that the present results matclge
these well. Most of the small differences between the thre
sets of results can probably be attributed to somewh
smaller domain extents used in the earlier workg,{
=25D used by Chang and Maxégnd 1B used by Johnson
and Patél cf. 50D here, with the higher blockages contrib-
uting to the slightly higher values df4 computed in the
previous studies.

B. Mass transfer coefficients

Downloaded 24 Oct 2002 to 152.83.22.19. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



4002 Phys. Fluids, Vol. 14, No. 11, November 2002 H. M. Blackburn

(h) ' (p)

FIG. 6. Instantaneous contours @&)—(h) positive (black and negative(gray) azimuthal vorticity and(i)—(p) scalar concentration forRe=100, A/D
=0.05), shown over half a fluid motion cycle in 1/16-period phases. Fluid is initially moving to right at maximum speed. Vorticity contour incregnents ar
nonuniform to aid illustration of flow structure. Scalar contours commencg,atand continue with a uniform decrement of 0.65..
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(a)

(b)

(d) )

(f)

(8)

(h) (p)

FIG. 7. Instantaneous contours @)—(h) positive (black and negative(gray) azimuthal vorticity and(i)—(p) scalar concentration forRe=20, A/D
=0.5), shown over half a fluid motion cycle in 1/16-period phases. Fluid is initially moving to right at maximum speed. Vorticity contour increments are
nonuniform to aid illustration of flow structure. Scalar contours commencggtand continue with a uniform decrement of 0.65,,.
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(b)

)

(f)

(h) (p)

FIG. 8. Instantaneous contours @@&)—(h) positive (black and negative(gray) azimuthal vorticity and(i)—(p) scalar concentration forRe=100, A/D
=5), shown over half a fluid motion cycle in 1/16-period phases. Fluid is initially moving to right at maximum speed. Vorticity contour increments are
nonuniform to aid illustration of flow structure. Scalar contours commencg,atand continue with a uniform decrement of 0.65..
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e
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(b)

(0 Lo

(f)

FIG. 9. Time-average vorticity, scalar concentration, and streamline&/fdr=5, Reynolds numbers as indicatée)—(c), contours of positivéblack) and

negative(gray) azimuthal vorticity;(d)—(f) contours of scalar concentratidhlack) overlaid with streamlinesgray). Streamline loops nearest sphere have
clockwise circulations in first quadrafite., in (d)—(f)]. The alignment of the free-stream oscillatory flow is horizontal.
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FIG. 10. Profiles of cycle-average radial velocity componewin traverses of the line=0, for (a) A/D=0.05; (b) A/D=5.
B. Cycle-average flows and scalar transport (horizonta) flow oscillation axis towards the surface of the

phere produces an observable depression in the scalar con-

The cycle-average fluid flow displays a steady streamin% h . . f : I h
component that in each quadrant of the meridional semiplan&’Us On the a>_<|s{at a radius of approximately one sphere
diametey. The inner flow then advects scalar first radially

flows inward along the oscillation axis towards the stagna- i . ; .
tion point, then radially outward. Often this flow is sur- outwards(vertically), then axially(horizonta). As inner flow

rounded by another circulation with opposite sense in eacgdvection velocities faII,'dep.arting the imme@iate vicinity of
quadrant, however a single diagnostic parameter for exis_t-he sphere, cross-flow diffusion sta_rts tq dominate, and sc_:alar
tence of the second circulation cell has not yet beerdS _able to cross .the mean streamlines into the out.er. recircu-
identified? For oscillatory Stokes flow, only a single recircu- 1ation, enabling it to be transported far from the origin.

lation cell is expected in each quadrant. While the time-average vorticity field always displays

The cycle-average flows a&/D=5 are illustrated for shells of alternating sign, it is not clear if a two-celled
Re=100, 10, and 1 in Fig. 9; contours of time-average vor-Streaming flow is always present in each quadrant. In order
ticity are shown in Figs. @—-9(c), while contours of time- 0 examine the cell structure of streaming flow, profiles of
average scalar concentration are shown overlaid with timetadial velocity obtained along the line=0 (i.e., on a radial
average streamlines in Figs. (d-9(f). Time-average (raverse, normal to the fluid oscillation axisave been ex-
vorticity exhibits the multilayer structure seen for the instan-tracted atA/D=0.05 and 5 for all Reynolds numbers stud-
taneous flowsas is true for all sets of computed resyltsut  ied. Details of these profiles near the sphere are shown in
the influence of Reynolds number on prolation of the vortic-Fig. 10. Recirculation cell boundaries correspond to zero-
ity field is clearly evident. Also, the length scale over which crossings in these plots. Evidently, two-celled topologies ex-
vorticity alternates in sign near the surface of the sphere fallist at the highest Reynolds numbers for each of these two
as Reynolds number increases. A feature that is not obvioldmplitudes, and as stated above, the peak velocity of the
from the contour plots is that vorticity magnitudes fall asinner recirculation cell increases monotonically with Rey-
Reynolds number is decreased. nolds number af/D =5.

The time-average flow, as illustrated by the streamline  To help clarify the issue of number and extent of recir-
patterns in Figs. @)—9(f), shows that the inner region of culation cells, the radial locations of the first zero-crossings
streaming flow grows larger as Reynolds number decreasesf radial velocity component have been extracted from the
a bounding streamline between the two circulation cells camlata used to prepare Fig. 10, and plotted in Fig. 11. It appears
be seen in each of Figs(® and 9e), but not in Fig. ¥f).  that the size of the inner recirculation cell grows without
Not evident from the streamline patterns is that the pealbound as Reynolds numbers are reduced, at least until the
streaming velocity in the inner cell increases with Reynoldszero-crossing location approaches the maximum radial ex-
number(at least atA/D =5, but this is not necessarily the tent of the computational domairr {,,=50D), where the
case at lower amplitudes, see beJoWwhile the time-average analysis becomes unreliable—for this reason, data points for
scalar advective transport is not solely produced by the timelargestr/D have been omitted from Fig. 11.
average flows—scalar—velocity correlations also have a Contours of the time-average scalar concentration at the
role—there seems to be a clear linkage between the timdimits of the (Re, A/D) control space considered here are
average flow and the scalar transport contours, particularly ahown in Fig. 12. It can be seen that at the low-Reynolds
Re=100. In that case, the inner streaming flow along thenumber, low-amplitude limit Re=1, A/D=0.05), scalar
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represented are for a sphere made to oscillate in quiescent
| Domain extent i fluid, i.e., the values obtained from simulation are those of
L . Fig. 13b), and the first term if8) has been correspondingly
‘e omitted. ForA/D=<0.2, peak coefficients of drag obtained

. i from Basset’s solution are virtually indistinguishable from

AN those obtained using numerical simulation at all the Rey-
nolds numbers employed here, and the same is true for
A/D<2 atRe=1.

10

L \ ~. ] D. Cycle-average mass transfer coefficients

rcross / D

\ R Cycle-average Sherwood numb&h are shown in Fig.
L * § 15 as functions of oscillation amplitude and Reynolds num-
ber. The most interesting features of this plot are associated
~e with the high- and moderate-Reynolds number results. For
T~ E Re=100, values ofSh appear to approach a high'D as-
e~ ] ymptoteSh=5 for A/D=2. Shfalls rapidly withA/D, then
_ '1'0 _ '1'00 recovers neaf/D=0.2, before falling slowly again a&/D
Re reaches the lowest values used in this study. For intermediate
FIG. 11. Location of the first zero-crossing of the cycle-average radial ve-ReynOld_S ,numberSF(e: 50, 20’, 10) ’Sh_A/D ,Curves have
locity v on traverses of the line=0 as functions of Reynolds number, for 0Cal minima for A/D~0.3—in the vicinities of these
A/D=0.05 andA/D =5. Maximum radial extent of computational domain minima, Sh can fall marginally below the Stokes lim&h
IS I max=50 D. =2. For these intermediate Reynolds numbers, it seems
likely that for A/D<0.05, Sh values will again begin to
decrease, on the basis of what is observed=fer 100. For
diffusion dominates, and contour lines closely approximatgne |owest Reynolds numberKée=5, 2, 1), values oSh
circular arcs, consistent with scalar transport approximatingisymptote monotonically to the Stokes flow limit A$D
the uniform radial diffusion that represents the Stokes flowy|s. |n all cases it is expected that for all Reynolds numbers
limit. At the high-Reynolds number, high-amplitude limit o \niformA/D— 0 limit of Shis the Stokes flow value.
(Re=100, A/D=5), scalar advection is more significant, In order to gauge the mass-transfer performance in os-
and the outer contours af are clearly influenced by the jjiat0ry flow relative to that in steady flow, the same values
time-mean streaming flow within the computational domam.Of Shas shown in Fig. 1) are repeated in Fig. 15), but
In order to check domain-extent effects on sphere—surfaCﬁormalized by the steady-flow values given t80). The
scalar transport rates @&e=100, A/D=5, computations Reynolds number used to compute valuesSitq, from
were repe_ated ona smaller doma_b(]ngX/DziZO, rmaX/P ... (10) is the rms value corresponding to the peak value listed
=20). While this changed the far-field contours, no S|gn|f|-in Fig. 15a), e.g., forRe= 100, the corresponding Reynolds
cant effect orfShwas detected. number to computé heq, from (10) is 100/22=70.711. It
is immediately apparent that the normalized mass-transfer
values are always less than the equivalent steady flow values.

Peak coefficients of drag in oscillatory flows are shownThis results from pollution of the surrounding fluid with
in Fig. 13a. Subtracting the inertial componer€y; scalar effluent from previous flow cycles in the oscillatory
=(4D/3A)sinwt, i.e., the first term in(8), from the coeffi- flow case—for steady flow, there is always a continual
cient of drag time series prior to extracting peak values, wesupply of uncontaminated fluigThe same conclusion—that
can also obtain the coefficient of drag for a sphere oscillatinghe oscillatory flow values are always lower than the equiva-
in a quiescent fluid: The corresponding peak drag coeffilent steady flow values—is also reached if the peak, rather
cients are shown in Fig. 18). For purposes of compar- thanrms, Reynolds numbers are used in performing the com-
ison, values of peak coefficient of drag computed from Basparison)
set's analytical Stokes flow solutiof8) are also plotted in
Fig._13, and it can be seen that this provides a good_ approx'\-/' DISCUSSION AND CONCLUSIONS
mation to the total drag force up #&/D=1 at the higher
Reynolds numbers, and considerably above this at the lower The main results of the parametric investigations carried
Reynolds numbers. out in the present work are summarized in Figs. 13-15.

In order to examine in more detail the contributions  With regard to peak coefficients of drag in oscillatory
made by the various terms in Basset's solution, and how welllows (Fig. 13, an interesting finding is that Basset’s analyti-
that predicts the drag coefficients obtained computationallycal result for Stokes flovi8) provides a good basis for pre-
the normalized drag coefficients for various combinations ofdiction of asymptotic peak drag coefficients even at quite
terms in(8) are plotted as functions dke at variousA/D large Reynolds number&(e~100), provided the oscillation
values in Fig. 14. In order to maximize the relative contribu-amplitude is not too largeA/D=0.5). A detailed examina-
tions of the Stokes drag and Basset history terms, the valug®n of the relative contributions of various terms in Basset’s

LI |
!

[y

C. Peak force coefficients
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FIG. 13. Peak coefficient of drag for a sphéagstationary in oscillatory flow an¢b) oscillating in quiescent fluid, as functions of oscillation amplitude and
Reynolds number. Dotted linds - - -) show predictions of Basset's soluti¢8) at each Re.

solution for the asymptotic dra@), compared to the values tive contribution of the Basset history terms is greatest at
obtained through numerical simulatidsee Fig. 1#is re-  intermediate values of Reynolds numiterg., atRe~ 10 for
vealing. Within the parameter ranges studied here, the cors/D=0.2), and the Reynolds number at which this contri-

substantial, typically larger than the Stokes drag AdD

<0.5. At all oscillation amplitudes, the contribution of .
Stokes drag becomes relatively less with increastieg and elevated substantially above the Stokes flow value, and
indeed at the lower amplitudes, the contribution of StokedVithin the limits of the parameter set used here, the amount
drag becomes insignificant féte= 10, with added mass and Of elevation appears to increase with Reynolds number. It is
history terms dominating. Again at all amplitudes, the rela-also possible, at least fd8c=1, to depress time-average

Time-average mass-transfer coefficie(igy. 15 can be

A/D=0.05 A/D=0.1 A/D=0.2 A/D=0.5
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FIG. 14. Peak coefficients of drador a sphere oscillating in quiescent fluiderived from Basset's solutiofB), normalized by the values obtained
computationally Cd'DNS). Added mass term onlyk; added mass- Stokes drag®; added mass- Stokes drag+ Basset history ternil.
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FIG. 15. (a) Cycle-average Sherwood number fdc= 1.0 in oscillatory flows, as functions of oscillation amplitudleD and Reynolds number. Computed
values,®; Stokes’ flow limit, Sh=2, — — —. (b) Cycle-average Sherwood number normalized by the corresponding rms steady flow value.

mass-transfer coefficients below the Stokes flow value, alperformance in these kind of flows is the Stokes flow limit.
though not by a large amount. Although in most cases, mass transfer coefficients in oscilla-
Previous computational predictions of scalar transport irtory flows are above the Stokes flow limit value, it is also
oscillatory flows!® which showed Sh climbing without — possible to obtain values somewhat below this, so that good
bound asA/D—0 now appear erroneous, most likely as adesign of drying equipment for these applications requires
result of low mesh resolution near the surface of the spherecareful consideration.
In that work, the radial distance to the first mesh point away = Regarding the flow field, an issue not previously re-
from the sphere wall was approximately 10% of the spher&olved in examinations of oscillatory axisymmetric flows
radius, which is obviously inadequate when the flow oscilla-around spheres has been the number of recirculation cells
tion amplitude may be of the same order, or at moderatgresent in the time-average streaming flctvhile a purely
Reynolds number, when boundary layers are thin. The comumerical approach is probably not the most appropriate
rectA/D— 0 asymptotic value oS his the Stokes flow limit, means with which to examine the issue fully, a conclusion
Sh=2, regardless of Reynolds number or Schmidt number, supported by the present work is that for finite Reynolds
a theoretical conclusion supported by the simulation resultaumbers there are always fol@xisymmetrig cells—two are
presented here. encountered on each axial traverse away from the origin of
Time-average mass transfer coefficients in oscillatorjthe sphere. The extents of the inner cells appear to grow
flow were found to be lower than the corresponding rmswithout bound asA/D—0 for all finite Reynolds numbers:
steady-flow value. However, in potential drying applications,In the Stokes flow limit, only the inner cells remain.
oscillatory flow will usually be superimposed on a back- A more realistic basis for assessment of mass transfer
ground quasi-steady flow. Small droplets or particles willfrom particles or drops in oscillatory axisymmetric flows
asymptote to a rest state with respect to the background flowyould involve simulations in which the sphere was free to
hence a more relevant basis of comparison of mass transfemove in response to drag forces, which are not difficult to

TABLE Il. Peak drag coefficients for a sphere oscillating in quiescent fluid TABLE Ill. Time-average Sherwood numbers for a sphere oscillating in
[see Fig. 1®)]. Drag coefficients in steady flow are indicated A4D = o quiescent fluid, or for a sphere in oscillatory flpsee Fig. 18)]. Sherwood

(see Fig. 4. numbers in steady flow are indicated AyD = (see Fig. 5.

A/D\Re 1 2 5 10 20 50 100 A/D\Re 1 2 5 10 20 50 100
0.05 80.4 55.9 37.3 29.2 23.9 19.6 17.6 0.05 2.02 2.02 2.01 2.01 2.01 2.13 2.48
0.1 60.9 40.2 25.1 18.7 14.6 11.3 9.80 0.1 2.02 2.02 2.01 2.00 1.99 2.11 2.60
0.2 485 305 17.8 12.6 9.36 6.82 567 0.2 2.02 2.02 2.01 1.99 1.95 2.04 2.61
0.5 38.5 22.9 12.3 8.17 5.70 3.82 299 05 2.03 2.03 2.02 1.99 1.93 2.06 3.00
1 34.0 19.5 9.96 6.36 4.29 2.75 208 1 2.04 2.06 2.07 2.07 2.06 2.48 4.06
2 31.1 17.3 8.57 5.35 3.53 2.20 160 2 2.06 2.10 2.18 2.25 2.35 3.19 4.94
5 28.9 15.8 7.68 4.71 3.04 1.83 130 5 2.11 2.18 2.36 2.54 2.80 3.77 5.11
© 27.3 14.9 714 431 2.72 1.58 1.09 o« 231 2.52 2.96 3.47 4.20 5.57 6.96
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