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We determine optimal inflow boundary perturbations to steady flow through a straight
inflexible tube with a smooth axisymmetric stenosis at a bulk-flow Reynolds number
Re = 400, for which the flow is asymptotically stable. The perturbations computed
produce an optimal gain, i.e. kinetic energy in the domain at a given time horizon
normalized by a measure of time-integrated energy on the inflow boundary segment.
We demonstrate that similarly to the optimal initial condition problem, the gain
can be interpreted as the leading singular value of the forward linearized operator
that evolves the boundary conditions to the final state at a fixed time. In this
investigation we restrict our attention to problems where the temporal profile of
the perturbations examined is a product of a Gaussian bell and a sinusoid, whose
frequency is selected to excite axial wavelengths similar to those of the optimal
initial perturbations in the same geometry. Comparison of the final state induced by
the optimal boundary perturbation with that induced by the optimal initial condition
demonstrates a close agreement for the selected problem. Previous works dealing with
optimal boundary perturbation considered a prescribed spatial structure and computed
an optimal temporal variation of a wall-normal velocity component, whereas in this
paper we consider the problem of a prescribed temporal structure and compute the
optimal spatial variation of velocity boundary conditions over a one-dimensional inflow
boundary segment. The methodology is capable of optimizing boundary perturbations
in general non-parallel two- and three-dimensional flows.
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1. Introduction
Incompressible flow though a smooth axisymmetric constriction in an otherwise

straight rigid pipe serves as a model for physiological flow through an artery in the
presence of a stenosis caused by atherosclerotic plaque. Using the justification that
a diametral restriction of 50 % (or 75 % occlusion based on cross-sectional area) is
typically both observable in ultrasound clinical investigations and taken as an indicator
for surgical intervention, we concentrate on flows through a co-sinusoidal stenosis with
75 % occlusion and a length which is twice the upstream pipe diameter, D, as shown
in figure 1. As a result of adverse pressure gradient, flow typically separates from the
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FIGURE 1. Stenosis geometry, with a co-sinusoidal shape, L = 2D and D = 2Dmin.

wall near the location of maximum restriction, the stenosis throat; steady laminar flow
will reattach to the wall further downstream.

In this geometry, steady laminar flow of initial Hagen–Poiseuille profile becomes
unstable to a Coanda-type global linear instability at Reynolds number Re = uD/⌫ =
722 (with u and ⌫ respectively the area-average inlet flow speed and fluid kinematic
viscosity) that tends to make the separated jet attach to the wall some distance
downstream of the stenosis throat (Sherwin & Blackburn 2005). Under nonlinear
evolution, this instability saturates to a turbulent flow that reaches upstream to within
approximately four diameters of the stenosis throat.

Pulsatile flow, resulting in the ejection of axisymmetric vortex rings from the
stenosis throat, may also be unstable to global modes which are typically associated
with these rings, and have been characterized as either taking the form of alternating
tilting of successive rings, or as waves that grow within each ring (Sherwin &
Blackburn 2005; Blackburn & Sherwin 2007). Using a normalizing time scale of
D/u, the pulse period T may be characterized dimensionlessly as a reduced velocity
Ured = uT/D. For simple pulse waveforms, the ring-related global instabilities occur
for combinations of Reynolds numbers and reduced velocities which could be
observed in the human arterial tree.

The instabilities described above are of asymptotic type, i.e. in the linear case
they grow exponentially with time. However, these flows may also support very large
transient energy growth of suitable initial disturbances, as a result not of asymptotic,
but of local convective instability stemming from non-normality of eigenmodes
(Chomaz 2005; Schmid 2007). The physics of transient growth, again for the smooth
co-sinusoidal constriction, has been investigated for steady, simple pulsatile, and an
example physiological waveform by Blackburn, Sherwin & Barkley (2008b) and Mao,
Sherwin & Blackburn (2011). We note that these studies were carried out for Reynolds
numbers which provided linear asymptotic stability, but still admit large transient
growth – potentially, large enough to produce transition to turbulence for very small
disturbances, i.e. bypass transition.

For steady flow at Re = 400, the maximum observed linear perturbation kinetic
energy growth Gmax = G(⌧max) = E(⌧max)/E(0) = 8.94 ⇥ 104, where E(t) is volume-
average kinetic energy at time t and ⌧max is the finite time horizon which results in
maximum energy growth. For steady flow at Re = 400, maximum growth occurs for a
dimensionless time horizon ⌧max = 4.40 (times are normalized by D/u), and occurs for
a perturbation at azimuthal wavenumber m = 1 (Blackburn et al. 2008b). The optimal
perturbation takes the form of a local convective instability whose dimensionless axial
wavelength ⇤ = 1.83 (lengths are normalized by D) is preserved during the transient
growth process, and the instability has the form of a sinuous disturbance to the
originally axisymmetric jet shear layer. The optimal initial perturbation is concentrated
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around the separation line, a feature that has also been observed for transient growth
in other separating flows (Blackburn, Barkley & Sherwin 2008a; Cantwell, Barkley &
Blackburn 2010). At the time horizon for maximum growth, the optimal disturbance
has greatest energy density around the reattachment line of the base flow, which for
Re = 400 is located 9.1 pipe diameters downstream of the stenosis throat.

For long-period simple (single-harmonic, non-reversing) pulsatile flow at Ured = 10,
analysis presented in Blackburn et al. (2008b) showed that the optimal initial condition
generated sinuous disturbances in an extended shear layer trailing behind the vortex
ring associated with the pulse front. In many respects the optimal disturbance for that
flow was similar in nature to the optimal disturbance for steady flow. Although the
maximum transient energy growth for the pulsatile flow with Ured = 10, Re = 400
was much larger than for steady flow with the same nominal Reynolds number,
i.e. Gmax = 1.10 ⇥ 1010 as opposed to Gmax = 8.94 ⇥ 104 for steady flow, a significant
proportion of the difference could be accounted for by basing the Reynolds number on
the peak flow speed rather than the mean. Such a large sensitivity to Reynolds number
is found in a variety of separated flows, which can exhibit exponential growth in Gmax

with Re (Cantwell et al. 2010). We note also that for a physiological waveform typical
of that found in the human common carotid artery and which has a yet higher ratio of
peak to mean flow speed than the case just described, explosive linear transient growth
with Gmax = 1.13 ⇥ 1025 was predicted at Re = 300 (Mao et al. 2011).

In many applications with open flows, one is potentially more interested in the
possibility of transient growth brought about not by initial conditions, but by inflow
boundary conditions, i.e. on perturbations which advect into the domain. For example,
one may be interested in the effect of fluctuations, potentially created from upstream
flow instabilities in the arterial tree or possibly respiratory and/or other external
movements, on the inflow. In the past, we have studied this kind of sensitivity through
direct numerical simulation (DNS) in which the inflow is perturbed with low-level
uniformly distributed white noise in all velocity components (Blackburn et al. 2008a,b;
Cantwell et al. 2010). In the cases studied, disturbances with maximum energy
downstream of the inlet bear a very strong resemblance to the optimal disturbance
at the time horizon for maximum growth.

This connection strongly suggests a direct linkage between optimal initial
perturbations and optimal boundary perturbations but as yet we are only aware of
boundary perturbation analysis being applied to optimal control through boundary
transpiration. Motivated to investigate the inflow sensitivity of stenotic flows by
T. J. Pedley (private communication), our aim in the present work is to develop a
method to compute inflow perturbations of optimal gain. The methodology is based
around constrained optimization obtained via maximizing a Lagrangian functional, and
shares some elements with techniques previously advanced for local optimal control
through wall boundary transpiration, e.g. by Corbett & Bottaro (2001) and Guégan,
Schmid & Huerre (2006).

2. Problem definition
As indicated in figure 1, we adopt a cylindrical coordinate system with its

origin at the centre of the stenosis throat. The (axial, radial, azimuthal) position
coordinates are (z, r, ✓), and the associated components of velocity u are (u, v, w). As
outlined in § 1, velocities are normalized by the bulk flow speed u of the upstream
Hagen–Poiseuille flow, and the length scale adopted is the upstream pipe diameter D,
giving D/u as the time scale, and Reynolds number Re = uD/⌫. From here forward we
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adopt dimensionless variables based on these normalizations. We consider a maximum
Reynolds number Re = 400 for which the base flow is asymptotically stable; the same
Reynolds number was the main focus of attention in the transient growth study of
Blackburn et al. (2008b).

Working from the incompressible Navier–Stokes equations

@
t

u = �u ·ru � rp + Re�1r2u with r ·u = 0, (2.1)

where p is the modified or kinematic pressure, the flow field is decomposed as the sum
of a base flow and a perturbation, i.e. (u, p) = (U, P) + (u0, p

0). The evolution of small
perturbations is governed by the linearized Navier–Stokes (LNS) equations

@
t

u0 = �U ·ru0 � (rU)T · u0 � rp

0 + Re�1r2u0 with r ·u0 = 0, (2.2)

or more compactly

@
t

u0 � L(u0) = 0. (2.3)

As these equations are linear and there is a natural periodic coordinate we
can further decompose the perturbation field into azimuthal Fourier modes, each
of which will evolve independently. The base flow is confined to the zeroth
Fourier mode. We also note that since (linearly independent) modes of forms
(u0, p

0)+
m

= [u+
m

(z, r) cos(m✓), v+
m

(z, r) cos(m✓), w

+
m

(z, r) sin(m✓), p

+
m

(z, r) cos(m✓)] and
(u0, p

0)�
m

= [u�
m

(z, r) sin(m✓), v�
m

(z, r) sin(m✓), w

�
m

(z, r) cos(m✓), p

�
m

(z, r) sin(m✓)] retain
the same forms after passage through (2.3), one can further deal with either of
these reduced forms, thus effectively reducing consideration of a complex mode to a
pair of real modes (Barkley & Henderson 1996). When perturbations are displayed,
this is with the understanding that we will typically be dealing with (u0, p

0)+
m

.
To keep notation reasonably compact in what follows we implicitly adopt Fourier
decomposition for the perturbation field, only introduce its azimuthal Fourier mode
index m when required, and suppress representation of ✓ -dependence. Here we only
consider (non-axisymmetric) perturbations with |m| > 0, hence with zero net mass flux
on any axis-normal cross-section of the domain.

This work has the aim of computing linear optimal-gain inflow boundary condition
perturbations for an open flow system and in the stenotic flow under consideration
these are introduced on an inflow boundary segment located two pipe diameters
upstream of the stenosis throat. This is comparatively remote from the location
of the energy-optimal initial perturbation, which is tightly clustered around the
flow separation in the throat (Blackburn et al. 2008b), and is also sufficiently far
upstream of the contraction that it is reasonable to use a Hagen–Poiseuille parabolic
velocity profile on this boundary segment when computing the base flow. The initial
perturbation is taken to be zero on the interior of the domain.

We let u
c

denote an inflow boundary velocity perturbation and assume a separation-
of-variables form

u
c

(z, r, t) = û
c

(z, r)f (t). (2.4)

The objective is to optimize the spatial function û
c

(z, r) for a specified form of f (t), in
order to maximize the gain in perturbation kinetic energy at a given time horizon ⌧ ,
when normalized by the kinetic energy on the boundary of û

c

(z, r); we will formalize
this relationship in § 3. Our choice of f (t) is guided by prior knowledge of the
form of localized convective instability in this flow (Blackburn et al. 2008b), which
at Re = 400 is a wavepacket with axial wavelength ⇤ = 1.83 and an initial convection
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FIGURE 2. The temporal dependence of inflow boundary velocity perturbation f (t) defined in
(2.5). The dashed line represents the magnitude of the Gaussian term in that equation.

speed close to Umax = 2u (see figure 5d, Blackburn et al. 2008b). Also, we seek a
function which has compact support in time, and thus compose the temporal variation
of f as the product of a Gaussian envelope and a sinusoid:

f (t) = exp(� [t � t0]2 /� ) cos(!t), (2.5)

where t0 = 1.75⇤/Umax = 1.6013 and � = 1/3 are adopted to make the time
discontinuity at the beginning of the evolution of order of 10�4 and therefore
approximately compatible with the (zero) initial conditions on the interior of the
domain. Since the Gaussian envelope peaks at zero in the frequency domain, ! is the
dominant angular frequency of u

c

(z, r, t), and chosen based on the known wavelength
⇤ and the initial convection speed of the disturbance, i.e. ! = 4⇡u/⇤ ⇡ 6.87. The
form of f (t) is illustrated in figure 2, where we observe that it has odd parity with
respect to the central time of the Gaussian envelope; therefore the time integral of f (t)
is zero.

3. Optimization methodology
3.1. Lagrangian functional for optimal boundary conditions

We commence by introducing scalar products defined on spatial domain ⌦ and its
boundary @⌦:

(a, b) =
Z

⌦

a · b dV, ha, bi =
Z ⌧

0

Z

⌦

a · b dV dt, [c, d] = D

Z

@⌦

c · d dS. (3.1)

Note the length scale D preceding the final integral, included to make ratios of the
form (a, b)/[c, d] dimensionless. With these definitions, a Lagrangian functional for
the optimal boundary condition perturbation can be expressed as

L = (u0
⌧ ,u

0
⌧ )

[û
c

, û
c

] � hu⇤, @
t

u0 � L(u0)i, (3.2)

where u⇤ is an adjoint velocity field and u0
⌧ denotes the perturbation velocity vector at

time horizon t = ⌧ . The energy ratio term in this equation is what we seek to optimize,
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and we denote its maximum value as the optimal gain

K(⌧ ) = maxû
c

(u0
⌧ ,u

0
⌧ )

[û
c

, û
c

] , (3.3)

while the global optimum gain, Kmax = max⌧ K(⌧ ). Gain K represents the maximum
possible amount of perturbation energy at time ⌧ , normalized by a term representing
the cost of the control forcing on the inflow boundary, for a specific choice of
time envelope f (t). The gain is determined by the spatial distribution of û

c

and is
independent of its magnitude. Initial conditions in the interior of the domain are set to
zero in order to make (u0

0,u
0
0) = 0.

The last scalar product term in (3.2) enforces the constraint that u satisfies the
LNS equations. One may integrate this term by parts to obtain (Barkley, Blackburn &
Sherwin 2008)

�hu⇤, @
t

u0 � L(u0)i = hu0, @
t

u⇤ + L

⇤(u⇤)i +
Z ⌧

0

Z

⌦

�@
t

(u0 ·u⇤) dV dt

+
Z ⌧

0

Z

⌦

r · [�U(u0 ·u⇤) + u0
p

⇤ � u⇤
p

0 + Re�1(ru0 ·u⇤ � ru⇤ ·u0)] dV dt, (3.4)

where L

⇤(u⇤) = U · ru⇤ � rU · u⇤ � rp

⇤ + Re�1r2u⇤, and r · u⇤ = 0. Using the
divergence theorem, the last integral can be stated using only boundary terms as

�hu⇤, @
t

u0 � L(u0)i = hu0, @
t

u⇤ + L

⇤(u⇤)i +
Z ⌧

0

Z

⌦

�@
t

(u0 ·u⇤) dV dt

+
Z ⌧

0

Z

@⌦

n · [�U(u0 ·u⇤) + u0
p

⇤ � u⇤
p

0 + Re�1(ru0 ·u⇤ � ru⇤ ·u0)] dS dt, (3.5)

where n is a unit outward-normal vector on the boundary of the domain, @⌦ .
Substituting (3.5) into (3.2), prescribing u⇤(@⌦) = 0 and u0

0(⌦) = 0 one obtains

L = (u0
⌧ ,u

0
⌧ )

[û
c

, û
c

] + hu0, @
t

u⇤ + L

⇤(u⇤)i

� (u⇤
⌧ ,u

0
⌧ ) +

Z ⌧

0
(p⇤n � Re�1rnu⇤)f ⇤(t) dt, û

c

�
, (3.6)

where rnu = n · ru is the outward-normal component of a velocity gradient and f

⇤(t)
is the adjoint operator of f (t). Considering the form of f (t) defined in (2.5), we have
f

⇤(t) = f (t).
In previous work (Corbett & Bottaro 2001; Hogberg & Henningson 2002; Guégan

et al. 2006), the pressure and a velocity component appearing in the last expression
of (3.6) were eliminated as both zero-Dirichlet and zero-Neumann conditions were
enforced on the boundary. In what follows we initially consider these terms to be
non-zero.

Setting to zero the first variations of L with respect to its independent variables
u⇤,u and u⌧ (u and u⌧ are independent since their relation has been taken into account
as a constraint in the definition of the Lagrangian functional) yields the following set
of equations:

�L

�u⇤ = 0 ) @
t

u0 � L(u0) = 0, (3.7)
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�L

�u0 = 0 ) @
t

u⇤ + L

⇤(u⇤) = 0, (3.8)

�L

�u0
⌧

= 0 ) u⇤
⌧ = 2u0

⌧

[û
c

, û
c

] . (3.9)

In the above, (3.7) are the LNS equations as previously defined in § 2, which evolve
the velocity perturbation u0

0 forwards in time from t = 0 to t = ⌧ , (3.8) are the adjoint
equations, which evolve the adjoint velocity u⇤

⌧ backwards from t = ⌧ to t = 0, while
(3.9) scales the outcome of the LNS equations at time t = ⌧ in order to initialize the
adjoint equation. The gradient of the Lagrangian functional with respect to the spatial
distribution of the boundary condition û

c

can be defined as

rû
c

L = �2(u0
⌧ ,u

0
⌧ )

[û
c

, û
c

]2 û
c

+ g(u⇤, p

⇤, !), (3.10)

where

g(u⇤, p

⇤, !) =
Z ⌧

0
(p⇤n � Re�1rnu⇤)f ⇤(t) dt (3.11)

is a vector function of position along the inflow boundary.
To summarize the initial and boundary conditions we adopt the following: the initial

condition for the LNS equations is u0
0 = 0 on the interior of the domain ⌦ . For

evolution of the adjoint equations, the initial adjoint state (at time ⌧ ), u⇤
⌧ , is computed

from (3.9). The domain boundary @⌦ has four non-overlapping segments: inflow
and outflow (according to the direction of the base flow), a non-slip wall, and the
axis. On the inflow boundary segment of @⌦ , we have Dirichlet boundary conditions
on the perturbation velocity: u0 = u

c

= û
c

f (t) in which the temporal function f (t) is
prescribed, and where the spatial function û

c

is part of the optimization objective.
On this segment the adjoint boundary conditions are prescribed to be u⇤ = 0, while
for pressure variables we adopt p

0 = p

⇤ = 0 in order to eliminate the contribution
of adjoint pressure in the gradient of the Lagrangian functional in (3.10). On the
outflow boundary segment, u0 = u⇤ = p

0 = p

⇤ = 0 are adopted in order that the last
integral in (3.5) is zero on this segment. On the non-slip wall, zero velocities again
eliminate contributions to this integral, and computed-Neumann boundary conditions
are employed on pressure in a standard way for the cylindrical coordinate velocity
splitting scheme (Blackburn & Sherwin 2004). Along the axis, boundary conditions
depend on the azimuthal wavenumber m and solution variable, and these are zero-
Dirichlet or zero-Neumann (again as outlined in Blackburn & Sherwin 2004) in
combinations that also make no contribution to the same integral term.

We note that other valid combination of boundary conditions exist for the adjoint
variables, i.e. the Robin condition

rnu⇤ � rnu0

u0 u⇤ = 0 with p

⇤ = 0, (3.12)

which when the perturbation flow is parallel (i.e. rnu0 = 0) is more consistent with
an outflow-type boundary condition. The factor rnu0/u0 (calculated component-by-
component so that each term in this ratio is scalar) is calculated and stored in the
forward integration of (3.7) and substituted into the Robin condition (3.12) at every
time step during the backward integration of (3.8). Careful treatment of this term is
required at the intersection of this segment with the wall since at this point u0 is
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defined to be exactly zero and so we directly enforce u0 = 0. For these boundary
conditions the definition of g becomes

g(u⇤, p

⇤, !) =
Z ⌧

0
(�n ·U)u⇤

f

⇤(t) dt. (3.13)

An outflow-type condition on the adjoint variable along this segment might be
considered as more appropriate if one follows the heuristic argument that the ‘inflow’
boundary for the LNS equations is an ‘outflow’ boundary condition for the adjoint
equations owing to the change in sign of the advection terms. We will demonstrate
however that both sets of boundary conditions lead to the same value of gain. This
combination of boundary conditions also requires extra memory (to store rnu0/u0) and
more computer time owing to the update of the Robin condition for velocities in the
backward integration. Therefore in the present work we validate the use of this type of
boundary condition but have not otherwise employed it.

3.2. Eigenvalue interpretation
We denote as M an evolution operator such that

u0
⌧ = M û

c

where u0
⌧ 2 ⌦, û

c

2 @⌦ (3.14)

and note that the function f (t) is part of the evolution operator M .
Next we introduce another operator M ⇤

g(u⇤, p

⇤, !) = M ⇤u⇤
⌧ where g 2 @⌦,u⇤

⌧ 2 ⌦, (3.15)

whose action corresponds to first evolving u⇤
⌧ backwards in the adjoint LNS equation

(3.8) to obtain u⇤ and p

⇤, followed by calculating g from (3.11). To understand the
relation between the two operators M and M ⇤, we note that when u0 satisfies the
LNS equations and u⇤ satisfies the adjoint equations then subject to our initial and
boundary assumptions of u0 = 0 and u⇤(@⌦) = 0, (3.5) requires that

(u0
⌧ ,u

⇤
⌧ ) � [û

c

, g] = 0. (3.16)

After substituting (3.14) and (3.15) into (3.16) we observe that M and M ⇤ satisfy the
duality relation

(M a, b) = [a,M ⇤b]. (3.17)

We further observe, recalling (3.9), that the joint action of M ⇤ and M on the
boundary perturbation û

c

can be expressed as

M ⇤M û
c

= M ⇤u⌧ = g(u⇤, p

⇤, !)
[û

c

, û
c

]
2

. (3.18)

If the matrix form of the forward operator M were available, we could obtain the
optimal inflow perturbation, optimal gain and optimal response from the singular-value
decomposition of M :

MU
i

= �
i

V
i

. (3.19)

The sets of right and left singular vectors U
i

and V
i

form two orthogonal bases, and
they are normalized so that [U

i

,U
i

] = 1 and (V
i

,V
i

) = 1. The singular values �
i

are
real and positive. Clearly the largest singular value is the square root of the optimal
gain and the corresponding right and left singular vectors are the optimal inflow
perturbation and the optimal outcome.
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This singular-value decomposition approach is a direct method and only the forward
operator M is involved, but in general the matrix form of M is not available.
Therefore, in the main part of this paper commencing at § 4, we will adopt an
adjoint–iterative method that does not explicitly require M in order to calculate the
optimal gain and optimal perturbation. In the remainder of this section, we will,
however, demonstrate that the optimal gain and inflow perturbation are the largest
eigenvalue and the corresponding eigenvector of the joint operator M ⇤M .

When û
c

converges to the eigenvector of M ⇤M , we see from (3.18) that
g(u⇤, p

⇤, !) is parallel to û
c

. If we denote g(u⇤, p

⇤, !) = �û
c

, then the corresponding
maximal eigenvalue of the joint operator, or the optimal gain, is K = [g, û

c

]/2 =
�[û

c

, û
c

]/2. Substituting (3.14) into (3.2) and recognizing that M satisfies @
t

u0 = L(u0)
we obtain

L = (M û
c

,M û
c

)

[û
c

, û
c

] = [û
c

,M ⇤M û
c

]
[û

c

, û
c

] (3.20)

where we have applied (3.17) to obtain the last term. Taking the variation of the
Lagrangian functional (3.20) with respect to û

c

produces

�L = 2[�û
c

,M ⇤M û
c

]
[û

c

, û
c

] � 2[û
c

,M ⇤M û
c

][�û
c

, û
c

]
[û

c

, û
c

]2 . (3.21)

Since the joint operator M ⇤M is self-adjoint, when the operator M ⇤M is
discretized to form an N ⇥ N matrix, then this matrix will have N real eigenvalues
and N orthogonal eigenvectors. We denote the eigenvalue and eigenvector pair of this
as �

i

and v
i

with i = 1, . . . , N and �1 6 �2 6 · · · 6 �
N

where v
i

is normalized so that
[v

i

,v
i

] = 1.
We see that the variation of the Lagrangian functional in (3.21) is zero, at and only

at, û
c

= v
i

where M ⇤M v̂
i

= �
i

v̂
i

. We now calculate the second-order variation to see
if û

c

= v
i

are local or global extreme points of the Lagrangian functional:

�2L = �2[û
c

,M ⇤M û
c

][�û
c

, �û
c

]
[û

c

, û
c

]2 � 8[�û
c

,M ⇤M û
c

][û
c

, �û
c

]
[û

c

, û
c

]2

+ 2[�û
c

,M ⇤M �û
c

]
[û

c

, û
c

] + 8[û
c

,M ⇤M û
c

] [�û
c

, û
c

]2

[û
c

, û
c

]3 . (3.22)

At the stationary points where û
c

= v
i

and the second and fourth terms are balanced,
the second-order variation becomes

�2L = 2
[û

c

, û
c

]([�ûc

,M ⇤M �û
c

] � [�û
c

, �û
c

]�
i

). (3.23)

We recall that the sign of the second-order variation depends on the second factor on
the right-hand side of (3.23). Since the eigenvectors of M ⇤M , v

i

are orthogonal, �û
c

can be represented as

�û
c

= a1v1 + · · · + a

i

v
i

+ · · · + a

N

v
N

. (3.24)

Recalling that [v
i

,v
i

] = 1, we have

[�û
c

,M ⇤M �û
c

] = a

2
1�1 + · · · + a

2
i

�
i

+ · · · + a

2
N

�
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, (3.25)

and

[�û
c

, �û
c

]�
i

= (a2
1 + · · · + a

2
i

+ · · · + a

2
N

)�
i

. (3.26)
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FIGURE 3. Spectral element mesh: (a) overall mesh (note use of expanded radial scale); and
(b) mesh around the inflow boundary and contraction section (true aspect ratio).

Substituting (3.25) and (3.26) into (3.23), we see that if �
i

= �1, �2L > 0 (�2L = 0
is satisfied when a2, . . . , a

N

= 0); if �
i

= �
N

, �2L 6 0 (�2L = 0 is satisfied when
a1, . . . , a

N�1 = 0); if �
i

6= �1 and �
i

6= �
N

, the sign of �2L depends on the values
of a1, . . . , a

N

. Therefore û
c

= v1 is the global minimum point of the Lagrangian
functional and this minimum value is �1; û

c

= v
N

is the global maximum point and
this maximum value is �

N

; û
c

= v2, . . . ,vN�1 are inflection points with �L = 0 but
are not local or global extreme points. Our optimization procedure therefore ensures
that the inflow perturbation converges to the maximum value point û

c

= v
N

. At this
maximum point, we note that g(u⇤, p

⇤, !) is parallel with û
c

and the optimal gain

K = �
N

= [g, û
c

]/2 with g = �û
c

. (3.27)

4. Numerical methods
4.1. Discretization

Spectral elements employing piecewise continuous nodal-based polynomial expansions
within mapped-quadrilateral elemental subdomains are adopted for spatial
discretization of the axisymmetric geometry in the meridional semi-plane, coupled
with a Fourier decomposition in azimuth. Time integration is carried out using a
velocity-correction scheme. Details of the discretization and its convergence properties
(exponential in spatial variables, second-order in time) are given in Blackburn &
Sherwin (2004). The same numerics are used to compute base flows and the actions of
the forward and adjoint LNS operators, with the same time step (1t = 1.5259 ⇥ 10�4)
being retained for all three integrations. The overall mesh and detail around the
stenosis is shown in figure 3.

4.2. Optimization procedure
The optimization procedure employed to maximize the Lagrangian functional and
obtain the optimal initial boundary condition, similar to the initial perturbation
optimization outlined by Schmid (2007), is as follows.

(i) Insert a random spatial function into (2.4) to generate an initial guess for u
c

.
(ii) Evolve u

c

to obtain u0
⌧ by integrating the LNS equations (2.3) forwards from t = 0

to t = ⌧ .
(iii) Scale u0

⌧ using (3.9) to obtain the initial condition of the adjoint equations u⇤
⌧ .

(iv) Evolve u⇤
⌧ using (3.8) to obtain g(u⇤, p

⇤, !) by integrating the adjoint velocity
field backwards from t = ⌧ to t = 0.

(v) Substitute g(u⇤, p

⇤, !) into (3.10) to obtain rû
c

L .
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P K (CG) K (SG) K (BFGS) K (CG, Robin BC)

3 1.800 1.800 1.800 1.770
4 1.653 1.653 1.653 1.631
5 1.654 1.654 1.654 1.633
6 1.653 1.653 1.653 —
7 1.653 1.653 1.653 —

TABLE 1. Convergence of gain K with respect to spectral-element polynomial order P at
Re = 400, ! = 6.87 and ⌧ = 3.0518, as computed via various optimization algorithms (see
text) and with zero Dirichlet adjoint velocity boundary conditions employed on the inflow
boundary segment. The final column is calculated using the Robin boundary condition
(3.12) during backward integration of the adjoint equations, while zero Dirichlet adjoint
velocity boundary conditions were used to compute the other outcomes.

(vi) Update the spatial function of the inflow perturbation from step k to k + 1, such
that ûk+1

c

= ûk

c

+ ↵kP (rû
c

L )k, where ↵ is a step length and P (ru
c

L )k is a
search direction.

(vii) Repeat (ii)–(vi) until the gain K converges.

The search direction P(ru
c

L ) is calculated using the Fletcher–Reeves conjugate
gradient (CG) method (see e.g. Nocedal & Wright 1999). We also tested the steepest
gradient (SG) and BFGS quasi-Newton methods, finding that the converged outcome is
independent of choice of method. The step length ↵ is the optimal step length obtained
from a line search.

4.3. Convergence and validation
As a convergence test we consider the gain K as a function of polynomial order for
CG, SG and BFGS methods as reported in table 1. We see that all the three methods
converge uniformly to four significant figures at P = 6. The value of K is insensitive to
the choice of initial boundary perturbations and if the converged optimal perturbation
is polluted with a small amount of white noise and the optimization is run again with
the outcome as an initial guess, the algorithm converges to the same solution. This
confirms that it has reached the global maximum point of the Lagrangian function
rather than a point of inflection.

The final column of table 1 shows the gain obtained using CG but with Robin
boundary conditions (3.12) employed for the adjoint system on the inflow boundary
segment. In this case the gain converges to within 1.5 % of that obtained using
the zero adjoint variable boundary conditions at an equivalent resolution. However,
we have thus far been unable to make the optimization converge when using these
boundary conditions with P > 5.

5. Results
As justified in §§ 1 and 2, in the following we set Reynolds number Re = 400,

azimuthal wavenumber m = 1 and temporal frequency ! = 4⇡u/⇤ = 6.87, if not
otherwise stated. These choices provide outcomes which may be directly compared
with the main body of results presented for the global optimum initial perturbation in
steady stenotic flow at this Reynolds number, as described in Blackburn et al. (2008b).

Figure 4 illustrates the envelope of optimal gain for 3.05 < ⌧ < 14.65, as well as
two individual transient responses of optimal inflow perturbations at ⌧ = 3.05 and
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FIGURE 4. Optimal gain envelope for Re = 400, m = 1, and time evolution of transient gains
with optimal inflow perturbations specific to ⌧ = 3.05 and ⌧ = 6.71; the latter is the case
which provides global optimum Kmax = 159.4.

⌧ = 6.71, which in the latter case reaches the global maximum, Kmax = 159.4. We do
not calculate the gain from ⌧ = 0 because of the finite time required for the temporal
perturbation function f (t) to approach zero – as seen in figure 2 – corresponding to the
time required for a disturbance to fully advect into the domain. We see that, similar
to behaviour typically observed for computation of optimal initial perturbations, the
curve of optimal gain is the envelope of the individual responses and it is tangent to
individual evolution curves specific to each time horizon at corresponding values of ⌧ .

Radial profiles of the three velocity components of the optimal inflow perturbations
at ⌧ = 3.05 and ⌧ = 6.71 are illustrated in figure 5. The velocity profiles have been
normalized such that [û

c

, û
c

] = 1. For perturbations in azimuthal mode m = 1, radial
and swirl velocity components (v̂

c

, ŵ

c

)+
1 are equal at the axis, allowing flow to cross

it. This is a consequence of the Fourier modal decompositions outlined following (2.3)
and the modal decomposition of axial boundary conditions explained in Blackburn
& Sherwin (2004). For m = 1, these axial boundary conditions also give û

c

= 0. All
velocity components fall to zero at the wall, as required.

Figure 6(a) shows the variation of the optimal gain with Reynolds number at
! = 4⇡u/⇤. We see that the time horizons at which the gains reach maxima increase
with Reynolds number, at least in the range investigated here. At lower Reynolds
number, the stenotic flow becomes more stable (with smaller maximum transient
growth, as shown in Blackburn et al. 2008b), and the gain reduces correspondingly.
Figure 6(b) illustrates the optimal gain at other values of angular frequency ! and at
fixed ⌧ = 6.71. Low frequencies (! < 3) are not considered owing to the finite width
of the Gaussian function (see figure 2). We see that the angular frequency where the
gain reaches a maximum is close to ! = 4⇡ū/⇤ = 6, confirming as reasonable the
choice (justified in § 2) of ! = 6.87 for the main body of our investigation.

The development of the global optimal inflow perturbation found with ⌧ = 6.71 is
shown in figure 7. We see that at t = 1.98, the inflow pulse, while still not fully
advected into the domain, has reached the throat, and there develops structure that
is locally similar to the optimal initial condition in the shear layer adjacent to the
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FIGURE 5. Radial profiles of optimal inflow perturbations for: (a) ⌧ = 3.05; and (b) ⌧ = 6.71.
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FIGURE 6. (a) Optimal gains at Re = 100–400, ! = 6.87 and (b) optimal gains for Re = 400,
⌧ = 6.71, 3 < ! < 10.

contraction throat (cf. figure 5b in Blackburn et al. 2008b). Figure 7(b) illustrates
the response of this optimal inflow perturbation, representing the global maximum
response, while figure 7(c) shows the response at a later time, illustrating that the
basic structure of the perturbation is preserved as it advects downstream and weakens.
The perspective view of isosurfaces of streamwise velocity shown in figure 7(d) is for
t = ⌧ = 6.71, corresponding to the contours shown in figure 7(b). We note a striking
similarity in both shape and axial location of the structures seen in figure 7(d) to those
resulting from the optimal initial perturbation at the time for maximum energy growth,
shown by a similar perspective view in figure 8(d) of Blackburn et al. (2008b). In both
cases the optimal perturbation produces sinuous distortion of the axisymmetric shear
layer present in the base flow, see also Cantwell et al. (2010).

Nonlinear evolution of the optimal inflow perturbation is investigated by adding
the perturbation to the inflow boundary condition of the base flow and running a
DNS, where the initial condition is provided by the base flow. The magnitude of the
perturbation is normalized using the energy of the base flow on the inflow boundary
segment, i.e. by dividing by [U

c

,U
c

]1/2. The gain is computed after subtracting the
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FIGURE 7. Evolution of streamwise perturbation velocity component u

0 produced through
integrating the LNS equations when driven by the optimal boundary perturbation computed
for ⌧ = 6.71, which gives the global maximum gain Kmax = 159.4 in azimuthal wavenumber
m = 1. (a–c) Contours of u

0 on the meridional plane for times t = 1.98, 6.71 (for which
Kmax is obtained) and 14.65 respectively. Contour levels are chosen arbitrarily in order to
highlight the structure of perturbation flows and differ for each panel. (d) Isosurfaces of ±u

0
corresponding to results shown in (b), i.e. at t = 6.71.

base flow from the outcomes. We can observe in figure 8(a) that at small magnitude
of inflow perturbations, 1 ⇥ 10�3, the nonlinear gain agrees well with the linear
gain. Using a perturbation magnitude of 1 ⇥ 10�1 leads to an earlier saturation and
the gain is significantly smaller than the linear value. Interestingly an intermediate
perturbation magnitude of 1 ⇥ 10�2 led to a larger gain than the 1 ⇥ 10�3 case, but
in-depth investigation of this nonlinear response characteristic is beyond the scope of
the present work.

Figure 8(b) illustrates the history of kinetic energy obtained via DNS in azimuthal
Fourier modes other than m = 0. The energy of modes (integrated over the area of
the domain ⌦) is normalized by the energy of the unperturbed steady basic flow.
The energy of the fundamental mode m = 0 is almost constant over the time interval
considered here and is not plotted. For early times (t < 8), modes m > 1 are essentially
slaved to the fundamental mode, as one expects from the Navier–Stokes equations.
One may observe small-scale oscillations in energy for m = 1 at very early times
(t < 2), which are associated with fluctuations in the inlet region.

6. Discussion and conclusions
A counterpart to the well-documented optimal initial value problem, the optimal

boundary value problem, is investigated in this paper. An iterative optimization method
is established to calculate optimal boundary perturbations as well as the optimal gain
and optimal response for non-parallel flows in arbitrary geometries. It is demonstrated
that the optimization method corresponds to an eigenvalue problem of the joint
operator or a singular-value problem of the forward operator, indicating that the
optimal gain can be also obtained via eigenvalue or singular-value decompositions
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FIGURE 8. (a) The gain of the optimal boundary perturbation for the m = 1 mode in LNS
and DNS with various magnitudes and (b) the gain of the optimal perturbation for other
modes in the DNS when applying a boundary perturbation of magnitude 10�3.

in locally defined problems where the matrix form of the forward operator is available
after discretization. An optimization method is used to calculate the optimal inflow
boundary condition perturbation of a stenotic flow. It is illustrated that the optimal
inflow perturbation triggers the optimal initial perturbation and induces significant
transient energy growth as the perturbation is convected downstream by the base flow.
The temporal frequency at which the gain is maximized is close to the frequency of
the outcome of optimal initial perturbation. We have numerically verified optimality by
randomly perturbing the computed optimal boundary condition and observing that the
algorithm returns to the same maximum.

We have already noted in relation to the spatial structure which develops from
the optimal boundary perturbation seen in figure 7 that this bears a very strong
similarity to the outcomes of optimal initial perturbation. While differences in details
are to be expected, the connection between the physics of optimal boundary and
initial perturbations is obviously strong, a feature we had observed in previous studies
(Blackburn et al. 2008a,b; Cantwell et al. 2010) where in DNS we had perturbed
inflows with low-amplitude white noise and observed perturbations further downstream
which had strong a physical resemblance to linear optimal initial perturbation
outcomes. It is also interesting to compare the time scale of the optimal gain envelope
in figure 4 with that for optimal transient growth from an initial condition as shown
in figure 4(a) of Blackburn et al. (2008b), where for Re = 400, m = 1, maximum
growth arises for ⌧ = 4.4. In the present case, if one allows for a rise time of t0 = 1.60
to reach the centroid of the Gaussian envelope in (2.5), and another interval of
approximately 2D/2u = 1 for a boundary perturbation to advect at the peak speed of
the incoming Hagen–Poiseuille flow to the zone for the optimal initial condition (the
stenosis throat), there is a remaining time horizon of order ⌧ ⇡ 6.71 � 1.6 � 1 = 4.1.
While these considerations are approximate, they are suggestive that this value is
reasonably similar to the time horizon for global optimum transient growth from an
initial condition. We may informally conceptualize the process of optimal boundary
perturbation for these problems as being closely related to that for the optimal
initial condition, whereby the boundary perturbation advects to the zone for the
optimal initial condition, convolves with its distribution, and the subsequent physics
is essentially that resulting from an optimal initial perturbation.
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