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Abstract

Passive scalar transport involves complex interactions between advection and diffusion, where the global transport rate
depends upon scalar diffusivity and the values of the (possibly large) set of parameters controlling the advective flow.
Although computation of a single solution of the advection–diffusion equation (ADE) is simple, in general it is prohibi-
tively expensive to compute the parametric variation of solutions over the full parameter space Q, even though this is cru-
cial for, e.g. optimization, parameter estimation, and elucidating the global structure of transport. By decomposing the
flows within Q so as to exploit symmetries, we derive a spectral method that solves the ADE over Q three orders of mag-
nitude faster than other methods of similar accuracy. Solutions are expressed in terms of the exponentially decaying nat-
ural periodic patterns of the ADE, sometimes called ‘‘strange eigenmodes’’. We apply the method to the experimentally
realisable rotated arc mixer chaotic flow, both to establish numerical properties and to calculate the fine-scale structure
of the global solution space for transport in this chaotic flow. Over 105 solutions within Q are resolved, and spatial pattern
locking, a symmetry breaking transition to disordered spatial patterns, and fractally distributed optima in transport rate
are observed. The method exhibits exponential convergence, and efficiency increases with resolution of Q.
Crown Copyright � 2007 Published by Elsevier Inc. All rights reserved.
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1. Introduction

Dispersion of a passive scalar via simultaneous advection and diffusion is important to a wide array of physical
phenomena, spanning fields from epidemiology to geophysics and length scales from the molecular to the celestial
[32]. Interaction between advection and diffusion is complex, especially in the case where the advective flow field
generates Lagrangian chaos [10]. Besides the balance between advective and diffusive timescales, how scalar trans-
port evolves depends crucially on the set of parameters controlling the advective flow topology. In systems with
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parameters a natural question is what qualitative changes occur as these parameters are varied? Fundamental to
operations such as process optimization, parameter identification and the study of the global structure of trans-
port, is resolution of scalar transport over the (possibly large) multi-dimensional flow control parameter spaceQ.

For example, micromixing devices posses a number of tunable design and operating parameters which
require optimization. Previous studies only considered a handful of parameter combinations [22,30,26] within
Q; however standard optimization routines can fail as transport rates can be fractally distributed [17], and so
robust global optimization requires high resolution global exploration of Q. Using traditional methods, repeat
solution of the governing advection–diffusion equation (ADE) for very many points within Q renders such
operations prohibitively expensive.

In this paper we present a novel spectral method which facilitates rapid (up to 6000 times faster than the
finite volume method) exploration of Q by exploiting symmetries present in the set of underlying advective
flows within Q. The ADE is solved in terms of natural persistent patterns – sometimes called ‘‘strange eigen-
modes’’ [19] – eigenmodes of the advection–diffusion operator, and the eigenvalues give the associated scalar
transport rates. Efficiency of the method arises from the ability to rapidly approximate this operator for any
point in Q from a subset of fundamental operators, and subsequently solve the associated eigenproblem.
While the solution method is general, we demonstrate its numerical properties and illustrate the unexpected
richness of the ADE’s solution space using the chaotic rotated arc mixing (RAM) flow [21].

1.1. Motivation

The transport of a diffusing passive scalar / in a velocity field v̂ is described by the advection–diffusion
equation (ADE)
o/
ot
þ v̂ðvÞ � r/ ¼ 1

Pe
r2/ ð1Þ
with appropriate boundary and initial conditions. (We consider homogeneous boundary conditions through-
out but extend to inhomogeneous in Appendix A). We write v̂ as a function of v to emphasize that the velocity
field depends on a set of parameters v specific to the particular problem and flow field under study. For exam-
ple, for Taylor–Couette flow v contains the inner and outer cylinder radii and rotation rates, the aspect ratio,
and fluid rheology; for an industrial process, v may be the set of design, operating, and rheology parameters;
or, for a geophysical flow v may contain radiative or solutal forcing parameters. The Peclét number (Pe = L

V0/D with D the scalar diffusivity, L the system’s length scale, and V0 the flow velocity scale) is the the ratio of
timescales for diffusion and advection. The full parameter space of the ADE is Q : v� Pe, over which the qual-
itative and quantitative characteristics of ADE solutions may vary significantly.

Having global parametric solutions of (1) over Q would be useful to many objectives, such as optimization,
solving inverse problems, or insight into the fundamental structure of scalar transport. For example, if / is
temperature in a heat exchanger, what flow maximises heat transfer at a particular Pe? If / is species concen-
tration, which point in Q gives fastest dispersion; conversely what structured distributions of / are possible for
a particular flow? Alternately, if the evolution of / is observed, which point in Q produced that evolution?
Moreover, a parameter set v0 can have some error, and it may be desirable to know how robust a solution
is, i.e. what, if any, transport changes are expected in the neighbourhood of v0? However, calculating global
parametric solutions for (1) has been limited by the computational expense of numerical solution to an appro-
priate resolution over Q. Numerical methods typically require a different computation for each point in
parameter space to a sufficiently long time to observe the final spatial pattern and calculate its decay rate. Pre-
vious studies of the ADE have either used model flows, e.g. sine flow, that greatly simplify matrices for the
projected advection operator [5,33] or, when specifically aimed at optimization, have calculated solutions at
only Oð101Þ points in Q [15,3,28,26,22]. Fig. 3 will show a solution space resolved with Oð105Þ points.

1.2. Background

Recent work has firmly established that ‘‘strange eigenmodes’’ – sets of naturally persistent spatial patterns
(NPPs) with decaying amplitudes – are fundamental solutions of the ADE. First reported by Pierrehumbert
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[25] from simulations of a diffusive tracer in a time-aperiodic velocity field, NPPs were first observed in the
experiments of Rothstein et al. [27] on arrays of magnetically driven vortices. Subsequently Liu and Haller
[19] gave NPPs mathematical rigor by proving their existence for unsteady, but not necessarily periodic, veloc-
ity fields as a consequence of the ADE having, under reasonable conditions, an inertial manifold to which the
scalar distribution tends. For time-periodic velocity fields the NPPs are Floquet modes of the advection–dif-
fusion operator L2½u� ¼ �v̂ � ruþ 1

Per
2u, and / can be expressed as a finite sum of NPPs uk(x, t) and an arbi-

trarily small fast decaying non-eigenmode contribution Oðe�qtÞ:
1 If t
/ðx; tÞ ¼
XK

k¼0

akukðx; tÞekk t þOðe�qtÞ: ð2Þ
In (2) ak are the weights arising from initial conditions, and kk are eigenvalues of L2, the real part of which
order the modes such that Re(k0) corresponds to the smallest eigenvalue. For Pe > 0 the kk have negative real
parts, and because for most flows there is reasonable separation between the real parts of adjacent kk, all but
the shortest time dynamics require only the leading few eigenmodes. For sufficiently long times only the most
slowly decaying term present in the initial condition persists1:
/ðx; tÞ ! /1ðx; tÞ ¼ a0u0ðx; tÞek0t; ð3Þ

and the long-time transport rate is characterised solely by k0.

As passive scalar dynamics are governed by (2), we will solve for the dominant few uk and kk by first
approximating the periodic velocity field v̂ by a piecewise steady flow v, and then expanding L2 in spectral
basis functions of the diffusion operator L1 appropriate to the domain. Because the L1 basis functions are
independent of v, v, and Pe, they do not change over Q. Whilst an approximation to general flows, the piece-
wise steady decomposition is exact for the class of reoriented duct flows [29] and other composite flows, such
as the blinking-vortex, the tendril-whorl, etc. [23]. Composing the velocity from a set of steady flows allows full
use of any symmetries in the problem, and we call this a composite spectral method, whose novelty does not
come from being a spectral method, but from the ability to efficiently calculate global parametric solutions
of the transport Eq. (1) and its generalizations, which should be a powerful tool for understanding and con-
trolling scalar transport.

1.3. Outline

The paper is organised as follows. Section 1 briefly reviews the nature and properties of solutions to the
ADE in terms of strange eigenmodes. The composite spectral method is derived in Section 2 for a particular
velocity field and Peclét number with homogeneous boundary conditions. Section 3 generalises the composite
method to facilitate exploration of Q, and numerical properties are reviewed (details are given in Appendix C).
In Section 4, transport in the rotated arc mixer flow is solved, and in Section 5 these solutions are compared
with solutions from a high resolution finite volume method. Section 6 gives conclusions and more general
examples of composite flows.

2. Formal spectral solution of the advection–diffusion equation

To begin we expand / and the ADE in the spectral space of the basis functions xn(x) of L1 over the spatial
domain D with appropriate boundary conditions, truncating the expansion at N terms. The approximate sca-
lar field expansion is
/ðx; tÞ �
XN�1

n¼0

UnðtÞxnðxÞ; ð4Þ
which has the basis functions ordered such that the lowest energy modes are retained in (4). The ADE for the
evolution of the spectral coefficients Un(t) becomes an order N system of coupled ODEs
he a0 mode is identically zero in the initial condition, the subscript becomes the minimum k for which ak 6¼ 0.
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dU
dt
¼ HðtÞ � 1

Pe
D

� �
U ¼ AðtÞU; ð5Þ
which is the spectral approximation of (1) for any velocity field. In (5), U is the vector of expansion coeffi-
cients, H(t) is an N · N matrix for the advection term v Æ $, and D is the constant diagonal N · N matrix
of L1 eigenvalues l2

n. The advection term transfers variance between wavenumbers, reflecting the potential
for the flow to create small scale structure; countervailing diffusion irreversibly removes variance at a rate that
increases with wavenumber. Because the flow is incompressible and does not penetrate the boundary
(v � njoD ¼ 0), Hn,m(t) is antisymmetric for general boundary conditions:
Hn;mðtÞ ¼ �
Z
D

xmðxÞvðx; tÞ � rxnðxÞddx ¼
Z
D

xnðxÞvðx; tÞ � rxmðxÞddx ¼ �H m;nðtÞ: ð6Þ
In (5), A(t) is the truncated spectral advection–diffusion operator; it has complex eigenvalues with negative real
parts. As Pe!1, A(t) becomes skew-symmetric with purely imaginary eigenvalues, corresponding to pure
advection of the initial conditions. As Pe! 0, A(t) becomes diagonal with purely real eigenvalues and no
transfer between spectra.

The fundamental matrix solution S(t) of (5) satisfies
UðtÞ ¼ SðtÞ �Uð0Þ; ð7Þ

with
dS

dt
¼ AðtÞ � SðtÞ: ð8Þ
Because the approximate velocity v is piecewise constant in time, A(t) is also and so may be expressed as a
composite of the steady operators Ai
AðtÞ ¼

A1 0 6 t < t1;

A2 t1 6 t < t2;

..

. ..
.

An tn�1 6 t < tn ¼ T

8>>>><>>>>: ð9Þ
S(T) is then given by the product of matrix exponentials:
SðT Þ ¼ expfA1t1g � expfA2ðt2 � t1Þg . . . expfAnðtn � tn�1Þg; ð10Þ

and S(t) for t < T is an appropriate truncation of these inner products. Aperiodic velocity fields can be handled
by the method without alteration by considering t 2 [0, T] as the finite time over which solution of the ADE (1)
is required. Continuous evaluation of (6)–(8) for a given v(x, t;v) formally solves for the evolution of /.

Floquet analysis of S(T) yields approximation of the NPPs uk. Denoting Ck(t) as the vector of spectral
expansion coefficients of uk in the same L1 basis, then from (2), these are related to U(t) by
UðtÞ ¼
XK

k¼0

akCkðtÞekk t: ð11Þ
Due to linearity, each individual product CkðtÞekk t satisfies the ADE and thus Eq. (7). As the vectors Ck(t) are
also T-periodic, they are eigenvectors of the fundamental solution matrix S(t):
CkðT Þekk T ¼ SðT ÞCkð0Þ ¼ Ckð0ÞekkT : ð12Þ
As such, Ck(0) and expkkT are the normalized eigenvectors and -values of the matrix S(T) with the least neg-
ative eigenvalues corresponding to the slowest decaying NPPs. The NPP expansion coefficients for t = [0, T]
(and hence all t) can be calculated from Ck(0) as
CkðtÞ ¼ e�kk tSðtÞCkð0Þ: ð13Þ
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After calculating S, the coefficients for either / or for as many of the uk as desired can be calculated and
reconstructed in physical space. However, to continuously evaluate S, or A, is expensive because 1

2
N 2 integrals

of (6) must be calculated and the matrix exponentials (10) must be estimated at each time step. More impor-
tantly, as we are interested in parametric variation, A must be recalculated for a new v̂ at each new point in Q.
This is the fundamental difficulty in calculating global parametric solutions that we now turn to solve.

3. Composite spectral solution of the advection–diffusion equation over Q

Instead of continuously recalculating H(t) and S(t) for each v(x, t;v), it is far more efficient to exploit any
symmetries of v across v. Of course, symmetries are not always present, but in many important cases they are.
For example, many devices use periodic forcing (e.g. lid-driven cavity, journal bearing flow [23]) or reorien-
tation (e.g. rotated arc mixer [21], ridged micromixers [30]) of a single fundamental velocity field to generate
chaotic flow, though the full set of flow fields vary markedly over v. Such is the case in many applications
including chaotic advection and microfluidics where the flow regime is inherently Stokesian. Where symme-
tries or other relations reduce the full set of flows in Q to effectively a smaller number, H need be calculated
only once for each fundamental flow. Then at each point in Q, H can be re-used to construct S(t) across Q for
the minimal cost of applying a symmetry operator, essentially a set of matrix operations. To belabor the point,
where symmetry exists, so too do great computational efficiencies, and the composite spectral method makes
full use of symmetries.

Prior to detailed description of the method, it is useful to illustrate how both symmetry operations and
velocity field composition facilitate construction of a possibly large set of composite flows across v from a very
small set of fundamental underlying flows. We begin with velocity field composition, and denote Nv as the
total number of flows over v under consideration. As such, the total number of points under consideration
in Q is NQ ¼ N vNPe, where NPe is the number of distinct Peclét numbers under consideration.

Approximation of the exact velocity field v̂ by the piecewise steady field v involves composition of I steady
component flows vi(x):
v̂ðx; t; vÞ � vðx; t; vÞ �
XI

i

viðxÞhiðt; viÞ: ð14Þ
The indicator function hi(t;v) equals one during the interval when v(x, t;v) = vi(x) and zero otherwise (hencePI
i hiðt; vÞ ¼ 1), and hi(t;v) is T-periodic, where T may vary with v. hi(t;v) completely characterises each of the

Nv P I piecewise steady flows v(x, t;v) by dictating how the I component flows vi are ‘‘welded’’ together.
Increasing I makes (14) more accurate in general; however, for some classes of flow [29,24] (14) is exact.

In turn, the set of I steady component flows vi(x) may be constructed from a subset of topologically fun-
damental flows via symmetry mappings. Call this set of I 6 I fundamental flows �viðxÞ, then all the component
flows vi(x) are generated from �viðxÞ via the general mapping operator Mi:
viðxÞ ¼Mi½�v1ðxÞ; . . . ;�vIðxÞ�; i ¼ 1 : I : ð15Þ

What symmetries can be incorporated into the composite spectral calculation? We will use the mapping

operations of reorientation, reflection, scaling, and superposition. Due to their different characteristics, reflec-
tion/reorientation are put into the algorithm differently from scaling/superposition. No general algorithm
exists to determine the best set of fundamental flows and symmetries with which to compose the full set of
flows within Q, and this gives flow designers great freedom to invent simply driven flows and their symmetric
extensions to accomplish various purposes.

Defining Ri and Si respectively as reorientation/reflection and scaling/superposition, Mi may be decom-
posed without loss of generality as
Mi ¼Mi0 �Mi1 � � � � �Min ; ¼ Ri0 � S i0 �Ri1 � Si1 � � � � �Rin � S in ; ð16Þ

where the operators Ri, Sj do not commute. Of course, a particular problem may have one type of symmetry
or the other, or it may have both or none. For brevity, we will discuss simpler mappings of the form
Mi ¼ Ri � Sj; ð17Þ
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which, nevertheless, encompasses a wide class of problems by itself; the method below holds for the general
case. As Ri and Sj do not commute, multiple Sj and Ri mappings must be ordered correctly. Applying Sj first
creates an intermediate set of eI velocities ~viðxÞ, then application of Ri creates the component flows vi(x):
Fig. 1.
Ri and
f�viðxÞg!
S f~viðxÞg!

R fviðxÞg: ð18Þ

Appendix B shows an example of using S i and Ri to compose the general flows of a lid-driven cavity.
As these mappings define the way in which the set of I component flows are constructed from the set of the

set of I fundamental flows, any component flow in Q may be constructed from the �vi as
viðxÞ ¼ Ri½Sj½�v1ðxÞ; . . . ;�vIðxÞ��; ð19Þ

and subsequently any piecewise steady velocity field v in Q can be constructed from the vi via (14).

The sequence of mappings and compositions building v(x,t;v) from f�viðxÞg is illustrated in Fig. 1, where
application of the mappings (19) and composition via (14) result in increasingly larger sets of flows. Note that
composition (14) and superposition operations are many-to-many, while scaling and rotation/reflection are
one-to-many. Although in principle it is possible to construct an infinite set of flows v(x, t;v) via these oper-
ations, in practice a finite number (specifically Nv) are required due to both the desired level of resolution Q
and characteristics of the application at hand.

Efficiency of the composite spectral method arises from performing computations at the highest possible
levels in Fig. 1, such that individual steps scale with I, eI , I , or Nv and the inequality I 6 eI 6 I 6 N v optimises
the numerics. The recipe for the composite spectral method is outlined as follows, the details of whose steps
are described below.

Step 1. Approximate the exact velocity field v̂ðx; t; vÞ via the piecewise steady velocity field v(x, t;v), com-
prised of the steady component flows vi(x) (Eq. (14)).

Step 2. Identify the (small set of) fundamental flows �viðxÞ from which all component flows can be derived
through symmetry (Eq. (18)).

Step 3. Calculate the advection operators Hi for the I fundamental flows (Eq. (6)).
Step 4. Calculate the matrix exponential expðHiÞ for the I fundamental flows (Eq. (23).
Step 5. Calculate the matrix solution ~Sj;PeðtÞ for the eI intermediate flows (Eq. (23)).
Step 6. Calculate the matrix solution Si,Pe(t) for the I component flows (Eq. (23)).
C
c

for each point in Q

Step 7. Compose the composite flow fundamental matrix solution S(t;v,Pe) from the solutions Si,Pe(t) (Eq.

(25)).
onstruction of piecewise steady flows v(x, t;v) from fundamental steady flows �viðxÞ by scaling/superposition Sj, rotation/reflection
omposition via hi(t;v) in (14).
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Step 8. Calculate M leading eigenvalues and eigenvectors, which correspond to the principal NPPs, of
S(t;v,Pe) (Eq. (12)).

end
Step 1 is composition of v(x, t;v) via Eq. (14).
Step 2 is deciding on a set of fundamental flows �viðxÞ and associated mapping operators Sj, Ri to construct

the full set of component flows vi(x), as per (18).
Step 3 is to compute the operators Hi with Eq. (6) for each of the I fundamental flows �viðxÞ. From these fun-

damental flow operators, the intermediate and component operators eHi, Hi can subsequently be con-
structed via the scaling/superposition and rotation/reflection mappings respectively:
eHj ¼ Sj½H1; . . . ;HI � ¼
XI

i

si;jHi; ð20Þ

Hi ¼ Ri½ eHj� ¼ Ri � eHj � R�1
i ; ð21Þ
where si,j are scaling factors inherent to the piecewise steady approximation (14), and Ri is the orthog-
onal rotation/reflection matrix corresponding to Ri. As such, the component flow matrix solution Si,-

Pe(t) is explicitly
Si;PeðtÞ ¼ exp Hi �
1

Pe
D

� �
t

� �
¼ exp Ri½Sj½H1; . . . ;HI �� �

1

Pe
D

� �
t

� �
; ð22Þ
which must be calculated for different values of {si,j}, Pe, and for various t 2 [0, T] (specific values of t

are governed by (14)). Explicit computation of this exponential is expensive, but significant efficiencies
arise if the mapping operators can be applied a posterori, then exponentiation need only be performed
once for each fundamental flow. Conceptually, we require the augmented rotation and scaling oper-
ators RH

i and SH

i , such that (22) can be written
Si;PeðtÞ ¼ RH

i ½S
H

j ½expðH1tÞ; . . . ; expðHI tÞ; expðDÞ��;¼ RH

i ½eSj;PeðtÞ�: ð23Þ
Step 4 : Assuming RH

i , SH

j exist and can be determined, the exponentials expðHitÞ need to be calculated
(exp(D t) is trivial). Although matrix exponentiation is expensive, as the operator SH

j only requires cal-
culation of expðHidtÞ for the short time dt, a Taylor series method (see Appendix D) is available.

Step 5 involves application of the augmented scaling/superposition operator SH

j . The short time matrix solu-
tion eSj;PeðdtÞ for the intermediate flows ~viðxÞ is calculated from the exponentials in Step 4, and subse-
quently these results are scaled up to eSj;PeðtÞ for the required values of t 2 [0, T]. The methods of
Suzuki [31] and Zhong [34] facilitate this with minimal computation; details are given in Appendix
C, so defining SH

j .
Step 6 involves application of the augmented rotation/reflection operator RH

i . As diffusion is isotropic (the
operator D is diagonal), Ri in (22) may be expanded to include 1

Pe D without change. As per (21),
the rotation/reflection operator involves a similarity transform. Since the exponential of a similarity
transform is equal to the similarity transform of the exponential, RH

i ¼ Ri, and so rotation/reflection
can be simply applied by matrix multiplication post exponentiation:
Si;PeðtÞ ¼ Ri � eSj;PeðtÞ � R�1
i : ð24Þ
Step 7 follows composition of the solution matrix S in (9); here the fundamental matrix S(T;v,Pe) for v(x, t;v)
and Pe is given by the inner product
SðT ; v; PeÞ ¼ Si1;Peðt1Þ � Si2;Peðt2 � t1Þ . . . SiNT ;PeðtNT � tNT�1Þ; ð25Þ
where for each element in v, the set fði1; t1Þ; . . . ; ðiNT ; tNT Þg completely characterises the indicator func-
tion hi(t;v) in (14), i.e. vðx; t; vÞ ¼ vijðxÞ if tj�1 6 t < tj. For t < T the fundamental matrix S(t;v,Pe) is
given by appropriate truncation of these inner products.

Step 8 follows Eq. (12): approximations of the M dominant NPPs are given by the leading M eigenvalues and
eigenvectors of S(T;v,Pe), which can be reconstructed in physical space to obtain uk.
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Details of the accuracy and computational expense of the composite spectral method are given in Appendix
C for the general case involving all possible combinations for mappings of the form (17). As these mappings
admit a wide class of problems, optimal protocols for storage and computation cannot be prescribed, and in
many applications further computational savings arise due to omission or reduction of particular steps. The
method is very efficient if the number of fundamental flows I is low and the number of intermediate flows eI
moderate. In such cases, Step 8 involves the bulk of computation, which scales with NQ. Solution of this eigen-
problem is expensive for large N, and ultimately places practical upper bounds on the Peclét number, however
other numerical methods share similar restrictions. All of the method steps are inherently parallelisable to a
high degree.

4. Composite spectral method case study: global parametric transport solutions for a chaotic flow

To illustrate both the richness of the ADE global solutions space and implementation of the composite
spectral method, we will use the 2D time-periodic Rotated Arc Mixer (RAM) flow [21]. Illustrated in
Fig. 2, the RAM confines fluid within a circular domain of radius R that has one boundary arc on which there
is a constant tangential boundary velocity RX; the boundary velocity is zero outside of this aperture of angular
opening D. In the fluid domain the boundary motion drives a cavity flow; for a Newtonian fluid in Stokes flow
Hwu et al. [11] derived an analytic expression for the streamfunction. As chaos in 2D flows requires some time-
dependence, for the RAM at integer multiples of time s/X the aperture instantaneously rotates though an
angle H to a new position (Fig. 2), periodically reorienting the flow. We non-dimensionalize the problem
by introduction of the dimensionless variables r 0 = r/R, t 0 = tX, v 0 = v/RX, Pe = R2X/D and immediately drop
the primes, henceforth referring to dimensionless variables only. In the Stokes limit X drops out of the dimen-
sionless formulation, and the flow reorients every dimensionless time s. If H/2p = p/q for integers p, q, then
T = qs and q aperture reorientations occur within each period, and the flow is T-periodic for rational values of
p/q.

The RAM is one of a variety of laminar flow devices [30] that generate chaotic flows. Studies of these
devices have not extensively explored their transport properties as a function of the controlling parameters.
To our knowledge, this is the first detailed parametric study of a physically realisable flow. A Newtonian,
incompressible fluid undergoing Stokes flow is considered here,2 in which case the dimensionless advective
velocity field is completely characterised by the set v = {s,H,D}, forming the four-dimensional parameter
space Q along with the Peclét number Pe. The dimensions of the parameter space are
Q : fs;D;H; Peg ¼ ð0;1Þ � ½0; 2p� � ½�p; p� � ½0;1Þ. If Ns, NH, ND, NPe respectively are the resolutions of
s, H, D, Pe in Q, then the number of points in Q is NQ ¼ N sNHNDNPe. As the velocity of the RAM consists
of temporal reorientations of the initial flow field, flows within the device are only topologically distinct for
distinct values of the aperture opening D. As such, the number of base flows of the 2D RAM over Q is
I ¼ ND. Mapping of the base flows �vðxÞ in the 2D RAM consists solely of rotation, so in this case the mapping
operator simplifies to Mi ¼ Ri, and the advective velocity (in this case exact) is
2 Ca
all be
reorien
Strouh
tempo
vðx; t; vÞ ¼
XI

i

Ri½�vjðxÞ�hiðt; vÞ; ð26Þ
where I is the total number of steady distinct flows in the RAM over the set Q. The advection–diffusion oper-
ator S(T;v,Pe) over a full period T of the RAM is composed of q reoriented operators;
SðT ; v; PeÞ ¼ Sq�1 � Sq�2 . . . S0; ð27Þ
Sn ¼ Rn

H � S0 � R�n
H ; ð28Þ
ses where inertial or Non-Newtonian effects are significant, or where the flow field is determined numerically or experimentally can
handled by the method; the sole requirement is that the scalar is passive. If the viscous timescale R2/l is small with respect to the
tation frequency 1/sX, then transient effects of the velocity field associated with aperture reorientations as quantified by the
al number St = Re/s may be ignored. If the Reynolds number Re = XR2/l is negligible, the advective velocity field v(x, t;v) is
rally piecewise constant for say s > 10�3.



Fig. 2. Rotated arc mixer (RAM) flow geometry and parameters.
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where Sn�1 is the advection–diffusion operator for the nth cell and RH is the rotation operator corresponding
to offset angle H. Following Speetjens et al. [29], as R

q
H ¼ I, the fundamental matrix S(T;v,Pe) simplifies to
SðT ; v; PeÞ ¼ ðR�1
H � S0Þq ¼ R�1

H � exp s HD þ
1

Pe
D

� �� �� �q

; ð29Þ
where HD is the advective operator corresponding to �vi for an aperture opening of D. As such, eigen-analysis of
the advection–diffusion operator may be performed over one cell only
SHðs; v; PeÞ ¼ R�1
H � exp s HD þ

1

Pe
D

� �� �
; ð30Þ
where Sw is in a rotating frame moving with the window opening, and so eigenvectors of Sw require subse-
quent rotation by RH to return to the laboratory frame. Simplification of (29) to (30) eliminates the need
to calculate the full fundamental matrix S(T;v,Pe), which is cumbersome for large q, and furthermore facil-
itates computation for irrational values of H/p.

Application of the method over the points in Q involves calculation of the advective operator (Step 3 of the
method) ND times. The exponential in (30) is determined for short time s = dt and different values of D and Pe

(Step 4), using (D.2) ND times and (D.3) ND · NPe times. The results are then scaled (Step 5d) to any s using
(D.5), and the substeps 5a–5c in Table C.1 omitted. The reorientation mapping (Step 6) must be performed
ND · NH · NPe times, and Step 7 is omitted by utilisation of the symmetry solution above. Only Step 8 need
be solved for each unique point in Q, so the eigenproblem is solved NQ times. The composite spectral method
is particularly efficient for this application as the temporally piecewise constant velocity approximation is
exact, the mapping operator involves reorientation only, plus further simplification from symmetry of the q

reorientations. As the matrix exponential and eigenproblem steps can be solved to high accuracy, and the
exact velocity field v̂ is piecewise steady, the major source of error in this application arises from truncation
of the spectral expansion (4) to N terms. Though the RAM is a particularly simple flow, many other applica-
tions would enjoy similar efficiencies.

The dominant strange eigenmodes of the ADE (1) with homogeneous Dirichlet boundary conditions
(/ = 0) are calculated over a large subset of the entire space Q for the RAM. For simplicity we fix the window
opening to D = p/4, so there is only one fundamental flow: I ¼ 1. The eigenfunctions of L1 over the unit circle
are the Fourier–Bessel functions
xnðr; hÞ ¼
ffiffiffi
2

p

r
J pðap;qrÞ
J pþ1ðap;qÞ

�

1ffiffi
2
p p ¼ 0;

cos ph n even;

sin ph n odd;

8><>: ð31Þ
where Jp is the pth order Bessel function of the first kind, and ap,q is the qth zero of Jp. If the integers
p 2 [0:Nm], and q 2 [1:Nm], where 1/Nm is the spectral resolution, the number of spectral modes is
N ¼ 2N 2

m þ Nm. The RAM dimensionless velocity field boundary condition is
vðr; h; tÞjr¼1 ¼ 0;H h�H
t
s

j k
� D

2

� �
� H h�H

t
s

j k
þ D

2

� �� �
; ð32Þ
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where H is the Heavyside function, and ºxß denotes the integer part of x. As the advective velocity field is tem-
porally piecewise constant, the steady two-dimensional solution of Hwu et al. [11] for this boundary condition
in terms of the stream function w(r,h,t):v = $ · wez can be generalised to the temporal field
Fig. 3.
range
wðr; h; tÞ ¼ 1� r2

2p
g H

t
s

j k
þ D

2

� �
� g H

t
s

j k
� D

2

� �� �
; where gðaÞ

¼ arctan
ð1þ r2 þ 2r cos hÞ tan a

2
� 2r sin h

1� r2

� �
: ð33Þ
The advection coefficients (6) can be simplified with the streamfunction to
bH n;m ¼ �
Z
D

xmðxÞv̂ðx; 0Þ � rxnðxÞd2x ¼ �
Z
D

wðx; 0Þêz � frxnðxÞ � rxmðxÞgd2x ¼ � bH m;n: ð34Þ
For these stream- and eigenfunctions, the h-component of the integral has an analytic solution; however, the r-
component must be computed numerically for each distinct pair {xn,xm}. The r-integral in (34) is solved
numerically using the collocation method of Levin [18] described in Appendix C, where the recurrent Bessel
function products JpJr, Jp�1Jr, JpJr�1, Jp�1Jr�1 arising from the gradient cross-product plays the role of Qn(x)
and w has the role of P(x) in (C.4).

Calculating the matrix exponential (30) for various values of Pe and t using (D.2) and (D.5) with subse-
quent multiplication by the rotational operator RH calculates the order N fundamental matrix S(s;v,Pe)
for any point in Q. Estimation of the dominant strange eigenmode (M = 1) of / corresponds to calculation
of the leading eigenvalue expk0s and eigenvector C0(0) of S(s;v,Pe). To determine k0, u0 over the space
s · H · Pe to resolution Ns · NH · NPe, calculation of NH rotational matrices RH and NPeNs fundamental
matrices S0,Pe(t) is required, followed by solution of NsNHNPe order N eigenproblems.

We define the transport enhancement factor �k0Pe=a2
0;1 as the ratio of decay rates of the dominant eigen-

modes for the L2 and L1 operators in the disc, the latter of which is a2
0;1=Pe, the asymptotic transport rate for

diffusion. In practical terms, the transport enhancement factor gives the ratio of transport acceleration over
diffusion only in the asymptotic (long-time limit). Fig. 3 is a contour plot of the transport enhancement factor
over the parameter space s · H at Pe = 103, calculated at a resolution Ns · NH = 120 · 1000 with a spectral
resolution Nm = 20 (N = 820 spectral modes).

Transport enhancement ranges from 1 (no enhancement) to slightly more than 6-fold improvement; note
the vertical axis and contour graduation are logarithmic. Distribution of the enhancement factor over Q in
Fig. 3 is fractal, and contains many localised maxima. Behaviour over this parameter space is rich; spatial
symmetry locking similar to frequency-locking in Arnol’d tongues [6] occurs in the tongues emanating from
Map of the transport enhancement factor �k0Pe=a2
0;1 for the RAM flow and Dirichlet boundary conditions over the parameter

s 2 [0.01,100], H 2 [ � p,p], D ¼ p
4
, Pe = 103. Note logarithmic scaling of the s axis and �k0Pe=a2

0;1 contours.



Fig. 4. Probability density function of the transport enhancement factor �k0Pe=a2
0;1 for the RAM flow and Dirichlet boundary conditions

over the parameter range s 2 [0.01,500], H 2 [ � p,p], D ¼ p
4
, Pe = 103. Note logarithmic scaling of the vertical axis.

Table 1
Test mixing cases

Mix case H s D Chaotic mixing characteristics

Case 1 � 3p
5 8 p

4 Globally well mixed
Case 2 2p

5 7 p
4 Domain mostly non-mixing

Case 3 3p
5 4 p

4 Single large island
Case 4 � 3p

5 5 p
4 Small island chain
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rational values of H/p at s = 0, and an order–disorder transition occurs along the tongues at s 	 1. The global
optimum occurs in a tongue, corresponding to a highly ordered symmetric eigenmode. Due to the existence of
multiple local optima of k0 and the fractal structure at low s, many fast optimization techniques would fail to
locate the global optimum within Q. To elucidate the global structure of transport over the control parameter
space and confidently identify this global optimum, high resolution global exploration of Q is necessary.
Localisation of optima is highlighted further by the probability distribution function of the transport enhance-
ment factor over the range s 2 [0.01, 500], H 2 [�p,p] in Fig. 4; regions where �k0Pe=a2

0;1 > 4 covers than 10�3

of Q.
Calculation of u0 and k0 over the 1.2 · 105 points in Fig. 3 using the composite spectral method took about

1.05 · 106 s of computation on an Intel� XeonTM 3.00 GHz CPU using Matlab 7.0.4. Calculation of the Hn,m

is about 8% of the total computation time, solution of the fundamental matrices using Zhong’s [34] method
less than 1%, and the remainder was used to solve the eigenproblem for each point in Q. For comparison, a
single value of k0 for Pe = 103 determined to similar accuracy by observation of the long time solution using a
finite volume method (with the velocity field specified analytically) implemented under the CFD software CFX
5.7.1TM required 5.1 · 104 s of computation on the same processor. In this case the composite spectral method
is approximately 6000 times more efficient in determining global parametric transport solutions. Similar effi-
ciencies are possible for many systems with a set of naturally composable flows.

5. Pattern convergence

To quantify accuracy and investigate convergence properties of the composite spectral method, we consider
solutions for the RAM flow for the four sets of parameters v = {D,s,H} in Table 1, which represent different
‘‘mixing cases’’ for the device. These cases have qualitatively different mixing characteristics in the case of pure
advection, as reflected in the Poincaré sections in Fig. 5a–d.

To study the influence of Pe on solution accuracy the Peclét number range Pe = 102, 103, 104 is considered
for a set of spectral resolutions Nm = 20, 30, 40, 50. The dominant NPP u0 at integer multiples of s for each of
the mixing cases at Pe = 104 as calculated by the composite spectral method for Nm = 50, is depicted in



Fig. 5. (a) case 1, (b) case 2, (c) case 3, (d) case 4, (e) case 1, (f) case 2, (g) case 3 and (h) case 4. Poincaré sections (a–d) and dominant
strange eigenmodes at Pe = 104 (e–h) for mixing cases 1–4.
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Fig. 6. L2 norm of error between spectral method dominant strange eigenmode ~u0ðx; tÞ calculated in CFX� 5.7.1. for different finite
volume mesh resolutions Nv and reference solutions û0ðx; tÞ for Nm = 20, 30, 40, 50 for mix case 3 at Pe = 104.
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Fig. 5e–h, where blue / = 0 at the domain boundary. Some evidence of aliasing (or Gibbs phenomena) exists
in cases 1 and 4, suggesting insufficient spectral modes to resolve the full solution structure in these cases.
These results illustrate the diversity of structure in the ADE dynamics across the parameter space. In some
cases structures (KAM tori, chaotic sea) in the pure advection cases (Poincaré sections) apparently carry over
to the scalar distribution, while in other cases structure in the scalar distribution has no obvious correspondent
to the Poincaré section. Large-scale structure in the flow advection pattern is reflected in the scalar transport
pattern, but small scale structure is not. Also of note are the large internal gradients of / within D, especially
those near the boundaries in cases 1 and 4. As diffusion acts to smooth these gradients created by advection,
structural complexity increases with Pe, and scaling arguments suggest striation thickness scales as 1=

ffiffiffiffiffi
Pe
p

. In
the limit Pe!1, striation thickness becomes infinitesimal, as happens for pure advection in chaotic regions.

Prior to investigation of the convergence properties of the composite spectral method, it is necessary to ver-
ify that the composite spectral method results converge to the correct solution. Not having analytic solutions
to the ADE for the RAM, we utilise CFD solutions from the commercial package CFX� 5.7.1 that have con-
verged in terms of mesh resolution. We define the finite volume mesh resolution Nv in CFX as the domain
radius divided by the maximum mesh element length, and the dominant NPP for case 3 at Pe = 104 (denoted
~u0) is calculated in CFX over the range Nv = 25 � 400 using time steps small enough to eliminate transient
errors. These results are compared with the same NPP û0 calculated using the composite spectral method over
the range Nm = 20–50. The L2 norm of the error between these results over the domain D and time interval
t 2 [0,s] is shown in Fig. 6. This error converges steadily with increasing Nm and Nv, and from the results of
Fig. 6 it is expected that this error approaches zero as Nm, Nv!1. This is taken as verification that the com-
posite spectral method converges to the correct solution. The main source of error in the finite volume solution
arises from spurious numerical diffusion, whereas aliasing generates the bulk of errors in the composite spec-
tral method. Both of these errors decrease with increasing resolution, however a greater resolution is required
in the finite volume method to achieve the same solution precision.

Using the spectral mesh resolution Nm = 50 as a reference solution, the spectral convergence properties of
the composite spectral method may be examined. The L2 norm over the spatial domain D and time period s of
the dominant NPP error for the lower resolution (Nm = 20 � 40) solutions are shown in Figs. 7–9 for each
mixing case and Peclét number. In all cases the L2 error decays faster than algebraically with N�1

m , and
near-linear trends are observed in the log-linear plots. As expected, the composite spectral method exhibits
close to spectral accuracy: the errors decay exponentially with spectral resolution Nm. Of particular note is
the difference in accuracy across mixing cases; as seen in Fig. 5, structural complexity may vary significantly
with control parameters for fixed Peclét number. The error spread increases with Pe and in some cases the
difference is an order of magnitude. As such the minimum spectral resolution Nm must be determined with
respect to minimum striation thickness across all strange eigenmodes over Q at fixed Pe. Figs. 7–9 suggest that
for minimum error in û0, a spectral mesh resolution Nm � 30 � 40 is suitable for Pe = 102 � 103, but not



Fig. 8. L2 norm of error between spectral method dominant strange eigenmode û0ðx; tÞ and reference Nm = 50 solution u0 for Pe = 103.

Fig. 9. L2 norm of error between spectral method dominant strange eigenmode û0ðx; tÞ and reference Nm = 50 solution u0 for Pe = 102.

Fig. 7. L2 norm of error between spectral method dominant strange eigenmode û0ðx; tÞ and reference Nm = 50 solution u0 for Pe = 104.
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sufficient for higher Peclét numbers. The low resolution (Nm) used here is not expected to resolve solutions for
substantial Peclét numbers, but rather to establish the convergence properties of the method. The relationship
between Nm and Pe is investigated in detail by Adrover et al. [1], where spectral accuracy is observed and for
fixed accuracy, Nm scales as Peb, where b is dependant upon the mixing protocol at hand.
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As the dominant strange eigenmode decay rate k0 is a function of spatial and temporal averages of the dom-
inant strange eigenmode u0, its gradient and L2 norms [19], it is anticipated that k0 may be predicted to greater
accuracy than u0 due to the averaging process. This behaviour is evident in the convergence analysis, where
errors between the k0 for the reference solution and Nm = 20, 30, 40 for all mixing cases and Peclét numbers is
shown in Figs. 10–12. Similar trends are observed as for the L2 norm of u0, however in most cases the decay
Fig. 10. Error between spectral method dominant strange eigenmode decay rate k̂0 and reference Nm = 50 solution k0 for Pe = 104.

Fig. 11. Error between spectral method dominant strange eigenmode decay rate k̂0 and reference Nm = 50 solution k0 for Pe = 103.

Fig. 12. Error between spectral method dominant strange eigenmode decay rate k̂0 and reference Nm = 50 solution k0 for Pe = 102.
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rate can be predicted to several orders of magnitude greater accuracy. Fig. 11 suggests that the spectral res-
olution Nm = 20 used to generate the values of k0 in Fig. 3 at Pe = 103 may be accurate to 0.1%. Accordingly,
selection of an appropriate spectral resolution Nm (and hence N) for the composite spectral method depends
on what information is wanted. For process optimization, accurate resolution of k0 may be all that is required,
so solution of u0 is unnecessary and the computational burden can be significantly reduced.

6. Conclusions

The composite spectral method provides an efficient means of exploring solutions of the advection–diffu-
sion equation over the associated control parameter space Q, exhibiting the classic advantage of spectral accu-
racy (i.e. exponential convergence), and avoiding numerical diffusion associated with methods involving
spatial discretization. The method provides approximate solutions to the ADE in the form of the problem’s
natural persistant pattern, the so-called ‘‘strange eigenmodes’’. The NPP’s form a complete set and are the
natural modes of the system, independent of initial and boundary conditions and domain sources. Solution
in terms of these modes is advantageous in that any solution for a specific initial condition may be recon-
structed from the finite set of strange eigenmodes, and that all but the short-time ADE dynamics are governed
solely by the leading strange eigenmodes, which may be determined in isolation at a reduced computational
expense.

A temporally piecewise constant approximation of the advective velocity forms the kernel of the composite
spectral method, facilitating subsequent construction of solutions to the ADE from solutions for each of the
steady flows comprising the approximate flow. We show in Appendix C that accurate solutions to kk can be
obtained with a small number of steady flows which comprise this approximation. Efficiency of the method
stems from exploitation of the approximate form of, and symmetries between, the advective velocity fields
over the control parameter space of the ADE. As the ADE is linear, and the approximated velocity field tem-
porally piecewise constant, solutions for individual steady flows can be amalgamated to approximate the solu-
tion for a given unsteady flow. Flow symmetries facilitate further reduction in computation as mappings to
construct classes of flows from an underlying subset can be applied at latter steps in the methodology. With
minor modifications the method can also be applied to spatially periodic systems; in the context of chaotic
advection relevant examples include any reoriented duct flow such as the Partitioned Pipe, Twisted Pipe,
3D Rotated Arc Mixer and many others. In general, the composite spectral method can be applied to any
set of flows which reduce to a small set of topologically distinct fundamental flows, either in space or time.
Using relevant symmetries, the transport properties over the complete set can be determined much more effi-
ciently than by conventional methods, and the smaller the set of fundamental flows, the larger the computa-
tional gain.

Some examples of more complex flows with inherent symmetries are shown in Fig. 13. The 2D vortex array
similar to that of Rothstein et al. [27] consists of an array of arbitrarily driven point vortices confined within a
square cavity. As shown, there exist 10 (a-j) fundamental flows, from which the full set of 64 vortices can be
mapped. For example, vortices e1, e2 and e3 are mapped via the rotation operator R1, and e4, e5, e6, e7 are
mapped by a combination of this and the reflection operator R2. Subsequently, the full flow field can be con-
structed via scaling and superposition.

Similar to the RAM, the partitioned pipe mixer flow [14] can be reoriented at certain times as shown. Tem-
poral variation of the outer sleeve rotational velocity X0(t) can be mapped by scaling, and reorientation sub-
sequently mapped by the rotation operator R1.

The vortex mixing flow [12] in the Stokes regime consists of three superimposed temporal flows arising from
motion of the boundary elements X0(t), X1(t), X2(t), where the latter flow can be mapped from the flow arising
from X1(t) via the reflection operator R1. Temporal variation and combination of these flows is subsequently
captured by scaling and superposition.

Attention in this paper has focussed on chaotic advection–diffusion systems as illustrative examples, how-
ever the method is applicable to any linear advection–diffusion problem, e.g. extension to incorporate linear
reaction kinetics is straightforward. For single irreversible reactions of the form Aþ B! C, Chella and Otti-
no [2] show that if the reaction kinetics are fast with respect to advection and diffusion, the system can be
expressed as an ADE (1), where / represents the difference in concentration between species A and B. Like-



Fig. 13. Examples of flows with inherent symmetries.
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wise, for instantaneous reaction or dissolution kinetics at a solid/fluid boundary, the system may also be mod-
elled [13] via (1) with Dirichlet boundary conditions. Temporal periodicity of the advective velocity is not
strictly necessary either; for aperiodic fields, analysis of the ADE can proceed over some finite time T as
described in Section 2, however as this finite time may not correspond to the asymptotic limit, a larger number
of strange eigenmodes may require resolution to characterise transport over T. Efficiency of the method in this
case is limited by the computational expense of constructing S which increases with T. It is also possible to
consider problems involving with variable boundary condition types (e.g. heat transfer with some boundaries
fixed heat flux, other fixed temperature), so long as the combinations of boundary condition distributions over
Q under consideration are finite. When the boundary condition type distribution is constant in time, then dif-
ferent type distributions can be simply considered as separate cases. If the boundary type distribution changes
at times tH

i but is otherwise piecewise steady, then the solution operator S(t) must be re-projected via Pi;j onto
new basis functions in (4) to satisfy the evolving boundary conditions, and analysis can proceed as usual on
the solution operator: SðT Þ ¼ S1ðtH

1 Þ � P1;2 � S2ðtH

2 Þ � � �SkðtH

k Þ � Pk;1.
Although symmetry is naturally inherent to Stokesian flows and simple geometries as depicted in the exam-

ples above, the composite spectral method can be applied to complex flows and/or geometry. If the temporal
flow field over a fixed yet possibly complex geometry can be decomposed (to desired resolution) into a set of
steady basis modes, then study of scalar transport can be performed by application of the composite spectral
method to this basis via scaling and superposition. As the transport problem is decoupled from the fluid
mechanics, in principle the method can be applied to more complex flows such as granular, transition and tur-
bulent flows, which may be determined analytically, numerically or experimentally; e.g. a non-Newtonian flow
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is studied in Lester et al. [16]. In general, for nonlinear processes (i.e. inertial flows, non-Newtonian rheology,
etc.), the set of flows over Q cannot simply be reconstructed from a small set of basis flows by linear mappings
such as scaling and superposition and furthermore flow symmetries inherently breakdown in the nonlinear
regime. However, study of approximate scalar transport in a turbulent flow is possible by truncating higher
wavenumber signals and employing an appropriate subgrid diffusion model, such that a modest set of base
flows corresponding to spectral basis functions is required. In this case the compromise between the number
of base flows and errors introduced by the subgrid diffusion model is quite limiting, and all of the flows over Q
must be determined.

Limitations of the method include application to nonlinear problems; in such cases multiple non-trivial
attractors can exist within phase space and so asymptotic behaviour cannot easily be prescribed a priori. How-
ever, parametric study of transport dynamics in the absence of nonlinear processes still provides valuable
insight into the global structure of scalar transport, and provides guidance for design and optimization with
respect to the full nonlinear problem.

The majority of initial computation for the composite spectral method is the calculation of the spectral
advection coefficients �Hi

n;m, as is necessary for any spectral method. For large systems (N 	 Oð105Þ) solution
of the nonsymmetric eigenproblem associated with calculation of the ADE strange eigenmodes becomes prob-
lematic, and represents the most immediate limitation to exploring large ( J 107) Peclét numbers, although
this limitation applies to most numerical methods. For smaller systems (and low M), solution of the eiegen-
problem is relatively rapid, but must be applied to every point within the finite set Q. As only this step need be
repeated for each point, the relative efficiency of the method increases with the size of Q.

Application of the composite spectral method to the ADE governing a 2D chaotic flow suggests the method
is approximately 6000 times more efficient in approximating the dominant strange eigenmodes than a finite
volume technique. Results from the method were also verified against high resolution CFD results, and the
analysis suggests that the method exhibits spectral accuracy. These investigations establish the efficiency, accu-
racy and convergence of the composite spectral method and indicates it is a powerful technique for exploring
quantitative and qualitative behaviours over the control parameter space of advection/diffusion systems.

Appendix A. Extension to inhomogeneous systems

Extension of the composite spectral method to inhomogeneous boundary conditions and/or non-zero
source terms f(x, t) is straightforward. Linearity of the ADE facilitates decomposition into the pseudo-steady
�/ and transient ~/ solutions: /ðx; tÞ ¼ ~/ðx; tÞ þ �/ðx; tÞ. The pseudo-steady solution �/ satisfies the Laplace
equation over D subject to the inhomogeneous boundary conditions
r2 �/ ¼ 0; ðA:1Þ
.�/joD þ ð1� .Þr�/ � njoD ¼ qðx; tÞ; ðA:2Þ
and so may be solved analytically a priori using separation of variables and eigenfunction expansion to satisfy
the boundary condition with t treated as an independent parameter. This decomposition yields homogeneous
boundary conditions for ~/, and augments the source term and initial conditions as
o~/
ot
þ v � r~/ ¼ 1

Pe
r2 ~/þ F ðx; tÞ; ðA:3Þ

~/ðx; 0Þ ¼ /0ðxÞ � �/ðx; 0Þ; ðA:4Þ
.~/joD þ ð1� .Þr~/ � njoD ¼ 0; ðA:5Þ
where F ðx; tÞ ¼ f ðx; tÞ � o�/
ot � v � r�/. Again spectral analysis is possible for ~/ based on an expansion in terms

of the L1 eigenfunctions which satisfy the homogeneous boundary conditions (A.5): ~/ðx; tÞ ¼
P1

n
~UnðtÞxnðxÞ,

yielding the linear inhomogeneous system of ODEs similar to (4):
d~Un

dt
¼ �

X1
m¼0

Hn;mðtÞ~Um �
l2

n

Pe
~Un þ cnðtÞ; ðA:6Þ



3050 D.R. Lester et al. / Journal of Computational Physics 227 (2008) 3032–3057
where cn(t) is the source term spectral expansion coefficient:
cnðtÞ ¼
Z
D

xnðxÞF ðx; tÞdx: ðA:7Þ
Truncation to N terms yields the finite system
d eU
dt
¼ AðtÞ eU þ FðtÞ; ðA:8Þ
where F(t) is the vector of cn(t) terms, and eUðtÞ may be expressed in terms of the homogeneous eUhðtÞ and
particular eUpðtÞ solutions
eUðtÞ ¼ eUhðtÞ þ eUpðtÞ ¼ SðtÞSð0Þ�1 eUð0Þ þ SðtÞ
Z t

0

SðsÞ�1
FðsÞds: ðA:9Þ
Analysis of the homogeneous solution of ~/ is carried out in exactly the same fashion as for the homogeneous
ADE (1): the strange eigenmodes in spectral space are approximated by the eigenvalues and eigenvectors of
S(t), and the computational approach is the same. For the particular solution the source term F(t) represents
a continuous perturbation of the solution from the inertial manifold, and decay back to the manifold is gov-
erned by the strange eigenmodes.

These dynamics are illustrated by considering the impulse F(t) = F0d(t � t0), where d(t) represents the Dirac
delta function. In this case, the particular solution is H(t � t0)S(t)S(t0)�1F0 where H(t) is the Heaviside step
function, and so the impulse at time t0 converges to the inertial manifold in the same manner as the strange
eigenmodes for the initial condition eUð0Þ in the homogeneous solution. In general, the source term may be
expanded in terms of the strange eigenmodes
FðtÞ �
XN

k¼0

F̂ kðtÞskðtÞek̂k t: ðA:10Þ
Hence from (A.9) the particular solution is
eUpðtÞ �
XN

k¼0

skðtÞek̂k t

Z t

0

F̂ kðsÞds; ðA:11Þ
and the transient solution is approximated by
~/ðx; tÞ �
XN

k¼0

âk þ
Z t

0

F̂ kðsÞds

� �
ûkðx; tÞek̂k t: ðA:12Þ
Given approximation of the ADE strange eigenmodes, computation of the particular solution is relatively
inexpensive so long as the eigenvectors sk(t) for t 2 [0,T] are solved to high enough temporal resolution to al-
low accurate integration of Fk(t) in (A.9). Note that although the strange eigenmodes are independent of q(x, t)
and f(x, t), they are dependent upon the boundary coefficient . as both the L1 and L2 operator eigenfunctions
must satisfy the homogeneous boundary conditions (A.5).

Appendix B. Composite mappings and flows derived for the lid-driven cavity

To illustrate the composite mapping method outlined in Section 3, we explore the well-known lid-driven
cavity system. This Appendix is aimed to clarify the abstract exposition in the main body of the paper.
The mappings for a Stokesian lid-driven cavity flow in the square domain {x,y} = [0, 1] · [0, 1] is depicted
in Fig. B.1. Defining the fundamental flow �v1ðxÞ as that associated with steady translation of the y = 0 bound-
ary with unit velocity in the x-direction, generalisation to the case where all boundaries simultaneously and
arbitrarily translate can be achieved by appropriate mappings of this fundamental flow.

Flows arising from motion of the x = 0, y = 1 and x = 1 boundaries (denoted ~v2ðxÞ, ~v3ðxÞ, ~v4ðxÞ respec-
tively) can be constructed by rotation of the fundamental flow �v1ðxÞ around the point {1/2, 1/2}. Defining
Ri as the operator associated with rotation through angle (i � 1)p/2, the flows mapped by the rotation
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operator are ~viðxÞ ¼ Ri½�v1ðxÞ� for i = 1:4. As such, the single fundamental flow ðI ¼ 1Þ is mapped by the rota-
tion operator R to form the set of 4 intermediate flows ðeI ¼ 4Þ:
f�viðxÞg!
R f~viðxÞg:
The velocity field ~v3ðxÞ arising from motion of the y = 1 boundary can also be constructed by reflection of
the base flow �v1ðxÞ through the y = 1/2 axis, albeit reversed. In general the reflection operator yields flows
which are distinct with respect to rotation, however symmetry of �v1ðxÞ along x = 1/2 in this case renders such
mappings indistinct.
Fig. B.1. Rotation, reflection, scaling and superposition mappings for square cavity flow.
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Via scaling, the fundamental flow �v1ðxÞ ¼ ~v1ðxÞ can also be generalised to the case where the y = 0 boundary
moves with bounded periodic velocity f̂ 1ðtÞ 2 ½fmin; fmax�. Within the Stokes regime, the resultant unsteady veloc-
ity field v(x, t) is simply a temporal scaling of the fundamental flow: vðx; tÞ ¼ �v1ðxÞf1ðtÞ. The forcing function f̂ 1ðtÞ
can be approximated by the piecewise steady function f1ðtÞ ¼

P
if1;ihiðtÞ, comprising of the indicator function

hi(t) = 0,1, and the Imax discrete values of f1,i distributed over [fmin,fmax]. This approximation forms a basis for
the piecewise steady approximate velocity field v̂ðx; tÞ ¼

PImax

i viðxÞhiðtÞ in terms of the set of Imax steady flows
viðxÞ ¼ ~v1ðxÞf1;i. As such, these steady flows can be used to approximate any bounded forcing function f̂ 1ðtÞ.

Using superposition, this concept can be extended to the case where all boundaries translate simultaneously
with respective velocities f̂ iðtÞ 2 ½fmin; fmax�; i.e. v̂ðx; tÞ ¼

P
i~viðxÞf̂ iðtÞ. The piecewise steady approximation is

likewise with v, f, replacing v̂, f̂ . The scaling/superposition operator denoted Si maps all possible combinations
of the reoriented flows
viðxÞ ¼ Si½~v1ðxÞ; . . . ;~veI ðxÞ� ¼X
j

fj;ij~vjðxÞ;
resulting in a set of I ¼ I4
max steady flows, each of which are characterised by the set of scalings ff1;i1 ; . . . ; f4;i4g.

In practice it is unlikely all of these combinations are required, however this mapping demonstrates the ability
to approximate the velocity field for any arbitrary set of boundary velocities. The rotation/reflection and scal-
ing/superposition mappings facilitate construction of the steady flows vi associated with simultaneous motion
of all boundaries of the square lid-driven cavity from the single fundamental flow �v1ðxÞ:
f�viðxÞg!
R f~viðxÞg!

S fviðxÞg:
The resultant piecewise steady approximation is a composite of these steady flows: vðx; tÞ ¼
PI

i viðxÞhiðtÞ,
where hi(t) is now the indicator function for the set of scalings ff1;i1 ; . . . ; f4;i4g associated with vi. In this exam-
ple application of the operators Ri, Si is the reverse of (18), however this structure is still compatible with the
general decomposition (16).

Appendix C. Operations count and accuracy

To quantify the efficiency of the method, we review the computational cost and accuracy of each step in the
method outline. The mapping decomposition (17) admits a wide array of possible of mapping protocols, and
so the specific computational expense of the method can vary markedly. Moreover, the optimal storage and
computation protocol varies significantly with the class of flows under consideration. As such, we consider the
most general case involving all possible combinations of the NPe Peclét numbers and I component flows in
(14), with the understanding that significant further computational reduction is more likely.

NQ denotes the total number of distinct composite solutions S(T;v,Pe) in (25). These solutions are com-
posed from (an average of) NT selections from the set of NS distinct (with respect to i, Pe or t) component
solutions Si,Pe(t). In turn, these solutions are mapped from the NeS distinct (with respect to j, Pe or t) interme-
diate solutions eSj;PeðtÞ, resolved in t to Dt where Dt ¼ T 2�NDt . Accurate solution of eSj;PeðtÞ requires consider-
ation of the shorter time dt, where dt ¼ T 2�Ndt , Ndt P NDt. We assume the scaling factors si,j in (20) are evenly
discretised as si,j = jiDsi, and ji = � Nj:Nj for all i.

Steps 1 and 2 to classify the velocity fields over Q do not explicitly involve computation; rather, they tax the
insight and judgement of the investigator. In Step 1 the piecewise steady velocity approximation (14) is
defined, and error in the fundamental matrix solution can be quantified as follows. Let A(t) denote the piece-
wise steady approximation to the exact advection diffusion operator ÂðtÞ, where A(t) = Ai for t 2 [ti�1, ti). The
exact fundamental matrix solution is ŜðtÞ ¼ expðWðtÞÞ, where W(t) is given by the Magnus expansion [20]
WðtÞ ¼
Z t

0

Âðs1Þds1 �
1

2

Z t

0

Z s1

0

Âðs2Þds2; Âðs1Þ
� �

ds1 þ
1

4

Z t

0

Z s1

0

Z s2

0

Âðs3Þds3; Âðs2Þ
� �

ds2; Âðs1Þ
� �

ds1

þ 1

12

Z t

0

Z s1

0

Âðs2Þds2;

Z s1

0

Âðs3Þds3; Âðs1Þ
� �� �

ds1 þ � � � ; ðC:1Þ
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and [X,Y] = X Æ Y � Y Æ X. The approximate solution over t 2 [0, t1) is simply S1(t) = exp(A1t), and we define
the error �1(t) = W(t) � A1t. The exact fundamental matrix ŜðtÞ may be expanded via the Baker–Campbell–
Hausdorff [4] formula as:
ŜðtÞ ¼ expðA1t þ �1ðtÞÞ

¼ expðA1tÞ � expð�1ðtÞÞ � exp
1

2
½A1t; �1ðtÞ�

� �
� exp

1

12
½A1t; ½A1t; �1ðtÞ��

� �
� exp � 1

12
½�1ðtÞ; ½A1t; �1ðtÞ��

� �
� exp � 1

48
½�1ðtÞ; ½A1t; ½A1t; �1ðtÞ���

� �
� exp � 1

48
½A1t; ½�1ðtÞ; ½A1t; �1ðtÞ���

� �
� � �

¼ exp A1tð Þ � K1ðtÞ;¼ S1ðtÞ � K1ðtÞ: ðC:2Þ
Hence, K1(t) is the relative error for approximating A1 � ÂðtÞ over t 2 [0,t1). This result extends to all t 2 [0,T] as
ŜðtÞ ¼
Yn

i

Siðti � ti�1Þ � Kiðti � ti�1Þ; ðC:3Þ
quantifying how the errors v̂� v (which decrease with Nj) propagate to the fundamental matrix S(t). These
results provide guidance for appropriate approximation of v in Eq. (14), such that accuracy is offset against
the cost of increased computation. Eqs. (C.1) and (C.2) also provide a basis for extension of the method to
higher order (n > 0) temporal approximation of v where required.

Errors in the strange eigenmode decay rates kk arising from the piecewise steady approximation (14) can
determined by considering the following method for approximating the exact fluid velocity v̂. The steady flows
vi which comprise v can be specified by setting dv in the constraint kv̂� vk=kvk 6 dv. As such, dv represents the
maximum possible relative error associated with the approximation v. In the case of scaling of base flows, i.e.
v̂ðx; tÞ ¼ f̂ ðtÞV0ðxÞ (e.g. Section 4), then if f̂ ranges over [fmin, fmax] and Imax appropriately distributed values fi

are used to approximate f̂ , then dv � 1/2Imax.
An upper bound for errors in kk can be derived by considering the worst-case scenario where v ¼ ð1þ dvÞv̂

over all T, hence v̂ is also piecewise steady. Denoting bHðtÞ as the exact spectral advection operator associated
with v̂, then SðtÞ ¼ expfð1þ dvÞ bHðtÞ þ t

Pe Dg. In comparison, eigenvalues of the less accurate operator
expfð1þ dvÞð bHðtÞ þ t

Pe DÞg by scaling are exactly 1 + dv times greater than those of the exact solution. As
such, dv represents an upper bound for errors in the strange eigenmode decay rates kk derived from the
approximate piecewise steady velocity field v. For a modest number of flows Imax = 10, this upper bound is
5%, however in practice such errors are an order of magnitude lower.

Step 3 involves two distinct sources of error associated with spectral expansion of the ADE (4). The first
error involves truncation of the resultant system to a finite (N) number of spectral modes, but no computation
is undertaken. As N controls most of the compromise between accuracy and computational overhead of the
method, Section 5 studies this in detail. As the method is purely spectral, spectral convergence is expected: i.e.
the truncation error approaches zero faster than exp(�N2t) [9].

Second is the computational error associated with spectral expansion of the advective operator v̂ � r for
each of the I base flows, involving calculation of 1

2
N 2 integrals. (Expansion of the diffusion operator is analytic

because the spectral basis functions are the Laplacian eigenfunctions.) Computation of these integrals (the
coefficients Hn,m in (6)) is normally expensive as the basis functions xn are highly oscillatory for large n. How-
ever, as the xn are orthogonal, they satisfy recurrence relations upon differentiation. As such, Levin’s [18] very
efficient method can accurately (relative error 	 Oð10�9Þ) compute definite integrals of the form
Z b

a
QnðxÞP ðxÞdx; ðC:4Þ
where Qn(x) is oscillatory with a differentiation recurrence. P(x) is related to v̂ and minimally evaluated, so the
method suitable for flow fields obtained numerically or experimentally. Although efficient, evaluation of (C.4)
1
2
N 2 � I times is a significant computational overhead.
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Step 4 involves calculation of the short time (dt) order N matrix exponentials (�hi in (D.3)) for each of the I
fundamental flows. The Taylor series expansion is accurate to Oðdt5Þ, and involves 3� I order N matrix mul-
tiplications in total.

Step 5 involves application of the augmented scaling/superposition operator for each of the eI intermediate
flows. If each �h

ji
i for all ji in (D.3) needs to be calculated, then I order N matrix inversions and 2ðNj � 1Þ � I

matrix multiplications are required. From these, the short time matrix solution eSj;PeðdtÞ can be constructed via
(D.3) for each of the eI intermediate flows for eI � I þ ðN Pe � 1Þ order N matrix multiplications.

Determination of eSj;Peðdt2nÞ for n = 1:Ndt via (D.5) needs eI � N Pe � N dt order N matrix multiplications and
additions. From these results, the matrix solution eSj;PeðtÞ for any time t 2 [0,T] can be composed using Eq.
(D.6). Using (D.3) directly, the errors in eSj;PeðT Þ scale as 2�Ndt , whereas for (D.4) the errors scale as 2�5Ndt

for small Ndt and limit toward 2�Ndt with increasing Ndt.
The total possible number of distinct (with respect to i, Pe, t) component solutions Si,Pe(t) is very large

(N Pe � I � 2NDt ), resulting in a huge number of possible permutations (NPe � I ð2
NDt Þ) for S(T,v,Pe) in (25), each

corresponding to a distinct point within Q. Although this blowup demonstrates the ability of the method to
consider a very large number of points within Q via the mapping (17), it is more relevant to consider much
smaller numbers NeS , NS respectively of the distinct solutions eSj;PeðtÞ, Si,Pe(t) from which S(T,v,Pe) are
composed.

Computation of eSj;PeðtÞ to resolution D t is described by (D.6), with n = 1 + NDt � Ndt replacing n = 1. As
such, there are NDt terms in (D.6), however as In = 0 or 1 with equal probability, on average construction of all
the NeS distinct component solutions eSj;PeðtÞ involves a total of NeS � 1

2
NDt order N matrix multiplications.

Step 6 involves calculation of the NS distinct component solutions Si,Pe(t) in (24) from the NeS distinct inter-
mediate solutions eSj;PeðtÞ. This operation involves 2ðNS � NeS Þ order N matrix multiplications.

Step 7 involves construction of the composite fundamental matrix solution S(T;v,Pe) for each of the NQ

points in Q. As such, the computational overhead involves NQ � NT order N matrix multiplications.
Step 8 involves solution of the leading M eigenvalues and eigenvectors of the order N unsymmetric matrix

S(T;v,Pe) for each point in Q. For M small (Oð1Þ) and N 	 Oð105Þ the Arnoldi method is applicable, however
as N increases further the problem becomes intractable for dense systems [8]. Conversely, if all the NPPs are
required (i.e. M = N), then the QZ algorithm is more efficient; however, N is limited to Oð104Þ for dense sys-
tems. Because computational cost increases steeply with N and M, these numerical limitations place practical
upper bounds on both the Peclét number and number of NPPs that can be resolved by the composite spectral
method.

The computational expense of the composite spectral method is summarised in Table C.1, for the most gen-
eral case involving all possible combinations of mappings. Although the method appears to be computation-
ally intensive, in many cases further computational savings arise due to omission or reduction of particular
steps, and often I , eI , NPe are small.
Table C.1
Summary of computational expenses of the composite spectral method

Step Calculation Computation

3 Hn,m in Hi for i ¼ 1 : I I � 1
2 N2 integrals

4 expðHidtÞ for i ¼ 1 : I 3I mm’s

5a �h
ji
i for all i ¼ 1 : I, ji = � Nj:Nj I mi’s & I � 2ðNj � 1Þ mm’s

5b eSj;PeðdtÞ for i ¼ 1 : eI eI � I þ ðNPe � 1Þ mm’s

5c eSj;Peðdt2nÞ for i ¼ 1 : eI , n = 1:Ndt
eI � NPe � ðNdt � 1Þ mm’s

5d NeS � eSj;PeðtÞ to resolution Dt NeS � 1
2 NDt mm’s

6 NS · Si,Pe(t) to resolution Dt 2ðNS � NeSÞ mm’s

7 NQ � SðT ; v; PeÞ NQ � NT mm’s

8 NQ strange eigenmodes NQ � ðN ;MÞ ep’s

mm = order N matrix multiplication, mi = order N matrix inversion, (N,M) ep = solution of leading M eigenvectors and eigenvalues of
order N unsymmetric matrix.
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Appendix D. Efficient calculation of exponentials of matrix sums

Following Eqs. (22) and (23), we require an efficient method to calculate matrix exponentials which arise
from application of the scaling/superposition operator
eSj;PeðtÞ ¼ exp eHj �
1

Pe
D

� �
t

� �
;

¼ exp
XI

i

si;jHi �
1

Pe
D

 !
t

( )
;

ðD:1Þ
for different values of the variables si,j, Pe and all t 2 [0, T]. Often the scaling factors si,j are evenly discretized
due to the piecewise steady approximation (14), and so may be expressed as si,j = ji Dsi, where ji are integers.

We summarise efficient calculation of exponentials of the form expð
P

ijiMitÞ as follows. For exponentials
involving sums of non-commuting matrices, errors in the product expansion expð

P
ijiMitÞ �

Q
i expðMitÞji can

be large as they scale as t2ji , and these results need to be calculated for all t 2 [0, T]. However, when calculating
the single exponential exp(M t), A Taylor series expansion performed for small times dt is most efficient [34],
and the results subsequently scaled up to T via matrix multiplication. Returning to the matrix sum, if the prod-
uct expansion above is performed prior to scaling, these errors now scale as dt2ji , and so this expansion can be
applied accurately with no extra computational expense. For different sets {ji} involving increasing ji, the
product expansion can be ‘‘built up’’ by appropriate multiplication of additional terms exp(Midt) prior to scal-
ing. Finally, the exponential for any t 2 [0,T] to resolution dt can be constructed from the intermediate sca-
lings between dt and T.

Specifically, the component exponentials in the product expansion can be efficiently calculated via the Tay-
lor series expansion
expðMÞ ¼ IþMþM �M
2

IþM

3
þM �M

12

� �
þOðM5Þ: ðD:2Þ
Step 4 of the method requires calculation of the terms �hi ¼ expðDsiHidtÞ from (D.1) for all i ¼ 1 : I , which
can be efficiently achieved via (D.2), where dt ¼ T 2�Ndt , Ndt a positive integer. Using these results, the short
time matrix solution is constructed as
eSj;PeðdtÞ ¼ d �
YI

i

�h
ji
i þO

XI

i

Dsidtð Þ2ji

 !
; ðD:3Þ
where d ¼ expð�dt
Pe DÞ is analytic for all Pe. In the case of I ¼ 1, the fourth-order hybrid approximation of Su-

zuki [31] is more accurate
expðmM1 þ mM2Þ ¼ exp
m3

144
½M2; ½M1;M2��

� �
� exp

m
6

M2

	 

� exp

m
2

M1

	 

exp

2m
3

M2

� �
� exp

m
2

M1

	 

� exp

m
6

M2

	 

� exp

m3

144
½M2; ½M1;M2��

� �
þOðm5Þ; ðD:4Þ
which can also be applied iteratively for small I . In this case, the component exponentials in (D.4) are still
efficiently calculated via (D.2), and the product expansion (D.3) is modified in a manner consistent with
(D.4). In essence, Eqs. (D.2) and (D.3) are the augmented scaling/superposition operator SH

j . The high accu-
racy (up to Oðdt5jiÞ for (D.4)) of these formulae arise from the smallness of dt, but these results must be scaled
up to any value of t 2 [0, T]. Such arbitrary scaling can be achieved efficiently using the precise integration
method of Zhong [34] which avoids the rounding errors that plague many such methods [7]:
bSn � eSj;Peðdt2nÞ � I;bSnþ1 ¼ 2bSn þ bSn � bSn for n ¼ 0 : N dt � 1:
ðD:5Þ
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Finally, the exponential for any time t 2 [0,T] to resolution dt can be calculated as
eSj;PeðtÞ ¼
YNdt

n¼1
In¼1

eSj;Peðdt2nÞ; ðD:6Þ
where In is the nth digit from the right of b t
dtc in binary form. Due to the wide variety of possible mapping

combinations, it is not possible to prescribe optimal storage protocols for computation of the matrix exponen-
tial (D.1) for differing {si,j}. In most cases it is preferential to compute and store hi for i ¼ 1 : I , but the ques-
tion of the best quantities to store in the hierarchy hi ! h

ji
i ! eSj;PeðdtÞ ! eSj;Peðdt2nÞ ! eSj;PeðtÞ depends

strongly on the specific nature of the flows v in Q. In the case of scaling only, Eq. (D.4) is simplified because
D is diagonal. For cases involving no scaling or superposition (i.e. t only in (D.1) is varied), the matrix expo-
nential is best calculated directly via (D.2) and (D.5).

Appendix E. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/
j.jcp.2007.10.015.
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[22] S.D. Müller, I. Mezić, J.H. Walther, P. Koumoutsakos, Transverse momentum micromixer optimization with evolution strategies,
Computers and Fluids 33 (2004) 521–531.

[23] J.M. Ottino, The Kinematics of Mixing: Stretching, Chaos and Transport, Cambridge University Press, Cambridge, 1989.
[24] J.M. Ottino, G. Metcalfe, S.C. Jana, Experimental studies of chaotic mixing, in: W. Ditto, L. Pecora, M. Shleshinger, M. Spano, S.

Vohra, (Eds.), Proceedings of the Second Experimental Chaos Conference, Office of Naval Research, 1995.
[25] R.T. Pierrehumbert, Tracer microstructure in the large-eddy dominated regime, Chaos, Solitons and Fractals 4 (6) (1994) 1091–1110.
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