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Three-dimensional modes in a periodically driven elongated cavity
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Three-dimensional instability modes of the periodic flow in a rectangular cavity driven by the harmonic
sliding oscillation of its floor are explored experimentally. Theory for a cavity with infinite span predicts two
synchronous modes and a quasiperiodic traveling-wave mode as primary transitions from two-dimensional to
three-dimensional flow for different combinations of floor oscillation amplitude and frequency. Previously,
only one of the two synchronous modes had been found experimentally. Here, we provide experimental details
of both synchronous modes and a quasiperiodic mode. All three modes appear in the parameter regimes
predicted by the theory; however, in the finite-span experiments, the traveling wave nature of the quasiperiodic
mode is replaced by a nonpropagating mode with spatial features similar to those of the traveling mode.
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I. INTRODUCTION a two-dimensional vortex‘roller”) at one end of the cavity
with each stroke of the floor. For low St, the roller at one end
dissipates while the floor stroke is reversed and another roller
forms at the other end. In contrast, for large St, the counter-
rotating rollers at each end persist throughout the entire floor
Yoscillation period, which is now short compared to the vis-

The transition from two-dimensional to three-dimensional
flow is of fundamental interest in fluid dynamics. For time-
periodic two-dimensional flows with spatiotemporal symme-
tries, three distinct generic primary instabilities have recentl
been described and analyzed theoreticplly For the most
part, numerical and experimental attention has focused solel @) (m)
on synchronous modes that either break or preserve the spi
tiotemporal symmetry, e.g., in bluff body wake floj\&-6).
Recent computations on wake flows, however, indicate that ¢
quasiperiodic mode can also be the primary mode in the
two-dimensional to three-dimensional transitia.

Another flow with the same spatiotemporal symmetries as
the periodically shedding wake flows is that in a periodically )
driven rectangular cavity of infinite spanwise extent, which
was the subject of a previous numerical stl8Y covering
Floquet stability analysis of three-dimensional modes. In the
present paper, we describe experiments in a finite-length cav
ity, shown schematically in Fig. 1. The flow is governed by
two dynamic parameters: the Reynolds number, which char-
acterizes the amplitude of the floor oscillation,

Re =V ,h/v

©
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®

(whereV,,,is the peak floor velocityh is the cavity vertical _ _ _
height, andv is the kinematic viscosity of the fluidand the FIG. 1. Schema_mc_ of experlmental apparatus and_ coordinate
Stokes number, which is the ratio of the vertical ViSCOUSSyStem'The letters indicate) sidewalls ax=+1"/2; (b) oscillatory

diffusion time (h?/v) to the floor oscillation periodT), glass floor;(c) end walls atz=+A/2; (d) floor of the acrylic con-
tainer; (e) dynamic seals{f) free-surface groove and solid wall

St=h%Twv. position aty=h; (g) Teflon slide pads for oscillatory glass flogh)
ball bearings;(i) connecting rod;(j) linear translation stage and
The two-dimensional time-periodic basic state consists oficrometer;(k) drive wheel;(l) belt pulley and stepper motofin)
the boundary layer on the oscillating floor rolling up to form drive belt.
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(a) Mode A: g (b) Mode A: £5+ T/2

FIG. 2. Variation of the modulus of the most dangerous Floquet ™ -
multiplier |u| with spanwise wave numbeg over a range St
€[10,20Q at the critical Re for each value of St for the infinite-
span cavity[8]. The three thick lines are the logi|=1 for each of
the three modes.

cous diffusion time. These differences in the characteristics
of the basic state for different St are responsible for the dis-
tinct primary modes of instability to three-dimensional flow
as St is varied.

In the infinite-span systems, the base-state velocity at any”
location is the same as that obtained by/2 evolution in
time and a reflection im=0 (a “half-period flip”). The action
of this spatiotemporal symmetist on the vorticity (¢, 7, )
=V X (u,v,w) is

H(§, ﬂ:g)(xiyizat) = (f,— 7~ g)(_ le!Z!t + T/Z) . (1)

Our'experimental results Cpncentrat_e on the properties of the FIG. 3. (Color onling Isosurfaces of the verticakolid) and

vertical _compon_ent of vort|C|ty77. _In Inflnlte-span _SyStemS’ spanwiseg(translucent components of vorticityi.e., » and ) from

the basic state is also spanwis invariant at all times. DNS [8], for (a),(b) mode A at Re=1250, St=160, ang=1.7,
The only three-dimensional state bifurcating from the ba-(¢) (4) modeB at Re=535, St=20, ang=8.75, and(e),(f) quasi-

sic state that had been previously observed experimentally, iferiodic TW at Re=1225, St=100, agE8.5, each at two times

a finite span cavity, was armi-symmetric synchronous T/2 apart.

(T-periodig mode (mode B) [9]. Subsequently, Floquet

analysis[8] predicted the presence of a further synchronous translatior{continuous symmetry by a reflectiofdiscrete
mode(modeA), as well as a quasiperiodic motmode QF;  symmetry in fluid dynamics have been extensively studied
the latter manifesting itself as a modulated spanwisef1(], and particularly so in the Taylor-Couette problem.
traveling wave(TW). These theoretical results are summa-when the instability of the basic state is stationary, it has
rized in Fig. 2, which shows the modulus of the most daneen observed that the largéut finite) aspect-ratio limit is

gerous Floguet multipliej| as a function of spanwise wave very different from the idealization of an infinite direction
numberB=2wh/\, and of St, at the corresponding critical

Re for each of these modes. 6 —

The structures of the three modAas B, and TW in the r
infinite-span cavity are illustrated by instantaneous vorticity
isosurfaces in Fig. 3, obtained via direct numerical simula-
tion (DNS) [8]. By comparing the signs of; at timesT/2
apart with Eqg.(1), it can be seen that mod& breaksH
symmetry and mod® preserves it. Mode TW has no sym-
metry in a fixed reference frame, but in a frame moving at |
phase velocity, the wave hissymmetry. The phase velocity 4 .
is related directly toT,/T, where T is the new secondary 100 150

. . . . S . St
period arising at the bifurcation to quasiperiodicity. Figure 4
shows the values of this ratio predicted by Floquet analysis. FIG. 4. Predicted secondary periofly T=2m/6 of the quasi-

In the finite-span case, the system retains the spatiotenperiodic mode QP, where expéare the critical Floquet multipliers
poral symmetryH, but the spanwise end walls destroy theat the Neimark-Sacker bifurcatiof8]. Mode QP is the primary
translation invariance in the spanwise direction, leaving onlymode of instability from the basic state for St values between the
the spatial reflection about the midspan. Effects of replacingertical dashed lines.

Ty/T = 2n/0
[4.]
T
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[11-14. When the instability is via a Hopf bifurcation, the
effects of end walls that break the translation invariance in
large-aspect-ratio systems has been considered as an imper-
fection problem[15], and recent experiments in Taylor-
Couette flow are in agreement with many details of the
theory[16,17]. However, these studies have only considered
autonomous systems with purely spatial symmetries. For our
nonautonomous problem, with the space-time symmidiry

no theory has yet been developed to account for finite-
aspect-ratio effects.

The main objectives of the present study are to determine
experimentally if the predicted synchronous mo#leand
quasiperiodic mode QP can be obtained in the finite-length
cavity, and show how the presence of end walls might affect
the traveling-wave nature predicted for mode QP.

(b)
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II. EXPERIMENTAL APPARATUS AND TECHNIQUE st

. . . - FIG. 5. Variations of(a) Re. and(b) 8. with St; the solid lines
The apparatugsee Fig. 1has been described in detail in are determined via Floquet analysis in the lichit> e [8] and filled

[9]. Only the salient features of its design and the modifica- N, .
. . open symbols correspond to synchron asiperiodi¢ experi-
tions that were necessary for the present experiment are d pen sy P y olggiasip Fexp

scribed here ental states in the cavity with=19.4.

The frame of the oscillatory driven cavity was machined(with 3 um resolution against the crank arm mounting post
to a precision of £3Qum from cast acrylic plates, and except on the glass floor and found to be approximately #30.
for the parts that had to be made removable for disassemblhe water temperature within the apparatus was monitored
and cleaning, the pieces were permanently joined by solventsing a platinum resistance temperature dete¢pwobe,
bonding. The acrylic frame functions as spanwise end wall§&mega, model PR-12-100-1/166-E, anddisplay, Omega,
of the cavity, and the cavity sidewalls are retained by themodel 4201A-PCPto an accuracy of +0.1 °C. For each ex-
frame. The oscillatory driven floor of the cavity, made of Periment, the amplitude of the floor motion was set using the
optical quality glass, was supported by Teflon slide padgnicrotranslation stage so that a prescribed Reynolds number
within the frame. The top wall of the cavity was made of could be obtained at the given temperature and correspond-
glass, which was fitted inside grooves machined into thdnd Viscosity. On the other hand, only the nominal value of

sidewalls. The height, width, and span of the cavity were :jhe Sttokes r:_umtt_)er c?fuldt bg p;\rl’vescriliﬁd ir: each er[eriment
=10 mm, "h=20 mm, andAh=194 mm, respectively. ue to quantization effects between the stepper motor con-

Distiled water (nominal viscosity of 1=9.57 troller and the data acquisition system. The uncertainty in
%107 m2/s at 22 °G was utilized for the experiments. Flow determining the Reynolds number, resulting from errors in

d usi he digital icle i loci the amplitude and frequency of the floor motion, as well as
was measured using the digital particle image velocimetry, o o mnerature dependence of viscosity, is approximately

technique(DPIV; e.g., se¢18]). For the measurements With g 5704 The uncertainty in determining the Stokes number,

DPIV, water was seeded with polystyrene particles, in thejye to errors in viscosity and frequency, is approximately
range of 20-25um (Duke Scientific, 7520A and 7525A g 239,

depending on the requisite field of view.
The dynamic seals, used on the bottom of the sidewalls ll. RESULTS

where they contacted the oscillatory driven floor, were made Figure 5 summarizes the quantitative comparison between

of Buna-n rubber O-ring material, cut to length. Once ther|oquet analysis of the infinite-span case and the current ex-

submerged acrylic pieces had equilibrated and swelling dugeriments withA =19.4: (a) shows critical Re as a function

to water uptake had ceased, Teflon shi®@pum thicknesy  of St, illustrating the onset of mod&for low St, modeA for

were used as gaskets between acrylic pieces that wetarge St, and mode QP for intermediate &i) shows the

screwed together. The shims provided positive seals betwearresponding critical wave numbegs. The ranges of St for

the ends and sidewalls, and ensured a smooth motion of thtae onset of each of the three modes agree quite well. The

oscillatory glass floor. values of the critical Re for moddsand QP also agree well.
The oscillating floor was actuated by a drive wheel and eHowever, for mode QP the observed wave numbers do not

crank arm. The drive wheel was spun by a stepper motomatch the theoretical predictions for the infinite-span system,

through a timing bel(W. M. Berg, part number TB7UP4- and the onset of mod@& takes place at a lower Re than

380 and pulley (TP20L6U6-78. The ratio of the drive predicted. A detailed analysis of the three observed modes

wheel diameter to the pulley diameter on the motor was apfollows.

proximately 1.22:1. The amplitude of the floor motion was

set using a microtranslation stage, which was mounted on the A. Synchronous modeA: Broken H symmetry

drive wheel. The accuracy of the microtranslation stage in For modeA, the critical Re observed experimentally is

setting the floor amplitude was checked using a dial indicatoapproximately 10% lower than that determined via Floquet
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AT h vp'l "'J .~ pblique inclination yvhen viewed from the tajpositivey),.as
' is observed experimentally—see Fig$a)3and 3b), which
» ‘ /‘ show a nonlinear modA solution at timesT/2 apart, where
(a) L, R ) g the inclined inter-roller secondary vortices and the core de-
_ formations of the primary rollers are clearly seen.
it ‘»’ L\ Consider now the symmetries of the experimentally ob-
’ P served modeéA. Comparing experimentally measuredfor
‘4 modeA at timesT/2 apart[e.g., comparing part&) and (f)
®' ot LA -3 4 S of Fig. 6], it is apparent that it is ndtl symmetric; the light
- ‘ ~ S ~3 ) (yellow) [dark (red)] vortex in (f) should be darKred) [light
‘:}‘ - o . (yellow)] if it were H symmetric, according to Eql). Hence
. the spatiotemporal symmetry of modein the finite cavity
; (as observed in the central portion of the cavig/the same
(©) P Wi (h) as that of the infinite-span problem.
The critical wave numberg measured experimentally for
hl‘ ’ 4 modeA agree with Floquet analysis, but the critical Re are
> 2 ‘ substantially smaller. There are a number of points to con-
@) m Mee S 4) sider in reconciling this difference.
- (1) The theoretical onset of modk is degeneratdthe
.”g bl XA cubic term in the normal form vanishesThis raises the
. ‘ ' > 3 question as to whether the onset in the experiment is subcriti-
Y '. ‘ cal or supercritical. The answer to this question is compli-
(©), A A N, )] cated by the fact that the experiment does not have perfect

z-reflection symmetry, and so the pitchfork is unfolded.

FIG. 6. (Color onling Contours of the instantaneous vertical  (2) ModeA has large wavelengtfsmall 8), so quantiza-
vorticity 7 at mid-depthy/h=0.5, overx/he[-T'/2,I'/2] and  tion effects in a finite box may be important.
z/h e[-0.1A,0.1A] for a modeA state at Re=1300, St=160 over  (3) Mode A is a large-frequency mode in which the two
one periodT=0.651 s; interval between each frameTiklO. spanwise rollers persist throughout the whole forcing period.
This means that long-term interactions between the rollers
analysis in theA — o limit [Fig. 5@]. We note that in the and the spanwise end walls are possible, and these interac-
analysig 8], the onset of modA was via a degenerate pitch- tions are simply not present in the Floquet and nonlinear
fork bifurcation (borderline between super- and subcritical numerical analyses.
The experiments suggest that the pitchfork is subcritical for In summary, the comparison between the experiments and
A=19.4. Note that pitchfork bifurcations are very sensitivethe theory suggests that modéeis subcritical, and that it is
to small imperfections which tend to unfold them into dis- strongly influenced by the end walls because of its large
tinct branches of solutions, one that is smoothly connected twavelength and the persistence of the primary rollers.
the basic state, and another “anomalous” disconnected
branch[11,19,2Q. Nevertheless, the experimentally observed
critical wave numbers for moda agree very well with the B. Synchronous modeB: PreservedH symmetry
Floguet resultgFig. 5b)]. Figure 7 shows instantaneous contours, from DPIV mea-
Figure 6 shows contours in the midplafy¢h=0.5 of the  surements, of; at the midplang//h=0.5 for a modeB state
vertical component of vorticityy (determined from DPIV  at Re=1000 and St=53 over one floor oscillation period.
measurements of the horizontal components of velpéity ~ This state is also invariant toreflections about the nodal
a modeA state at Re=1300 and St=160. The ten frames argoints in ». It is alsoH symmetric; taking an image in the
instantaneous snapshots taken uniformly over one floor ogeft column of the figure, reflecting it abomt=0, and chang-
cillation periodT=0.651 s. The DPIV imaging window ex- ing the sign ofy results in an image corresponding #oat
tends over approximately one spanwise wavelen@th  time T/2 later (the image in the right column, on the same
€[-0.1A,0.1A], horizontal direction in the figujeand the  row). Thus, the experimentally observed finite cavity mode
entire cavity width(x/h e [-I'/2,I'/2], toward the top and B has the same spatiotemporal symmetry as niddle the
bottom of the page One of the striking features of this fig- A —o case.
ure is the near-constant presence of the large counter-rotating End wall effects on mod® appear to be minimal. The
vortical structures in the middle of the figure. These are interwavelength for modeB is very small compared with the
roller secondary vortices that are continuously being “fed”spanwise extent of the cavity, and we find for this mode that
by the large core deformations of the two spanwise rollers athe finiteAA experiments behave very much like the—
either x end of the cavity. Their persistence over the entirecase. Further, modB is a low-frequency(small-S} mode
forcing period is consistent with the Floquet analysis, wherevhere the spanwise rollers only survive for about half the
the modeA eigenfunctions also show such vortices. The Flo-floor oscillation period; this means there is no long-term in-
guet modes are not inclined, but rather are symmetric aboueraction between the rollers and the spanwise end walls
x=0. However, nonlinear solutions show the same level ofwhich is not the case for either modeor mode QP.
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FIG. 7. (Color online Contours of the instantaneous vertical FIG. 8. (Color online Contours of the instantaneous vertical
vorticity % at mid-depthy/h=0.5, overx/he[-T'/2,I'/2] and vorticity at mid-depthy/h=0.5, overx/he[-I'/2,I'/2] and z/h
z/h e[-0.07A,0.07A] for a modeB state at Re=1000, St=53 over <[-0.07A,0.07A] for a QP state at Re=1400, St=105 over one
one periodT=1.965 s; interval between each frameTisLO. period T=0.999 s; interval between each frameTisLO.

Of the three mode§A, B, and QP analyzed in this paper,
only modeB has been previously observed experimentally in
the finite cavity to our knowledge. This mode is described i
more detail in[9].

We have observed the flow over hundreds of floor cycles and

the oblique banded structure does not move inzltbrec-

Ntion. On the other hand, the lack of spanwise reflection sym-
metry, also a key feature of the predicted TW mode, is
clearly evident.

C. Quasiperiodic mode QP: Complete symmetry breaking The quasiperiodicity of this flow is established using time

Iserles of the spanwise velocity measured via DPIV in a small

from the Floguet values by approximately 40%. This is afegion near the center of the cavity. In taking these measure-
large difference, but it should be noted that from the Floque{“ents we have strobed the flow at the floor oscillation pe-
analysis, the variation g8 with St is very flat for mode QP, riod and recorded thevelocity at the same phase over 1024
and so there is not a clear selection of a singldor the p_enods Th_e power s_pectral dens_,lty of this ;trobed ve_locny
nonlinear statésee Fig. 2 signal (obtained via discrete Fourier transforis shown in
The snapshots of the vertical vorticity, at mid-depth F'g' 10, where a very ‘?"S“!‘Ct signal V.V'th period 4-.IBHS. :
over one floor oscillation period, for the experimentally ob- evident. We interpret this signal as being the quasiperiodic

served mode QP, are shown in Fig. 8. It is seen to be orgdn©tion of the; maxima along the bands.
nized into oblique bands of alternating positive and negative

7. The band structure remains fairly constant throughout the

floor oscillation period, and is only broken up for short in-

stances, e.g., in framds) and (f). However, 7 is not con-

Al
Q- - _f
stant within the bands. There is a fairly well-discernible v '
maximum in each band, and these maxima travel back and .
forth along the bands in unison. It is not straightforward to
find much coherence in this motion, in part because the flow " ‘ ' . - !

is quasiperiodic. Figure 9 is a phase-averaged image, taken at
the particular phase corresponding to Fi¢e)Bwith averag-

ing over 34 floor oscillation periods. Since the mode is qua-
siperiodic, some care needs to be taken in interpreting this FIG. 9. (Color online Contours of phase-averaged vertical vor-
image, but it serves to underscore the point that, in the finiteticity » at mid-depthy/h=0.5, overx/he[-I'/2,I'/2] and z/h
length cavity, this is not a spanwise traveling-wave mode.e [-0.07A,0.07A], for the QP state of Fig. 8.

For mode QP, the observed critical wave numbers diffe
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o015 of modulated standing waves SW parametrized by their

o012 phase inz [1]. In the A —oe driven cavity, SW is unstable

N and the TW are stable. In Taylor-Couette flow, as predicted
g o008 from normal form theory15] and observed experimentally
2 0o0d [16,17], the Hopf bifurcation in finite-length systems results

in two different types of standing waves, having either even
or odd parity inz. The frequency of oscillation of these
»D waves matches very well the Hopf frequency determined
from stability analysis in the infinite case. A travelinglike
FIG. 10. Power spectral density vs period terms of the base  mode is also found in the finite cases, but only as a second-
periodT) of thez velocity of the QP state, in a smak,y) region of 4y state bifurcating from one or other of the two standing
size 0.09<0.09 cnf about the poini/h=-0.1", y/h=0.5,2/h= 4 e5which do not bifurcate simultaneousilthough our
-0.03\, for Re=1400 and St=105. L o
system is different from Taylor-Couette flow, because it is
) ) o periodically forced and has the additional space-time sym-
The secondarymodulation period of QP seen in Fig. 10 ey 1 the strong similarities in the infinite case suggest
c{hat QP comes about via an analogous process and is a result
of the presence of spanwise end walls.

traveling waves in the\ —o case(TW), which is in the
range of 4.1 to 4.8T for the values of St for which TW is
the primary mode of instability. See Fig. 4 for these periods

as determined via Floquet analysis.

The symmetries of QP and TW are different. They both IV. CONCLUSIONS
have broken the-reflection symmetry, and although in the
central region of the cavity QP appears to be periodig, in . : : . .
this is no% so over the w);uge ofmt)he cavity O\F/)ving to the The three .possmle typ.es of.cod|m.en5|on-; b.|furcat|.ons
presence of the spanwise end walls. We do not present DPI{o™ @ (nominally) two-dimensional time-periodic basic
data near these end walls as the unsteady three-dimensiorgifte {0 three-dimensional flow, predicted from normal form
structure of the flow in these regions significantly reduces théheory for a strictly two-dimensional flow, have now been
signal-to-noise ratio to a point where conclusive statement@Pserved experimentally as primary bifurcations. The range
cannot be made. In contrast, TW, which breaks the continuof forcing frequencie¢St over which each mode is primary
ous z-translation symmetry, retains a discretéranslation —agrees very well with the Floquet analysis. Two of the modes
symmetry corresponding to its spatial periodicity of waveare synchronous; one retains the spatiotemporal symmetry of
number B. Recall that although TW has broken the spa-the basic state and the other breaks it. For the symmetric
tiotemporalH symmetry, it retains a spatiotemporal symme-synchronous mode, both the critical forcing amplit(&e)
try comprised ofH composed with an appropriatetransla- and wavelength agree with the Floquet analysis. For the
tion (this translation is the distance the wave propagates iBymmetry-breaking synchronous mode, the critical wave-
time T/2, applied in the opposite directipnQP does not length is in agreement but the mode bifurcates at lower Re
have any(spatial or spatiotemporasymmetry. (approx. 10% lowerthan predicted by Floquet analysis. Pos-

The relationship between QP and the quasiperiodic modesiple reasons for this discrepancy include that the Floquet
from the Floquet analysi§SW and TW may be interpreted  gnalysis shows the pitchfork bifurcation to be degenerate and
along similar lines as the relationship between the ribbongg end walls may change this to a subcritical pitchfork, and
and spirals(standing and traveling modes, respectiyaly 5154 that this mode is a high frequency instability of a basic
classic counter-rotating Taylor-Couette fldwe., with infi- giate consisting of spanwise rollers which remain coherent
nite cylinderg and the corresponding modes found in finite- throughout the whole forcing cycle so that long-term inter-

length systems. In the infinite cageeated as periodic ie), actions between these and the spanwise end walls are prob-

the spirals and ribbons arise via Hopf bifurcations in a sys- . . .
> . . . . able. Also, the wavelength of this mode is relatively large
tem that is invariant to translations and reflections in the

axial directionz. These standing and traveling waves bifur- (only approxim_ately four wavelengths fit in _the fir_1ite cayity
cate simultaneously. The spirals are traveling wavestirat further _enh.anqng end wall effects. The_ third primary mode
break the reflection symmetry, so there are two different spil duasiperiodic. The observed modulation frequency is close
rals corresponding to traveling waves in the directios + 0 that of the quasiperiodic mode from Floquet analysis, as is
and z, and thez reflection transforms one into the other. The the critical Re. However, the physical manifestation of the
ribbons are reflection symmetric standing waves, whichnodulation frequency is very different from that in the infi-
break the translational symmetry, so there is a continuousite cavity where this mode corresponds to a modulated trav-
family of ribbons parametrized by their phasezf10]. In  eling wave. In the finite cavity, this mode does not propagate
our nonautonomous system, the Hopf-like bifurcationin the spanwise direction. However, its spatial structure con-
(Neimark-Sacker bifurcation, leading to quasiperiodic be-sists of braidlike structures wrapped around each of the span-
havion also results in a pair of modulated traveling waveswise rollers that are interlaced obliquely across the roller,
TW that break the reflection symmetry, and are transformegust like the spatial structure of the traveling-wave mode in
one into the other by thereflection, and a continuous family the infinite case.
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