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Three-dimensional instability modes of the periodic flow in a rectangular cavity driven by the harmonic
sliding oscillation of its floor are explored experimentally. Theory for a cavity with infinite span predicts two
synchronous modes and a quasiperiodic traveling-wave mode as primary transitions from two-dimensional to
three-dimensional flow for different combinations of floor oscillation amplitude and frequency. Previously,
only one of the two synchronous modes had been found experimentally. Here, we provide experimental details
of both synchronous modes and a quasiperiodic mode. All three modes appear in the parameter regimes
predicted by the theory; however, in the finite-span experiments, the traveling wave nature of the quasiperiodic
mode is replaced by a nonpropagating mode with spatial features similar to those of the traveling mode.
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I. INTRODUCTION

The transition from two-dimensional to three-dimensional
flow is of fundamental interest in fluid dynamics. For time-
periodic two-dimensional flows with spatiotemporal symme-
tries, three distinct generic primary instabilities have recently
been described and analyzed theoreticallyf1g. For the most
part, numerical and experimental attention has focused solely
on synchronous modes that either break or preserve the spa-
tiotemporal symmetry, e.g., in bluff body wake flowsf2–6g.
Recent computations on wake flows, however, indicate that a
quasiperiodic mode can also be the primary mode in the
two-dimensional to three-dimensional transitionf7g.

Another flow with the same spatiotemporal symmetries as
the periodically shedding wake flows is that in a periodically
driven rectangular cavity of infinite spanwise extent, which
was the subject of a previous numerical studyf8g covering
Floquet stability analysis of three-dimensional modes. In the
present paper, we describe experiments in a finite-length cav-
ity, shown schematically in Fig. 1. The flow is governed by
two dynamic parameters: the Reynolds number, which char-
acterizes the amplitude of the floor oscillation,

Re =Vmaxh/n

swhereVmax is the peak floor velocity,h is the cavity vertical
height, andn is the kinematic viscosity of the fluidd, and the
Stokes number, which is the ratio of the vertical viscous
diffusion time sh2/nd to the floor oscillation periodsTd,

St =h2/Tn.

The two-dimensional time-periodic basic state consists of
the boundary layer on the oscillating floor rolling up to form

a two-dimensional vortexs“roller” d at one end of the cavity
with each stroke of the floor. For low St, the roller at one end
dissipates while the floor stroke is reversed and another roller
forms at the other end. In contrast, for large St, the counter-
rotating rollers at each end persist throughout the entire floor
oscillation period, which is now short compared to the vis-

FIG. 1. Schematic of experimental apparatus and coordinate
system. The letters indicatesad sidewalls atx= ±G /2; sbd oscillatory
glass floor;scd end walls atz= ±L /2; sdd floor of the acrylic con-
tainer; sed dynamic seals;sfd free-surface groove and solid wall
position aty=h; sgd Teflon slide pads for oscillatory glass floor;shd
ball bearings;sid connecting rod;sjd linear translation stage and
micrometer;skd drive wheel;sld belt pulley and stepper motor;smd
drive belt.
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cous diffusion time. These differences in the characteristics
of the basic state for different St are responsible for the dis-
tinct primary modes of instability to three-dimensional flow
as St is varied.

In the infinite-span systems, the base-state velocity at any
location is the same as that obtained by aT/2 evolution in
time and a reflection inx=0 sa “half-period flip”d. The action
of this spatiotemporal symmetryH on the vorticitysj ,h ,zd
= = 3 su,v ,wd is

Hsj,h,zdsx,y,z,td = sj,− h,− zds− x,y,z,t + T/2d. s1d

Our experimental results concentrate on the properties of the
vertical component of vorticity,h. In infinite-span systems,
the basic state is also spanwiseszd invariant at all times.

The only three-dimensional state bifurcating from the ba-
sic state that had been previously observed experimentally, in
a finite span cavity, was anH-symmetric synchronous
sT-periodicd mode smode Bd f9g. Subsequently, Floquet
analysisf8g predicted the presence of a further synchronous
modesmodeAd, as well as a quasiperiodic modesmode QPd;
the latter manifesting itself as a modulated spanwise-
traveling wavesTWd. These theoretical results are summa-
rized in Fig. 2, which shows the modulus of the most dan-
gerous Floquet multiplierumu as a function of spanwise wave
numberb=2ph/l, and of St, at the corresponding critical
Re for each of these modes.

The structures of the three modesA, B, and TW in the
infinite-span cavity are illustrated by instantaneous vorticity
isosurfaces in Fig. 3, obtained via direct numerical simula-
tion sDNSd f8g. By comparing the signs ofh at timesT/2
apart with Eq.s1d, it can be seen that modeA breaksH
symmetry and modeB preserves it. Mode TW has no sym-
metry in a fixed reference frame, but in a frame moving at
phase velocity, the wave hasH symmetry. The phase velocity
is related directly toTs/T, whereTs is the new secondary
period arising at the bifurcation to quasiperiodicity. Figure 4
shows the values of this ratio predicted by Floquet analysis.

In the finite-span case, the system retains the spatiotem-
poral symmetryH, but the spanwise end walls destroy the
translation invariance in the spanwise direction, leaving only
the spatial reflection about the midspan. Effects of replacing

a translationscontinuousd symmetry by a reflectionsdiscreted
symmetry in fluid dynamics have been extensively studied
f10g, and particularly so in the Taylor-Couette problem.
When the instability of the basic state is stationary, it has
been observed that the large-sbut finite-d aspect-ratio limit is
very different from the idealization of an infinite direction

FIG. 2. Variation of the modulus of the most dangerous Floquet
multiplier umu with spanwise wave numberb over a range St
P f10,200g at the critical Re for each value of St for the infinite-
span cavityf8g. The three thick lines are the lociumu=1 for each of
the three modes.

FIG. 3. sColor onlined Isosurfaces of the verticalssolidd and
spanwisestranslucentd components of vorticitysi.e., h andzd from
DNS f8g, for sad,sbd mode A at Re=1250, St=160, andb=1.7,
scd,sdd modeB at Re=535,St=20, andb=8.75, andsed,sfd quasi-
periodic TW at Re=1225, St=100, andb=8.5, each at two times
T/2 apart.

FIG. 4. Predicted secondary periodsTs/T=2p /u of the quasi-
periodic mode QP, where exp ±iu are the critical Floquet multipliers
at the Neimark-Sacker bifurcationf8g. Mode QP is the primary
mode of instability from the basic state for St values between the
vertical dashed lines.
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f11–14g. When the instability is via a Hopf bifurcation, the
effects of end walls that break the translation invariance in
large-aspect-ratio systems has been considered as an imper-
fection problem f15g, and recent experiments in Taylor-
Couette flow are in agreement with many details of the
theoryf16,17g. However, these studies have only considered
autonomous systems with purely spatial symmetries. For our
nonautonomous problem, with the space-time symmetryH,
no theory has yet been developed to account for finite-
aspect-ratio effects.

The main objectives of the present study are to determine
experimentally if the predicted synchronous modeA and
quasiperiodic mode QP can be obtained in the finite-length
cavity, and show how the presence of end walls might affect
the traveling-wave nature predicted for mode QP.

II. EXPERIMENTAL APPARATUS AND TECHNIQUE

The apparatusssee Fig. 1d has been described in detail in
f9g. Only the salient features of its design and the modifica-
tions that were necessary for the present experiment are de-
scribed here.

The frame of the oscillatory driven cavity was machined
to a precision of ±30mm from cast acrylic plates, and except
for the parts that had to be made removable for disassembly
and cleaning, the pieces were permanently joined by solvent
bonding. The acrylic frame functions as spanwise end walls
of the cavity, and the cavity sidewalls are retained by the
frame. The oscillatory driven floor of the cavity, made of
optical quality glass, was supported by Teflon slide pads
within the frame. The top wall of the cavity was made of
glass, which was fitted inside grooves machined into the
sidewalls. The height, width, and span of the cavity wereh
=10 mm, Gh=20 mm, andLh=194 mm, respectively.

Distilled water snominal viscosity of n=9.57
310−7 m2/s at 22 °Cd was utilized for the experiments. Flow
was measured using the digital particle image velocimetry
techniquesDPIV; e.g., seef18gd. For the measurements with
DPIV, water was seeded with polystyrene particles, in the
range of 20–25µm sDuke Scientific, 7520A and 7525Ad,
depending on the requisite field of view.

The dynamic seals, used on the bottom of the sidewalls
where they contacted the oscillatory driven floor, were made
of Buna-n rubber O-ring material, cut to length. Once the
submerged acrylic pieces had equilibrated and swelling due
to water uptake had ceased, Teflon shimss50 µm thicknessd
were used as gaskets between acrylic pieces that were
screwed together. The shims provided positive seals between
the ends and sidewalls, and ensured a smooth motion of the
oscillatory glass floor.

The oscillating floor was actuated by a drive wheel and a
crank arm. The drive wheel was spun by a stepper motor
through a timing beltsW. M. Berg, part number TB7UP4-
380d and pulley sTP20L6U6-78d. The ratio of the drive
wheel diameter to the pulley diameter on the motor was ap-
proximately 1.22:1. The amplitude of the floor motion was
set using a microtranslation stage, which was mounted on the
drive wheel. The accuracy of the microtranslation stage in
setting the floor amplitude was checked using a dial indicator

swith 3 µm resolutiond against the crank arm mounting post
on the glass floor and found to be approximately ±30mm.
The water temperature within the apparatus was monitored
using a platinum resistance temperature detectorsprobe,
Omega, model PR-11-2-100-1/16-6-E, anddisplay, Omega,
model 4201A-PC2d to an accuracy of ±0.1 °C. For each ex-
periment, the amplitude of the floor motion was set using the
microtranslation stage so that a prescribed Reynolds number
could be obtained at the given temperature and correspond-
ing viscosity. On the other hand, only the nominal value of
the Stokes number could be prescribed in each experiment
due to quantization effects between the stepper motor con-
troller and the data acquisition system. The uncertainty in
determining the Reynolds number, resulting from errors in
the amplitude and frequency of the floor motion, as well as
the temperature dependence of viscosity, is approximately
0.27%. The uncertainty in determining the Stokes number,
due to errors in viscosity and frequency, is approximately
0.23%.

III. RESULTS

Figure 5 summarizes the quantitative comparison between
Floquet analysis of the infinite-span case and the current ex-
periments withL=19.4: sad shows critical Re as a function
of St, illustrating the onset of modeB for low St, modeA for
large St, and mode QP for intermediate St;sbd shows the
corresponding critical wave numbersbc. The ranges of St for
the onset of each of the three modes agree quite well. The
values of the critical Re for modesB and QP also agree well.
However, for mode QP the observed wave numbers do not
match the theoretical predictions for the infinite-span system,
and the onset of modeA takes place at a lower Re than
predicted. A detailed analysis of the three observed modes
follows.

A. Synchronous modeA: Broken H symmetry

For modeA, the critical Re observed experimentally is
approximately 10% lower than that determined via Floquet

FIG. 5. Variations ofsad Rec and sbd bc with St; the solid lines
are determined via Floquet analysis in the limitL→` f8g and filled
sopend symbols correspond to synchronoussquasiperiodicd experi-
mental states in the cavity withL=19.4.
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analysis in theL→` limit fFig. 5sadg. We note that in the
analysisf8g, the onset of modeA was via a degenerate pitch-
fork bifurcation sborderline between super- and subcriticald.
The experiments suggest that the pitchfork is subcritical for
L=19.4. Note that pitchfork bifurcations are very sensitive
to small imperfections which tend to unfold them into dis-
tinct branches of solutions, one that is smoothly connected to
the basic state, and another “anomalous” disconnected
branchf11,19,20g. Nevertheless, the experimentally observed
critical wave numbers for modeA agree very well with the
Floquet resultsfFig. 5sbdg.

Figure 6 shows contours in the midplanesy/h=0.5d of the
vertical component of vorticityh sdetermined from DPIV
measurements of the horizontal components of velocityd for
a modeA state at Re=1300 and St=160. The ten frames are
instantaneous snapshots taken uniformly over one floor os-
cillation periodT=0.651 s. The DPIV imaging window ex-
tends over approximately one spanwise wavelengthsz/h
P f−0.1L ,0.1Lg, horizontal direction in the figured and the
entire cavity widthsx/hP f−G /2 ,G /2g, toward the top and
bottom of the paged. One of the striking features of this fig-
ure is the near-constant presence of the large counter-rotating
vortical structures in the middle of the figure. These are inter-
roller secondary vortices that are continuously being “fed”
by the large core deformations of the two spanwise rollers at
either x end of the cavity. Their persistence over the entire
forcing period is consistent with the Floquet analysis, where
the modeA eigenfunctions also show such vortices. The Flo-
quet modes are not inclined, but rather are symmetric about
x=0. However, nonlinear solutions show the same level of

oblique inclination when viewed from the topspositiveyd, as
is observed experimentally—see Figs. 3sad and 3sbd, which
show a nonlinear modeA solution at timesT/2 apart, where
the inclined inter-roller secondary vortices and the core de-
formations of the primary rollers are clearly seen.

Consider now the symmetries of the experimentally ob-
served modeA. Comparing experimentally measuredh for
modeA at timesT/2 apartfe.g., comparing partssad andsfd
of Fig. 6g, it is apparent that it is notH symmetric; the light
syellowd fdark sreddg vortex in sfd should be darksredd flight
syellowdg if it were H symmetric, according to Eq.s1d. Hence
the spatiotemporal symmetry of modeA in the finite cavity
sas observed in the central portion of the cavityd is the same
as that of the infinite-span problem.

The critical wave numbersb measured experimentally for
modeA agree with Floquet analysis, but the critical Re are
substantially smaller. There are a number of points to con-
sider in reconciling this difference.

s1d The theoretical onset of modeA is degeneratesthe
cubic term in the normal form vanishesd. This raises the
question as to whether the onset in the experiment is subcriti-
cal or supercritical. The answer to this question is compli-
cated by the fact that the experiment does not have perfect
z-reflection symmetry, and so the pitchfork is unfolded.

s2d Mode A has large wavelengthssmall bd, so quantiza-
tion effects in a finite box may be important.

s3d Mode A is a large-frequency mode in which the two
spanwise rollers persist throughout the whole forcing period.
This means that long-term interactions between the rollers
and the spanwise end walls are possible, and these interac-
tions are simply not present in the Floquet and nonlinear
numerical analyses.

In summary, the comparison between the experiments and
the theory suggests that modeA is subcritical, and that it is
strongly influenced by the end walls because of its large
wavelength and the persistence of the primary rollers.

B. Synchronous modeB: PreservedH symmetry

Figure 7 shows instantaneous contours, from DPIV mea-
surements, ofh at the midplaney/h=0.5 for a modeB state
at Re=1000 and St=53 over one floor oscillation period.
This state is also invariant toz reflections about thez nodal
points in h. It is alsoH symmetric; taking an image in the
left column of the figure, reflecting it aboutx=0, and chang-
ing the sign ofh results in an image corresponding toh at
time T/2 later sthe image in the right column, on the same
rowd. Thus, the experimentally observed finite cavity mode
B has the same spatiotemporal symmetry as modeB in the
L→` case.

End wall effects on modeB appear to be minimal. The
wavelength for modeB is very small compared with the
spanwise extent of the cavity, and we find for this mode that
the finite-L experiments behave very much like theL→`
case. Further, modeB is a low-frequencyssmall-Std mode
where the spanwise rollers only survive for about half the
floor oscillation period; this means there is no long-term in-
teraction between the rollers and the spanwise end walls
swhich is not the case for either modeA or mode QPd.

FIG. 6. sColor onlined Contours of the instantaneous vertical
vorticity h at mid-depthy/h=0.5, over x/hP f−G /2 ,G /2g and
z/hP f−0.1L ,0.1Lg for a modeA state at Re=1300, St=160 over
one periodT=0.651 s; interval between each frame isT/10.
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Of the three modessA, B, and QPd analyzed in this paper,
only modeB has been previously observed experimentally in
the finite cavity to our knowledge. This mode is described in
more detail inf9g.

C. Quasiperiodic mode QP: Complete symmetry breaking

For mode QP, the observed critical wave numbers differ
from the Floquet values by approximately 40%. This is a
large difference, but it should be noted that from the Floquet
analysis, the variation ofb with St is very flat for mode QP,
and so there is not a clear selection of a singleb for the
nonlinear statessee Fig. 2d.

The snapshots of the vertical vorticityh, at mid-depth
over one floor oscillation period, for the experimentally ob-
served mode QP, are shown in Fig. 8. It is seen to be orga-
nized into oblique bands of alternating positive and negative
h. The band structure remains fairly constant throughout the
floor oscillation period, and is only broken up for short in-
stances, e.g., in framessed and sfd. However,h is not con-
stant within the bands. There is a fairly well-discernible
maximum in each band, and these maxima travel back and
forth along the bands in unison. It is not straightforward to
find much coherence in this motion, in part because the flow
is quasiperiodic. Figure 9 is a phase-averaged image, taken at
the particular phase corresponding to Fig. 8sed, with averag-
ing over 34 floor oscillation periods. Since the mode is qua-
siperiodic, some care needs to be taken in interpreting this
image, but it serves to underscore the point that, in the finite-
length cavity, this is not a spanwise traveling-wave mode.

We have observed the flow over hundreds of floor cycles and
the oblique banded structure does not move in thez direc-
tion. On the other hand, the lack of spanwise reflection sym-
metry, also a key feature of the predicted TW mode, is
clearly evident.

The quasiperiodicity of this flow is established using time
series of the spanwise velocity measured via DPIV in a small
region near the center of the cavity. In taking these measure-
ments, we have strobed the flow at the floor oscillation pe-
riod and recorded thez velocity at the same phase over 1024
periods. The power spectral density of this strobed velocity
signal sobtained via discrete Fourier transformd is shown in
Fig. 10, where a very distinct signal with period 4.61T is
evident. We interpret this signal as being the quasiperiodic
motion of theh maxima along the bands.

FIG. 7. sColor onlined Contours of the instantaneous vertical
vorticity h at mid-depthy/h=0.5, over x/hP f−G /2 ,G /2g and
z/hP f−0.07L ,0.07Lg for a modeB state at Re=1000, St=53 over
one periodT=1.965 s; interval between each frame isT/10.

FIG. 8. sColor onlined Contours of the instantaneous vertical
vorticity at mid-depthy/h=0.5, overx/hP f−G /2 ,G /2g and z/h
P f−0.07L ,0.07Lg for a QP state at Re=1400, St=105 over one
periodT=0.999 s; interval between each frame isT/10.

FIG. 9. sColor onlined Contours of phase-averaged vertical vor-
ticity h at mid-depthy/h=0.5, overx/hP f−G /2 ,G /2g and z/h
P f−0.07L ,0.07Lg, for the QP state of Fig. 8.
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The secondarysmodulationd period of QP seen in Fig. 10
compares well with the propagation period of the modulated
traveling waves in theL→` casesTWd, which is in the
range of 4.1T to 4.8T for the values of St for which TW is
the primary mode of instability. See Fig. 4 for these periods
as determined via Floquet analysis.

The symmetries of QP and TW are different. They both
have broken thez-reflection symmetry, and although in the
central region of the cavity QP appears to be periodic inz,
this is not so over the whole of the cavity owing to the
presence of the spanwise end walls. We do not present DPIV
data near these end walls as the unsteady three-dimensional
structure of the flow in these regions significantly reduces the
signal-to-noise ratio to a point where conclusive statements
cannot be made. In contrast, TW, which breaks the continu-
ous z-translation symmetry, retains a discretez-translation
symmetry corresponding to its spatial periodicity of wave
number b. Recall that although TW has broken the spa-
tiotemporalH symmetry, it retains a spatiotemporal symme-
try comprised ofH composed with an appropriatez transla-
tion sthis translation is the distance the wave propagates in
time T/2, applied in the opposite directiond. QP does not
have anysspatial or spatiotemporald symmetry.

The relationship between QP and the quasiperiodic modes
from the Floquet analysissSW and TWd may be interpreted
along similar lines as the relationship between the ribbons
and spiralssstanding and traveling modes, respectivelyd in
classic counter-rotating Taylor-Couette flowsi.e., with infi-
nite cylindersd and the corresponding modes found in finite-
length systems. In the infinite casestreated as periodic inzd,
the spirals and ribbons arise via Hopf bifurcations in a sys-
tem that is invariant to translations and reflections in the
axial directionz. These standing and traveling waves bifur-
cate simultaneously. The spirals are traveling waves inz that
break the reflection symmetry, so there are two different spi-
rals corresponding to traveling waves in the directions +z
and −z, and thez reflection transforms one into the other. The
ribbons are reflection symmetric standing waves, which
break the translational symmetry, so there is a continuous
family of ribbons parametrized by their phase inz f10g. In
our nonautonomous system, the Hopf-like bifurcation
sNeimark-Sacker bifurcation, leading to quasiperiodic be-
haviord also results in a pair of modulated traveling waves
TW that break the reflection symmetry, and are transformed
one into the other by thez reflection, and a continuous family

of modulated standing waves SW parametrized by their
phase inz f1g. In the L→` driven cavity, SW is unstable
and the TW are stable. In Taylor-Couette flow, as predicted
from normal form theoryf15g and observed experimentally
f16,17g, the Hopf bifurcation in finite-length systems results
in two different types of standing waves, having either even
or odd parity in z. The frequency of oscillation of these
waves matches very well the Hopf frequency determined
from stability analysis in the infinite case. A travelinglike
mode is also found in the finite cases, but only as a second-
ary state bifurcating from one or other of the two standing
wavesswhich do not bifurcate simultaneouslyd. Although our
system is different from Taylor-Couette flow, because it is
periodically forced and has the additional space-time sym-
metry H, the strong similarities in the infinite case suggest
that QP comes about via an analogous process and is a result
of the presence of spanwise end walls.

IV. CONCLUSIONS

The three possible types of codimension-1 bifurcations
from a snominallyd two-dimensional time-periodic basic
state to three-dimensional flow, predicted from normal form
theory for a strictly two-dimensional flow, have now been
observed experimentally as primary bifurcations. The range
of forcing frequenciessStd over which each mode is primary
agrees very well with the Floquet analysis. Two of the modes
are synchronous; one retains the spatiotemporal symmetry of
the basic state and the other breaks it. For the symmetric
synchronous mode, both the critical forcing amplitudesRed
and wavelength agree with the Floquet analysis. For the
symmetry-breaking synchronous mode, the critical wave-
length is in agreement but the mode bifurcates at lower Re
sapprox. 10% lowerd than predicted by Floquet analysis. Pos-
sible reasons for this discrepancy include that the Floquet
analysis shows the pitchfork bifurcation to be degenerate and
so end walls may change this to a subcritical pitchfork, and
also that this mode is a high frequency instability of a basic
state consisting of spanwise rollers which remain coherent
throughout the whole forcing cycle so that long-term inter-
actions between these and the spanwise end walls are prob-
able. Also, the wavelength of this mode is relatively large
sonly approximately four wavelengths fit in the finite cavityd,
further enhancing end wall effects. The third primary mode
is quasiperiodic. The observed modulation frequency is close
to that of the quasiperiodic mode from Floquet analysis, as is
the critical Re. However, the physical manifestation of the
modulation frequency is very different from that in the infi-
nite cavity where this mode corresponds to a modulated trav-
eling wave. In the finite cavity, this mode does not propagate
in the spanwise direction. However, its spatial structure con-
sists of braidlike structures wrapped around each of the span-
wise rollers that are interlaced obliquely across the roller,
just like the spatial structure of the traveling-wave mode in
the infinite case.

FIG. 10. Power spectral density vs periodsin terms of the base
periodTd of thez velocity of the QP state, in a smallsx,yd region of
size 0.0930.09 cm2 about the pointx/h=−0.1G , y/h=0.5, z/h=
−0.03L, for Re=1400 and St=105.
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Further investigations into end wall effects would be use-
ful. At present, there is no theory for end wall interactions in
periodically forced systems such as these. Such theoretical
developments would also be of use in autonomous systems
where secondary bifurcations from two-dimensional time-
periodic states result in the transition to three-dimensional
flows, such as is the case in many bluff body wake flows.
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