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Stability of steady flow through an axially corrugated pipe
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The linear stability of steady flow in pipes with circular cross-section and sinusoidal axial variation
in diameter is studied by finding global eigenmodes with axial wavelength commensurate with that
of the wall corrugation, chosen to be equal to one pipe mean radius. The maximum peak-to-peak
height of corrugation considered is approximately 8% of the mean diameter. At low corrugation
amplitude and at low Reynolds numbers, the base flow remains attached to the wall, while at larger
amplitudes and Reynolds numbers, an axisymmetric separation bubble forms within the corruga-
tion. For all Reynolds numbers considered, flows remain stable to axisymmetric perturbations, but
become unstable to standing-wave modes of low azimuthal wavenumber, with critical Reynolds
number first falling, then increasing with increasing corrugation height. Both attached and sepa-
rated flows exhibit similar types of instability modes, which in the case of separated flow are most
energetic near the reattachment line of the base flow. The leading instability modes consist of
counter-rotating vortices situated near the pipe wall. © 2011 American Institute of Physics.

[doi:10.1063/1.3660522]

The stability of fully developed flow in straight-walled
pipes of circular section has been extensively studied and it
is generally accepted' ™ that the flow is linearly stable to in-
finitesimal perturbations, gives rise to moderate linear tran-
sient energy growth whose magnitude scales with the square
of Reynolds number,* supports equilibrium (but unstable)
travelling-wave states of finite amplitude, and becomes tur-
bulent in practice at a range of bulk-flow Reynolds numbers
Re = Upux D/v=4Q/(nDv) starting at approximately 2000.
The size of flow perturbations which trigger transition falls
with Reynolds number, again for Reynolds numbers larger
than approximately 2000.° The travelling waves are associ-
ated with longitudinal rolls and axial streaks and it has
recently been suggested that the equilibrium states can be
obtained as solutions of a nonlinear eigenproblem involving
a coupling of these basic flow elements.®

All real pipes have some degree of geometric imperfec-
tion, which may be randomly distributed (e.g., “commercial
roughness”), or more organized, either by manufacture (e.g.,
machining or deliberately introduced during forming for the
case of flexible segmented pipelines and ducts) or from scale
deposition in process equipment. It is notable that over a
large range of surface roughness, typically observed transi-
tion Reynolds numbers remain in the range 2000-3000,”
suggesting that the basic mechanism of instability remains
the same in the presence of wall roughness.

Compared to the situation for flow perturbation in straight
pipes, the effect of wall shape variation on pipe flow stability
has received little systematic attention. Arguably, the simplest
case for study is presented by a sinusoidal axial variation in
diameter where the corrugation amplitude is described by
o= 0.5(Dmax — Dminy/Dmean.  Experimental — studies  have
mainly concentrated on comparatively large corrugation
amplitudes (o ~ 0.3 — 0.5) and on the enhancement of trans-
fer processes by unsteadiness. At o = (.3 Deiber and Schowal-
ter’ observed the onset of turbulence at Re ~ 500 while for
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#=0.54 Nishimura er al.'® observed onset at Re ~ 200. To
our knowledge, there are only two pre-existing analyses of
flow stability in corrugated pipes. Lahbabi and Chang'' dealt
with linear stability at one comparatively large wall corruga-
tion amplitude, o = 0.3. They concluded that for disturbances
with the same axial periodicity as the corrugation, axisymmet-
ric disturbances were stable at Reynolds numbers up to
approximately 800 (the highest in their study), and non-
axisymmetric instability arose via a Hopf bifurcation at Re,. ~
200 in azimuthal wavenumber k = 1, leading to helical wave-
like instabilities. The study of Cotrell et al.'? was primarily
concerned with instabilities in the low corrugation amplitude
limit, considered disturbances whose axial wavenumbers were
in general incommensurate with that of the corrugation and
concentrated on axisymmetric disturbances with k= 0. Their
analysis was carried out for corrugations of axial wavelength
equal to the mean radius. According to their results, axisym-
metric disturbances are the least stable at low corrugation am-
plitude, o < 0.1, but for finite corrugation amplitude, critical
axisymmetric disturbances were found at axial wavelengths
shorter than, and incommensurate with, that of the corruga-
tion. In the low-amplitude limit, the axial wavelength for criti-
cal instability tended to that of the corrugation. At larger
corrugation amplitudes, non-axisymmetric disturbances were
said to be less stable and eventually to dominate, although this
part of their investigation was “cursory.” We note that their
study of non-axisymmetric disturbances was apparently con-
fined to k < 2.

Various stability analyses of planar flows with corru-
gated walls have appeared. The most directly relevant of
these is that of Floryan,13 which dealt with linear stability of
Poiseuille flow in a converging-diverging channel. In con-
trast to flows in a cylindrical geometry, plane Poiseuille flow
is unstable to two-dimensional Tollmein—Schlichting waves
in the o — 0 limit. Floryan showed that for quite small wave
heights, of order «=0.01 in our measure, the flows are
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however first linearly unstable to longitudinal-vortex-type
standing wave modes commensurate with the corrugation
wavelength. The underlying mechanism was attributed to
centrifugal instability i.e., of Taylor—Gortler type.

Analogous to Floryan’s study, the present work deals
primarily with asymptotic instabilities in corrugated pipes
whose global modes are assumed to have the same axial
wavelength as the corrugation (since axial periodicity is
imposed on both the base and perturbation flows) and con-
siders (similar to Cotrell et al.) an axial wavelength to radius
ratio of unity and corrugation amplitudes o < 0.08. Our
results show that, contrary to those earlier findings, the least
stable cases at low-to-moderate corrugation amplitude occur
with non-axisymmetric disturbances, albeit typically with
k=13 or 4. Critical Reynolds numbers are significantly lower
than those found by Cotrell et al. Unstable modes take the
form of radially compressed counter-rotating vortex pairs sit-
uated near the pipe wall, and, in cases where the flow sepa-
rates, having greatest energy near the reattachment line of
the base flow.

Choosing the mean pipe diameter Dean = (Dmax— Dminy/2
as the length scale, the non-dimensional radius of the pipe wall
is given by R(z) =0.5[1 + o cos(2nz/A)] where z is the axial
coordinate and A is the corrugation wavelength. As stated
above, this study is confined to A =0.5, and we have consid-
ered the five dimensionless corrugation amplitudes listed in
Table L.

The stability analysis considers linear perturbations to
the incompressible Navier—Stokes equations, following well-
established methodologies detailed elsewhere.'*'® The
underlying discretization employs nodal spectral elements
and a cylindrical coordinate formulation.'” Base flows are
obtained by direct numerical simulation of the axisymmetric
Navier—Stokes equations in an axially periodic domain, with
an axial body force replacing a mean axial pressure gradient,
thus allowing the pressure to have axial periodicity. The base
flows are time-marched to steady state and then supplied as
data for the linear stability solver. Stability analysis is carried
out using a timestepper-based method, using the same
domain and mesh. Perturbation flows are taken to be zero at
the walls and axially periodic. The action of the linear opera-
tor governing the evolution of perturbations is projected onto
a low-dimensional Krylov subspace and an Arnoldi iteration
method is used to extract dominant eigenvalues and modes.
Separate analyses were carried out for each azimuthal wave-
number k.

All meshes used were composed of 16 spectral elements
with shape functions in each element being tensor product
Lagrange interpolants on a mapped Gauss—Lobatto—
Legendre grid. Following a grid resolution study described
below, 12th order Lagrange interpolants were used for all
computations, resulting in 2405 collocation nodes in each
mesh. A typical domain and mesh are shown in Fig. 1: corru-

TABLE I. Dimensionless corrugation amplitudes o = 0.5(Dax — DminyDmean
considered in the present work.

o 0.0159 0.0318 0.0477 0.0636 0.0795
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gation is obtained by applying a cosine radial distortion to a
rectangular mesh, and the example shows the mesh for the
maximum corrugation amplitude employed.

Reynolds numbers are based on the volumetric flow
rate Q of the base flow and mean pipe diameter; Re =4Q/
(7D ean V). For each value of axial body force, O was
established through quadrature of the axial velocity profile,
once the flow reached a steady state. We note that since the
base flows are computed using the axisymmetric restriction
of the unsteady incompressible Navier—Stokes equations,
the fact that a steady state is reached demonstrates that the
flow is stable to axisymmetric axially periodic perturbations
(both standing and travelling) at the Reynolds numbers con-
sidered, however this was also confirmed through stability
analysis.

Spatial convergence of the base flow and non-
axisymmetric stability calculations were verified by a shape-
function-order grid resolution study carried out for the largest
corrugation amplitude and the highest Reynolds number con-
sidered. Grid resolution for the rest of the study was chosen
such that at this most demanding extreme of the analysis
envelope, further refinement produced changes in the steady
state axial velocity less than 0.01%. At this level of refine-
ment, the stability eigenvalues were converged to three signif-
icant figures or better. Stability analyses were carried out for
azimuthal wavenumbers 0 < k£ < 6.

Both attached and separated base flows were observed;
examples are shown in Fig. 2. Flow separation occurs in the
adverse pressure gradient region downstream of the maxi-
mum constriction, while reattachment occurs upstream of
this location. For the range of Reynolds numbers examined,
attached flow always occurred for the two lowest corrugation
amplitudes, while separated flow always occurred for the
remaining three amplitudes. As Reynolds number increased
the separation and reattachment points moved upstream and
downstream respectively, increasing the relative volume of
the separation bubble.
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FIG. 1. Typical spectral element mesh in the meridional semi-plane, shown
here for the maximum dimensionless corrugation amplitude considered,
o =0.0795. Collocation nodes are shown for the resolution adopted in the
study, with shape functions based on tensor products of 12th-order
interpolants.
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FIG. 2. Examples of attached and separated base flows, illustrated with
streamlines and pressure contours (light/dark shading corresponds to low/
high pressure). Bulk flow is from left to right. (a) attached flow, Re = 2610
and o« =0.0318; (b) separated flow, Re =2200 and o =0.0795.

Our analysis shows that for the corrugation amplitudes
examined, these flows first become unstable to global modes
with comparatively low azimuthal wavenumbers k=3 and
k=4. Visualizations of representative leading global modes
are shown in Fig. 3; the leading modes at different points in
parameter space are quite similar in character to the exam-
ples shown. The isosurfaces of azimuthal velocity shown in
Figs. 3(a) and 3(c) indicate that the critical modes take the
form of arrays of counter-rotating longitudinal vortices
which are stronger in the constricting sections of the pipe.
We note however that the modes cannot be characterized as
simple longitudinal vortices since the sense of rotation at any
azimuthal location reverses on a traverse between the con-
stricting and expanding sections of pipe. The sectional
streamlines and axial velocity contours of Figs. 3(b) and 3(d)
show the azimuthal symmetries of the modes at the axial sta-
tion of maximum constriction and that, as could be expected,
upwellings from the walls correspond to regions of negative
axial perturbation velocity.

The presence of flow separation is not critical in deter-
mining the nature of the instability and it may be observed
that the modes shown in Figs. 3(a) and 3(b) and Figs. 3(c)
and 3(d), respectively, for attached and separated base flows,
are qualitatively similar.

Fig. 4 shows the variation of critical Reynolds number
with wall corrugation amplitude for non-axisymmetric
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FIG. 3. (Color online) Typical unstable global modes visualized as (a) and
(c) = isosurfaces of azimuthal velocity component and (b) and (d) contours
of axial velocity component (light/dark corresponding to positive/negative)
at z=0.25, with overlaid sectional streamlines. (a) and (b) attached flow,
Re =3080, «=0.0318, and k=3; (c) and (d) separated flow (with reattach-
ment/separation lines indicated in (c)), Re = 2590, o = 0.0795, and k =4.

disturbances as determined in the present study as well as the
values reported by Cotrell ef al. for axisymmetric disturban-
ces.'? In the range of corrugation amplitude examined, non-
axisymmetric modes are the least stable.

As the corrugation amplitude becomes increasingly
small, the critical Reynolds number becomes increasingly
large, presumably asymptoting to infinity in the limit o — 0
as expected for stability of Hagen—Poiseuille flow. As the
limit is approached, it may be that the critical modes are
axisymmetric, and non-commensurate with corrugation
wavelength, as reported by Cotrell ef al. As the corrugation
amplitude was increased the flow became increasingly
unstable, with the minimum critical Reynolds number
Re, min=1971 at «=0.0636, before increasing with further
increases in the wall corrugation amplitude. At the lower
corrugation amplitudes, the critical modes occur for k=3,
switching over to k=4 at the largest amplitude considered,
o=0.0795.

In order to check if axial subharmonic modes are less sta-
ble than those with the same axial periodicity as the corruga-
tion, we carried out analysis at =0.0795 on a domain with
two corrugation modules. The least stable modes had the same
eigenvalues as those for the single-module computations.

In comparing these results to corresponding analysis of
planar corrugated channel flows,"* we may note some strong
similarities but also some differences. At equivalent corruga-
tion amplitudes, the marginal stability Reynolds numbers
predicted by Floryan are of the same order as, but signifi-
cantly lower than, those in the present study.
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FIG. 4. Critical Reynolds numbers as functions of corrugation amplitude o
for non-axisymmetric disturbances with critical azimuthal wave numbers
labelled. Critical Reynolds numbers for axisymmetric disturbances reported
by Cotrell er al."? are shown for comparison.

The leading instability mode shapes observed here
(Fig. 3) show some similar features to those in the corrugated
channel. While the dominant impression from sectional
velocity fields is of arrays of longitudinal vortices that reach
towards the location of largest axial velocity of the base
flow, detailed study of flows near the corrugations reveals
more structure, with the direction of swirl changing along a
near-wall axial traverse. In the corrugated channel, the larger
vortices reach across the centerline, but the near-wall struc-
ture is rather similar to what is observed here. An approxi-
mate conversion of the dominant cross-flow wavenumber
found in that study corresponds to an azimuthal wavenumber
k=2 in the present study, comparable to but smaller than the
values k=3 and 4 that we have determined. It seems likely
that the underlying instability mechanism is centrifugal in
both studies.

In summary, our results suggest that wall corrugation,
even of comparatively small amplitude, acts to destabilize
laminar pipe flow. The most unstable modes are non-
axisymmetric and in this study occurred for azimuthal
wavenumbers k£ = 3 and 4. One may expect that there is a rela-
tionship between the azimuthal wavenumbers of the critical
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modes and the axial wavenumber of the corrugation, such that
a smaller corrugation wavelength could promote instability at
larger azimuthal wavenumbers, a point we have not exam-
ined. Flow separation was not required for instability to arise.

We would like to acknowledge the contribution made in
early stages of this work by T. Wallis.
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