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This study is focused on two- and three-dimensional incompressible flow past
a circular cylinder for Reynolds number Re 6 1000. To gain insight into the
mechanisms underlying the suppression of unsteadiness for this flow we determine
the nonlinear optimal open-loop control driven by surface-normal wall transpiration.
The spanwise-constant wall transpiration is allowed to oscillate in time, although
steady forcing is determined to be most effective. At low levels of control cost,
defined as the square integration of the control, the sensitivity of unsteadiness with
respect to wall transpiration is a good approximation of the optimal control. The
distribution of this sensitivity suggests that the optimal control at small magnitude is
achieved by applying suction upstream of the upper and lower separation points and
blowing at the trailing edge. At high levels of wall transpiration, the assumptions
underlying the linearized sensitivity calculation become invalid since the base flow
is eventually altered by the size of the control forcing. The large-magnitude optimal
control is observed to spread downstream of the separation point and draw the shear
layer separation towards the rear of the cylinder through suction, while blowing
along the centreline eliminates the recirculation bubble in the wake. We further
demonstrate that it is possible to completely suppress vortex shedding in two- and
three-dimensional flow past a circular cylinder up to Re = 1000, accompanied by
70 % drag reduction when a nonlinear optimal control of moderate magnitude (with
root-mean-square value 8 % of the free-stream velocity) is applied. This is confirmed
through linearized stability analysis about the steady-state solution when the nonlinear
optimal wall transpiration is applied. While continuously distributed wall transpiration
is not physically realizable, the study highlights localized regions where discrete
control strategies could be further developed. It also highlights the appropriate range
of application of linear and nonlinear optimal control to this type of flow problem.
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1. Introduction

Unsteadiness in flow past bluff bodies or streamlined bodies at large angles of
attack, characterized by large-scale vortex shedding in the wake, generates unsteady
forces which have the potential to damage the structure and induce unexpected
vibrations of bluff bodies (Bearman 1984; Williamson & Govardhan 2004). The
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mechanism of vortex shedding, a state of saturated self-sustained flow oscillation, has
been extensively studied, e.g. in flow past circular cylinders, square cylinders and
disks (Williamson 1996; Darekar & Sherwin 2001; Meliga, Chomaz & Sipp 2009). It
was found that unsteadiness or vortex shedding in the wake of bluff bodies is related
to streamwise momentum transfer between the recirculation bubble and the main flow,
and a reduction of this transfer reduces the form drag significantly (Stalnov, Fono &
Seifert 2011). Therefore, suppression of wake unsteadiness is expected to not only
suppress the force oscillations but also reduce drag acting on bluff bodies.

Vortex shedding control and the related drag reduction techniques may be
subdivided into passive and active methods; both have received extensive investigation.
The prototypical passive method is to insert splitter plates into the wake in order
to reduce near-wake shear layer interaction (Roshko 1954; Bearman 1965; Kwon
& Choi 1996), while a wide variety of other methods have received attention. For
example, a small secondary cylinder has been placed on the side of a cylinder to
suppress vortex shedding at low Reynolds numbers (Strykowski & Sreenivasan 1990).
Spanwise waviness has been adopted in rectangular-cylinder (Bearman & Owen 1998),
circular-cylinder (Owen, Bearman & Szewczyk 2001) and square-cylinder (Darekar
& Sherwin 2001) wakes to successfully suppress vortex shedding in the wake. The
mechanism of suppression was in each case attributed to three-dimensional distortion
of the two-dimensional shear layers that otherwise roll up to form vortex streets.
Park et al. (2006) mounted small tabs to the trailing edges of a blunt body in order
to reduce drag. The same control approach was studied numerically by Dipankar,
Sengupta & Talla (2007) at Reynolds numbers of Re = 63, 79 and 150. Wu, Wang
& Wu (2007) studied the suppression of shedding behind a circular cylinder using
travelling waves generated by the flexible surface of the cylinder.

Like the examples given above, passive control of shedding typically involves
altering or adding to the geometry of the body, whereas active control typically
preserves the geometry and involves adding some kind of forcing. Physically
representable control forcing may be generated by various means, e.g. jets/synthetic
jets (Glezer & Amitay 2002), plasma actuators (Peers, Huang & Luo 2009) or
electromagnetic devices (Zhang, Fan & Chen 2010). Often, active control takes the
form of controlled blowing into the wake from the surface of the body in order
to displace vortex shedding downstream and increase the base pressure (Bearman
1967; Wood 1967), and may be either open-loop, as for the base-bleed examples just
cited, or closed-loop. Roussopoulos (1993) used feedback control of wall transpiration
to suppress vortex shedding in the wake of a cylinder at a Reynolds number just
above the onset of shedding. In wind/water tunnel experiments, he observed that the
wake instability in the controlled flow could be delayed to Reynolds numbers 20 %
higher than the uncontrolled flow. Gillies (1998) used multiple sensors and artificial
body-force control inputs to suppress the vortex shedding behind a circular cylinder at
Re = 100 in a numerical investigation, and demonstrated both that multisensor control
is superior to single-sensor control and that it is capable of suppressing shedding when
single-sensor control fails. Min & Choi (1999) implemented a suboptimal feedback
control strategy targeting the pressure fluctuation on the surface of a cylinder to
suppress the vortex shedding in the wake at Re = 100 and 160. The gradient used
to update the control was obtained through a Fourier transformation, which is a
technique restricted to simple flow geometries, rather than through solving adjoint
equations. Homescu, Navon & Li (2002) studied the suppression of shedding in the
wake of a cylinder by controlling the time-dependent rotating speed of the cylinder at
Re = 60–1000. Li et al. (2003) minimized the difference of the velocity field and that
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of a steady laminar flow and achieved suppression of vortex shedding in flow past a
cylinder at Re 6 110 by using coarsely distributed wall blowing. Kim & Choi (2005)
imposed spanwise varying blowing/suction on the surface of a cylinder to trigger
spanwise phase mismatch of vortex shedding and thus to reduce drag. Shtendel &
Seifert (2014) adopted a combination of blowing and suction around the separation
points to delay separation and reduce vortex shedding at Reynolds numbers up to
250 ⇥ 103.

Most of the previous numerical studies dealing with active control of vortex
shedding targeted low-Reynolds-number flows (Re 6 200) and did not concentrate
on the optimal or most effective control of vortex shedding, which is the goal of
the current work. For optimal control of shedding, a sensitivity approach, i.e. one
that is optimal in the linear sense, has been previously proposed by Marquet, Sipp
& Jacquin (2008) and Marquet & Sipp (2010). That approach targets the origin of
vortex shedding – asymptotic growth of perturbations based on a steady unstable
(base) flow – by calculating the sensitivity of instability with respect to external
forcing and using the sensitivity as control to stabilize the flow. The technique was
successfully applied in global stabilization and suppression of vortex shedding by
using external forcing in the form of a secondary cylinder at 47 6 Re 6 80 (Marquet
et al. 2008) for flow past a cylinder or Re = 100 for flow around a rotating cylinder
(Pralits, Brandt & Giannetti 2010), and steady forcing imposed on the surface of a
cylinder at Re = 47 (Marquet & Sipp 2010).

In the literature regarding nonlinear optimal flow control or optimal design, both
deterministic (gradient-based) methods and stochastic methods have been widely used.
Stochastic methods converge much more slowly than gradient-based methods and
would be only suitable when a gradient-based method is unrealistically demanding
in a computational sense and the requirement on accuracy is not too harsh. In
gradient-based methods, control parameters are updated along a direction related to
the gradient of the objective functional with respect to the control. To calculate the
gradient, the governing equations, usually the Navier–Stokes (NS) or linearized NS
equations, together with their adjoint equations are integrated in time. This gradient
can be interpreted as the sensitivity of the control objective with respect to the
control forcing, and can be considered as the linearly optimal control when the
control magnitude is small enough, as discussed above. If the governing equations
are nonlinear or the time integration of the primitive variables is involved in the
cost functional, the full temporal development trajectory of the velocity components
has to be saved for solving the adjoint. The adjoint equations can be dealt with in
either discrete or continuous form (Giles & Pierce 2000). Discrete adjoint methods
have been implemented in design optimizations by Homescu et al. (2002), Nielsen,
Diskin & Yamaleev (2010) and Nielsen & Jones (2011). However, the discrete adjoint
equations are dependent on the discretization method and the grid and therefore cannot
be generalized easily. Recently, a continuous adjoint method to calculate the optimal
boundary perturbation that induces largest gain was introduced (Mao, Blackburn &
Sherwin 2012), and that method can be developed into the optimal control method
used in the present work by redefining the optimal boundary perturbation as the most
effective control.

In the following, we detail the optimal control algorithms in § 2, present the
discretization and convergence in § 3 and then apply the method to optimal control
of vortex shedding in flow past a circular cylinder in § 4 before drawing conclusions
in § 5. As we shall demonstrate, the generality of the optimal control method we
have adopted potentially allows one to identify strategies that might not otherwise
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be realized, as observed in the following study at higher Reynolds numbers. Unlike
the approach of Marquet & Sipp (2010), which is based upon eigenanalysis of local
flow states and so readily provides a physical insight through the eigenanalysis,
the generality of our approach may potentially initially obscure the nature of the
underlying physics. Nevertheless, one can still analyse the physics and stability of
the resulting optimally controlled flow, as we have done in the following study.

2. Methodology

In the following, all velocities are taken to be normalized by the free-stream flow
speed and all lengths are normalized by the cylinder diameter. Hence, also, time is
normalized by the ratio of cylinder diameter to free-stream speed.

2.1. Modelling the unsteadiness
To simplify notation, we introduce scalar products

(a, b) =

Z

⌦

a · b dV, hc, di = ⌧�1
Z ⌧

0
(c, d) dt, [e, f ] =

Z

@⌦c

e · f dS, (2.1a�c)

where ⌦ represents the spatial domain, @⌦c denotes the control boundary, referring
to the boundary segment where the control is imposed, t is time, ⌧ is a final time,
a and b are vector fields defined on the spatial domain ⌦ , c and d are defined on
the spatial domain ⌦ and time domain [0, ⌧ ], and e and f are defined on the control
boundary @⌦c.

In an initial test of the control effects of boundary perturbations, it is observed
that the optimal control is concentrated on the wall-normal component. Therefore,
in the following, we consider Dirichlet-type boundary-normal velocity perturbations
as the control, denoted as uc(x, t), where x represents the coordinate of the control
boundary. To reduce the dimension of uc(x, t) after temporal–spatial discretization, we
decompose the temporal and spatial dependence as

uc(x, t) = un(x)f (t, !)n, (2.2)

where un(x) is the spatial dependence of the perturbation on the wall-normal direction
to be optimized, n is the outward-pointing unit normal vector on the boundary and
f (t, !) is a prescribed temporal-dependence function. In this work, we adopt a
temporal function

f (t, !) = [1 � exp(�t2)] cos(!t), (2.3)

where the first term on the right ensures uc(x, 0) = 0 so as to avoid temporal
discontinuity in the numerical simulation at t = 0. When the final time ⌧ is large
enough, ! becomes the frequency of the control perturbation.

The flow field can be decomposed as the sum of an uncontrolled base flow and a
perturbation flow induced by the control, i.e. (û, p̂) = (U, P) + (u, p), where û, U and
u are respectively the total velocity, uncontrolled velocity and perturbation velocity,
while p̂, P and p are the total pressure, uncontrolled pressure and perturbation pressure.
Then, we substitute this decomposition into the NS equation to reach

@tu + u · ru + U · ru + u · rU + rp � Re�1r2u = 0, with r · u = 0. (2.4)
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In the following, this equation is written in a compact form as

@tu � L(u) + N(u) = 0, (2.5)

where N(u) = u · ru denotes the nonlinear convection term and L(u) represents the
pressure and viscous terms as well as the divergence-free condition, which are linear.
In the following this equation will be referred to as the decomposed NS equation.

Since the control perturbation is imposed at t = 0, the initial condition of
perturbation u is set to zero. This initial condition is compatible with the control
perturbation defined in (2.2).

On the inflow and far-field boundaries, zero Dirichlet and computed Neumann
conditions are adopted for u and p (Blackburn & Sherwin 2004) respectively; on
the outflow boundary, rnu = 0 and p = 0 are imposed; on the control boundary, the
Dirichlet boundary condition and computed Neumann condition are implemented for
u and p respectively.

For convenience, we define an operator N corresponding to the action of evolving
un(x) to u(t) by integrating the decomposed NS equation (2.5), i.e.

u(t) = N (un). (2.6)

The unsteadiness of the flow field over the time horizon [0, ⌧ ] can be modelled as
the fluctuation energy

A(u) = hWû, Wûi � (Wûa, Wûa), (2.7)

where W is a non-negative spatial weight used to filter the unsteadiness in the regions
not of interest when we are only concerned about the unsteadiness in a localized
region of the computational domain. When the unsteadiness across the whole domain
is taken into account uniformly, W(x)=1. Here, ûa is the averaged velocity, calculated
as

ûa = Ua + ua, where Ua = ⌧�1
Z ⌧

0
U dt and ua = ⌧�1

Z ⌧

0
u dt (2.8a,b)

represent the averaged velocities of base flow and perturbation flow respectively. For
flow around a cylinder at the relatively low Reynolds number considered in this
work, this unsteadiness quantifies the magnitude of vortex shedding, while for a fully
turbulent flow at higher Reynolds number, it describes the turbulence intensity.

2.2. Lagrangian functional
Similarly to the methodology established by Mao et al. (2012) to calculate the optimal
boundary perturbation that results in maximum energy in the domain over a finite time
horizon, a Lagrangian functional can be defined as

L = A � hu⇤, @tu � L(u) + N(u)i + �(E � [un, un]), (2.9)

where u⇤ represents the adjoint velocity, � is a Lagrange multiplier and E is a
prescribed control cost which is equal to the square of the wall transpiration velocity
integrated over the controlled surface. Hence, for the circular cylinder, an equivalent
root-mean-square (r.m.s.) value of the transpiration velocity may be computed as
(E/p)1/2. The first term following the equality in (2.9) represents the unsteadiness or
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the fluctuation energy to be minimized, the second term applies the constraint of the
governing equation, which is the decomposed NS equation (2.5), and the third term is
the constraint on the control cost or the magnitude of the control perturbation. Various
options for the constraint on the magnitude of perturbations have been discussed by
Foures, Caulfield & Schmid (2012), while the one we adopt reflects the momentum
coefficient.

The adjoint variables are calculated from an adjoint equation. To facilitate the
derivation of the adjoint equation, we reformulate the Lagrangian functional. Using
integration by parts and the divergence theorem (Barkley, Blackburn & Sherwin
2008), we have

�hu⇤, @tu � L(u)i = hu, @tu⇤
+ L⇤(u⇤)i � ⌧�1(u⌧ , u⇤

⌧ )

+ ⌧�1
Z ⌧

0

Z

@⌦

n · [�U(u · u⇤) + up⇤
� u⇤p

+ Re�1(ru · u⇤
� ru⇤ · u)] dS dt, (2.10)

where @⌦ represents all the boundaries of the computational domain; u⇤

⌧ and u⌧ are
the adjoint and perturbation velocity vector at t = ⌧ respectively; L⇤(u⇤) = U · ru⇤ �

rU · u⇤ �rp⇤ +Re�1r2u⇤ and r · u⇤ =0. We note that @tu⇤ +L⇤(u⇤)=0 is the adjoint
equation extensively used in investigations of receptivity and non-normality (Hill 1995;
Giannetti & Luchini 2007; Barkley et al. 2008). In the derivation of (2.10), the zero
initial condition of u is implied. Substituting (2.10) into (2.9), we have a reformulated
Lagrangian functional

L = A � hu⇤, N(u)i + �(E � [un, un]) + hu, @tu⇤
+ L⇤(u⇤)i � ⌧�1(u⌧ , u⇤

⌧ )

+ ⌧�1
Z ⌧

0

Z

@⌦

n · [�U(u · u⇤) + up⇤
� u⇤p

+ Re�1(ru · u⇤
� ru⇤ · u)] dS dt. (2.11)

As stated above, the adjoint variables are calculated from an adjoint equation, which
can be obtained by setting the first variation of the Lagrangian with respect to u to
zero. On the right-hand side of (2.11), the variation of the first term with respect to
the velocity vector u is

�A(�u) = h�u, 2W2(U + u � Ua � ua)i, (2.12)

where we have used the relation (ua, ua) = hua, ui and similar manipulations. Next,
we consider the variation of the second term with respect to u, i.e.

�hu⇤, N(u)i(�u) = h�u, ru · u⇤
� u · ru⇤

i + ⌧�1
Z ⌧

0

Z

@⌦

(�u · u⇤)(n · u) dS dt. (2.13)

(For details of this derivation, refer to appendix A.)
Combining (2.11)–(2.13), we have the variation of the Lagrangian with respect

to u,

�L (�u) = h�u, @tu⇤
+ L⇤(u⇤) � ru · u⇤

+ u · ru⇤
+ 2W2(U + u � Ua � ua)i

� ⌧�1(�u⌧ , u⇤

⌧ ) + ⌧�1
Z ⌧

0

Z

@⌦

n · [�(U + u)(�u · u⇤) + �up⇤
� u⇤�p(�u)

+ Re�1(r�u · u⇤
� ru⇤ · �u)] dS dt, (2.14)
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where �p(�u) is the variation of p induced by the variation of u. In this derivation, u,
u⇤ and un are considered as independent variables. Setting this variation to zero, we
obtain the adjoint equation, its initial condition and boundary conditions.

From the first term on the right-hand side of (2.14) we have the adjoint equation:

@tu⇤
+ L⇤(u⇤) � ru · u⇤

+ u · ru⇤
+ 2W2(U + u � Ua � ua) = 0. (2.15)

Inspecting the sign of the time derivative term and diffusion term, we see that this
equation should be integrated backwards from t = ⌧ to t = 0. The initial condition u⇤

⌧

can be obtained from the second term on the right-hand side of (2.14), that is u⇤

⌧ = 0.
The boundary condition of this adjoint equation can be obtained from the last

term of (2.14). The combination of adjoint velocity and pressure boundary conditions
has to ensure that the integration in the last term of (2.14) over each boundary
is zero. On the inflow boundary, control boundary and far-field boundary, the
velocity is fixed and therefore �u = 0. On these three boundaries, zero Dirichlet
and computed Neumann conditions are used for adjoint variables u⇤ and p⇤

respectively. On the outflow boundary, the boundary conditions for adjoint variables
are Re�1rnu⇤ + n · (U + u)u⇤ = 0 and p⇤ = 0, where r⇤

nu = n ·ru⇤ (Mao, Blackburn &
Sherwin 2013). The choices of these boundary conditions ensure that the integration
over the boundaries in the last term in (2.14) is zero. It is worth noting that the
adjoint velocity outflow boundary condition is dependent on the velocity vector u,
and so this boundary condition has to be updated (to the latest u) at every time step
when solving the adjoint equation.

From the last term of (2.11), we have the variation of the Lagrangian with respect
to the control perturbation un,

�L (�un) = [g � 2�un, �un], (2.16)

where
g = ⌧�1n ·

Z ⌧

0
(p⇤n � Re�1rnu⇤)f (t, �!) dt. (2.17)

Here, f (t, �!) is the adjoint of f (t, !), satisfying [ f (t, !)e, f ] = [e, f (t, �!) f ], with
e and f representing vectors defined on the control boundary.

From the definition of the gradient of the Lagrangian associated with the Gâteaux
differential, the gradient of L with respect to un is

runL = g � 2�un. (2.18)

In this formulation, both g and un are functions defined on the control boundary.

2.3. Nonlinear optimal control
To compute an optimal solution of un, an iterative optimization algorithm is required.
For the gradient-based optimization methods, in each iteration, the gradient of the
Lagrangian with respect to the control has to be evaluated. From the expression of the
gradient in (2.18), we see that the adjoint equation must be solved to calculate g and
then the gradient. From the adjoint equation and its boundary conditions, we note that
the full development history of u is required to solve the adjoint variables. Solving the
adjoint equation is computationally as intense as solving the decomposed NS equation,
but requires much larger memory. To reduce this high requirement on memory, a
checkpointing scheme has been proposed by Griewank (1992). In that scheme, the
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memory requirement can be significantly reduced but the governing equation (2.5) and
the adjoint equation (2.15) have to be restarted at every checkpoint. In the numerical
method we presently implement to solve these equations, large-scale matrices need to
be generated and installed every time the equation solvers are restarted, and therefore
such a checkpointing scheme is inefficient. In the current work, the development
history of u at every time step is written to file when integrating the decomposed
NS equation (2.5) and read into memory at every step with the reversed order when
integrating the adjoint equation (2.15).

In the optimization algorithm, a steepest-descent method is used and therefore
the search direction is the gradient itself. The control perturbation and perturbation
velocity are updated along this direction from iterative step k to k + 1 as

uk+1
n = uk

n + ↵runL
k
= uk

n + ↵gk
� 2↵�uk

n, (2.19)
where ↵ is a step length and � can be obtained by imposing the constraint of control
cost on uk+1

n .
Correspondingly, the perturbation velocity at step k + 1 can be obtained as

uk+1(t) = N (uk
n + ↵gk

� 2↵�uk
n). (2.20)

If the step length ↵ is small enough, ↵gk and �2↵�uk
n are small compared with uk

n.
Therefore, we have

uk+1
l = uk

+ ↵MU+u(gk) � 2↵�MU+u(uk
n), (2.21)

where uk+1
l is the linearized approximation of uk+1. Here, MU+u is a linearized

approximation to N and MU+u(g) can be obtained by taking gf (t, !)n as the
boundary condition, U + uk as the base flow and integrating the linearized NS
equation

@tu � L(u) = 0 (2.22)
from t = 0 to t = ⌧ , with the same boundary condition and initial condition as the
decomposed NS equation; MU+u(uk

n) can be obtained similarly.
Substituting (2.21) into (2.7), we see that the unsteadiness A can be expressed

as a polynomial function of ↵, and therefore the optimal value of ↵ (in the linear
sense) can be calculated. This optimal value of ↵ should be substituted into (2.20) to
calculate uk+1. When ↵ is small enough the linearization assumption is satisfied and
A(uk+1) < A(uk) holds. Otherwise, if A(uk+1) > A(uk), this linearly optimal value of ↵
should be reduced.

Since the governing equation (2.5) is nonlinear, the optimal solution of un calculated
above is denoted as the nonlinear optimal control. We see that even when the linearly
optimal value of ↵ is a good estimate of the step length, in each optimization iteration,
the decomposed NS equation (2.5) is called once, the linearized governing equation
(2.22) is integrated twice and the adjoint equation is called once. If the linear optimal
value of ↵ does not result in a reduced value of the unsteadiness A, then this step
length should be reduced and an extra call of the decomposed NS equation is required.

The optimization procedure to calculate the nonlinear optimal control is given in
appendix B.

2.4. Sensitivity
We note that when the control cost E is small enough, the adjoint equations can be
simplified as

@tu⇤
+ L⇤(u⇤) + 2W2(U � Ua) = 0, (2.23)

indicating that the adjoint variables are functionals of the base flow but independent
of the control perturbation, and therefore g is also independent of un.
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FIGURE 1. Spectral elements in the computational domain: (a) overall domain and
(b) detail close to cylinder.

Imagining that we start from un = 0, then the solution after one iteration is parallel
with g. When updating the solution in the second step following the direction of the
gradient, which is also parallel with g, the control does not change, indicating that the
optimal control is parallel with g. Therefore, the optimal control can be calculated as

un = �(E/[g, g])1/2g, (2.24)

where the simplified adjoint equation (2.23) is used to calculate the adjoint variables
and then the adjoint velocity and pressure are submitted to (2.17) to calculate g.
The scalar to scale g in (2.24), i.e. �(E/[g, g])1/2, is to impose the constraint
on the control cost, and the negative sign transforms the control that maximizes
unsteadiness to one that instead minimizes unsteadiness. Clearly this calculation only
involves a backward integration without forward–backward iterations and therefore the
calculation procedure is much simpler than the nonlinear optimal control. This solution
is denoted as sensitivity in the following, since it can be interpreted as the sensitivity
of the unsteadiness with respect to disturbances on the control boundary. Such an
adjoint method has been used to calculate the time sequence of a control signal,
which has a fixed spatial distribution and is optimal to suppress linear perturbation
growth in a boundary layer flow (Semeraro et al. 2013).

3. Discretization and validation

We consider optimal control of the unsteadiness of flow past a circular cylinder by
imposing control on the surface of the cylinder. The domain and computational grid
are shown in figure 1.

Spectral elements employing piecewise continuous nodal-based polynomial expan-
sions within mapped-quadrilateral elemental subdomains are adopted for two-
dimensional spatial discretization. Time integration is carried out using a velocity-
correction scheme. Details of the discretization and its convergence properties
(exponential in space, second order in time) are given in Blackburn & Sherwin
(2004). The same numerics are used to compute base flows and the actions of the
decomposed NS, linearized NS and adjoint operators. Since the unsteadiness in the
region far downstream of the cylinder has limited influence on the dynamics around
the cylinder, we adopt a weight function

W(x) =

(
1, for x < 10,

exp(�(x � 10)2), for x > 10.
(3.1)
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P 1t 1T A 1A/[runL , �un]

3 0.01 0.25 3.25981 0.87413
4 0.01 0.25 3.27960 1.00383
5 0.01 0.25 3.28131 0.99798
6 0.01 0.25 3.28233 1.00936
7 0.01 0.25 3.28211 1.00754
8 0.01 0.25 3.28215 1.00760
6 0.005 0.25 3.28368 1.00500
6 0.01 0.125 3.28170 1.00936

TABLE 1. Convergence of the unsteadiness A and the gradient runL with respect to
spectral polynomial order P, time step 1t and time interval to save the base flow 1T at
Re = 100, ! = 0 and ⌧ = 80. The control cost is E = 0.001 and E = 0.1 for the convergence
tests of the unsteadiness and the gradient respectively.

Therefore, for x > 10, the weight function rapidly reduces to zero and so the
unsteadiness in this region is filtered. Further downstream extension of this ‘region
of interest’ has negligible effect on the optimal control, as established in a separate
set of tests. As should be apparent from (2.7), a longer time horizon ⌧ is required to
obtain an effective control when a longer downstream region is taken into account in
the weight function.

As a convergence test of the discretization and numerical method, we consider the
unsteadiness A (see (2.7)) as a function of the spectral polynomial order P used in
each spectral element, as reported in table 1, where we see that A converges to four
significant figures at P = 6.

Also reported in table 1 is the convergence of 1A/[runL , �un]. Here, 1A is
calculated as 1A = A(N (un + �un)) � A(N (un)), where �un is a variation of the
control with a small magnitude, and N (un + �un) and N (un) are obtained by
integrating the decomposed NS equation; runL is calculated following the procedure
presented in § 2.2, where both the decomposed NS and adjoint equations are involved.
Therefore, the convergence of 1A/[runL , �un] to unity represents the correctness
of the gradient runL as well as the correct specification and accurate integration
of the adjoint equation. We see that this gradient converges very well at P > 3. The
energy cost is E = 0.1 in this convergence test of the gradient, while in the test of
convergence of A, a smaller value of E, that is E = 0.001, is used to reduce the
number of optimization iterations. Considering both the convergence results and the
computational costs, in all the following calculations, we adopt P = 6.

The time step 1t = 0.01 and the time interval used to save and reconstruct the base
flow 1T = 0.25 (Mao, Sherwin & Blackburn 2011) are also tested to be sufficiently
small. In calculations at higher Reynolds number, e.g. Re = 1000, the time step is
reduced to 1t = 0.0016 to avoid numerical divergence. Here, the Reynolds number is
defined using the free-stream velocity and the diameter of the cylinder.

4. Results

In this section, we present the linear (sensitivity) and nonlinear optimal controls,
and further discuss the physical mechanisms of the control. As mentioned previously,
in this study we focus on control forcing that is spanwise-invariant (and therefore two-
dimensional). Although we will consider three-dimensional flow, this assumption does
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FIGURE 2. Unsteadiness A under control of the sensitivity at various values of ! at
Re = 100, ⌧ = 80 and E = 10�7.

preclude spanwise varying control action, which in other studies (Darekar & Sherwin
2001; Kim & Choi 2005) has been observed to be an efficient form of boundary
forcing.

4.1. Sensitivity
First, we consider the dependence of the control effect on the temporal frequency !
at a relatively small Reynolds number Re = 100, as illustrated in figure 2. A small
control cost of E = 10�7 is adopted since the sensitivity is an optimal control only
when the magnitude of the perturbation is small. As shall be later demonstrated in
figure 4, the sensitivity almost overlaps with the nonlinear optimal control at such a
low level of control cost, and therefore the frequency dependence of the sensitivity, at
this level of control cost, is also relevant to the nonlinear optimal control. We observe
that the unsteadiness reaches local minima at !1 = 0, !2 = 1.0355 and !3 = 2.071. The
first frequency corresponds to a steady control, the second corresponds to the vortex
shedding frequency of the base flow, i.e. ! = 2pSt = 1.0355, where St = 0.1648 is the
Strouhal number for flow past a cylinder at Re = 100, and the third frequency is a
higher harmonic of the shedding frequency.

Since ! = 0 is the most effective frequency of the control perturbation and a full
suppression of the unsteadiness can be achieved only with time-independent control
forcing at this frequency (for non-zero frequencies, at least the velocity oscillation
around the cylinder surface cannot be suppressed), in the following studies we adopt
! = 0 if not otherwise stated.

The distribution of the sensitivities at various Reynolds numbers is shown in
figure 3(a). In this figure ✓ 2 [0, 2p] is the azimuthal coordinate of the surface of
the cylinder measured from the front stagnation point in the clockwise direction.
Therefore, 0 6 ✓ 6p and p6 ✓ 6 2p correspond to the upper surface from the front
stagnation point to the trailing edge and the lower surface from the trailing edge
to the front stagnation point respectively. This convention of ✓ is used in all the
following figures. Further, in this and all the following figures on the distribution of
the control, the solution is presented normalized such that [un, un] = 1.

We see in figure 3(a) that for the parameters considered, the optimal perturbations
are mostly concentrated upstream of the mean upper and lower separation points,
i.e. ✓ ⇡ ±2, and the trailing edge ✓ = p, while a small proportion of the control
is present at the front stagnation point ✓ = 0. As the Reynolds number increases,
the control around separation points and the trailing edge tends to increase while
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FIGURE 3. Distribution of the sensitivity of the normalized normal control on the surface
of the cylinder at (a) ⌧ = 80 and various Reynolds numbers and (b) Re = 100 and various
final times ⌧ . Here, ✓ = 0 is the front stagnation point and ✓ = p is the trailing edge.

the component around the front stagnation point reduces. These distributions of the
sensitivity indicate that the unsteadiness is most sensitive to boundary disturbance
slightly upstream of the separation points, as has been observed in experiments on
flow around a general axisymmetric bluff body at higher Reynolds number (Wilson
et al. 2013), and the trailing edge, while insensitive to boundary perturbations around
the front stagnation point when �p/4 < ✓ < p/4.

The slight asymmetry with respect to ✓ = p of the two-dimensional sensitivity
in figure 3(a) arises as a result of the non-integer number of periods of shedding
contained in the time interval [0, ⌧ ], which therefore leads to differences in the upper-
and lower-surface control velocities. We also note that the temporal function (2.3) is
not exactly periodic since there is an exponential envelope at startup. In figure 3(b)
we plot the two halves of the sensitivity on the same axis so that we can see the
asymmetry. We observe that at ⌧ = 40 the dotted lines do not overlap, but it is
clear that at higher values of ⌧ , when more periods are included, the sensitivities on
the upper and lower surfaces of the cylinder overlap each other and the sensitivity
becomes symmetric.

For Re > 190, the uncontrolled base flow is unstable to three-dimensional distur-
bances (Barkley & Henderson 1996) and therefore a three-dimensional base flow
becomes a more appropriate control objective at high Reynolds numbers. The
sensitivity of a three-dimensional base flow at Re=200 is also presented in figure 3(a).
This base flow is obtained by adopting a three-dimensional domain, whose spanwise
extent is 2p/1.58 so as to accommodate unstable three-dimensional modes (Barkley
& Henderson 1996), imposing periodicity and using 32 complex Fourier modes in the
spanwise direction. The uncontrolled three-dimensional base flow will be discussed
further in relation to figure 9(a). From the formulation shown in § 2, only the Fourier
mode with zero spanwise wavenumber is required in the calculation since the control
activation is spanwise-invariant. We see in figure 3(a) that the three-dimensionality
does not yield a significant change in the distribution of the sensitivity.

4.2. Distribution of the optimal control
Figure 4 presents a comparison of the sensitivity and nonlinear optimal control
at various values of E. Due to the computational cost of the nonlinear optimal
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FIGURE 4. Deviation of the nonlinear solutions from the sensitivity at ⌧ = 30 and
(a) Re = 100 and (b) Re = 1000.

control, the final time is reduced to ⌧ = 30 for all the nonlinear calculations. We
notice that the nonlinear optimal control at small control magnitude overlaps with
the sensitivity, and deviates from the sensitivity as E increases. In figure 4(a), it is
observed that at a relatively low Reynolds number Re = 100, the sensitivity can be
a reasonably good approximation of the nonlinear optimal control over the range of
control cost considered. However, the deviation of the nonlinear optimal control from
the sensitivity becomes much more dramatic at Re = 1000, indicating that the linear
regime where the sensitivity acts as an optimal solution reduces at larger Reynolds
number. As the control cost E is increased, the control magnitude around the front
stagnation point reduces, and the peaks of the control around the separation points
move slightly towards the rear of the cylinder. At E = 0.02, the nonlinear optimal
control expands to the region downstream of the separation points in the form of
suction, and changes to blowing when approaching the trailing edge (see figure 4b),
instead of sharply concentrating around the separation point, i.e. the linearly most
sensitive region.

From figure 5, we see that the locations of the peak around the separation points are
not very sensitive to the Reynolds number, even though at higher Reynolds numbers
the blowing around the trailing edge ✓ = p becomes stronger. In addition, we observe
that at higher Reynolds number or control magnitude, the control becomes more
asymmetric. Once again, this can be attributed to the fact that the flow is periodic
and the control effects of the upper and lower surfaces are asynchronous. Therefore,
at t = 0, one side of the cylinder has a greater ability to control the flow. We note
that since this asymmetry changes from case to case, it is unlikely to be attributable
to the asymmetry of the grid.

4.3. Control effects of the optimal control
The control effect of the nonlinear optimal control on the unsteadiness A (see (2.7)),
which we recall denotes the difference between the average of the square integral of
the velocity and the square integral of the average velocity over a time interval ⌧ , is
presented in figure 6. We observe that the magnitude of A increases with Reynolds
number, indicating that the flow becomes more unsteady at higher Reynolds numbers.
Under the action of the nonlinear control, A drops significantly, and the control effects
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FIGURE 6. Optimally controlled unsteadiness A(u) as a function of E1/2, which
measures the magnitude of the control.

are more evident at higher Reynolds numbers. Over small values of control cost, the
nonlinear optimal control can be approximated by the sensitivity, and the change of
A is a linear function of the magnitude of the control, measured by E1/2. It is seen
that this linear relation is preserved until E = 0.01, above which the unsteadiness drops
much more slowly. For E > 0.1, A becomes almost constant, indicating that the vortex
shedding has been completely suppressed while the unsteadiness at the beginning of
imposing control is uncontrollable.

Four vorticity plots at times t = 0, 10, 30 and 50 under the action of the nonlinear
optimal control at Re = 100, ⌧ = 30 and E = 0.05 are shown in figure 7. We observe
that the vortex shedding is gradually weakened before being completely suppressed
to form a pair of elongated shear layers at t = 30. After this time the flow maintains
a steady state. We note that under the action of the control, the recirculation bubble
downstream of the cylinder extends to x < 2. This bubble is much smaller than the
bubble in the uncontrolled steady flow, which reaches x = 6.6, obtained by numerically
suppressing unsteadiness (Fornberg 1991; Gajjar & Azzam 2004). The reduction of the
length of the bubble significantly attenuates the inflection point instabilities associated
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FIGURE 7. (Colour online) Contours of spanwise vorticity for the controlled flow at Re =

100, ⌧ = 30 and E = 0.05. Panels (a), (b), (c) and (d) correspond to times t = 0, 10, 30
and 50 respectively. Dashed lines, light solid lines and thick solid lines represent negative
spanwise vorticity, positive spanwise vorticity and zero streamwise velocity respectively.
The contour levels for spanwise vorticity are [�2, �1.2, �0.4, 0.4, 1.2, 2].

with the recirculation zone, and therefore this stabilized flow is expected to be more
stable than the uncontrolled steady flow, as will be verified later. In the controlled
flow, the vertical motion associated with vortex shedding, which extracts energy from
the streamwise flow, is suppressed, and therefore a drag reduction can be expected, as
will be discussed later in § 4.5.

Sensitivity of the control effect with respect to the starting time or the phase of a
vortex shedding period was also tested. In this test the initial conditions adopted in
figure 7 were shifted by a quarter or half of a shedding period. We observed that the
process of suppression of shedding was only slightly different, but the final control
effect was independent of the starting time, indicating that the control is robust with
respect to the starting time of imposing control.

The optimal controlled flow at various control costs and Reynolds numbers is
illustrated in figure 8. We see that at Re = 100, as E increases, the shedding is
gradually weakened, and at E = 0.05, for the Reynolds numbers considered, the
vortex shedding can be completely suppressed (at Re = 1000, complete suppression of
shedding can be achieved at E =0.02). We further observe that the recirculation bubble
downstream of the cylinder shrinks at higher Reynolds numbers, and at Re = 300, this
recirculation zone disappears, and so does the instability associated with recirculation
bubbles. It is also noticeable that the shear layers shed from the surface of the
cylinder become thinner and more elongated at higher Reynolds numbers.

After testing the control effects of the nonlinear optimal control on unsteadiness
of two-dimensional flows, we also determined whether these optimal two-dimensional
controls are effective in fully developed three-dimensional flows. Figure 9 shows the
controlled and uncontrolled three-dimensional flow at Re = 200 and E = 0.05. The
spanwise length of the domain is set to 2p/1.58, and 32 complex Fourier modes
are applied to discretize the spanwise direction, the same as in the calculation of
the sensitivity of three-dimensional flow (see § 4.1). The three-dimensionality of the
uncontrolled flow can be clearly identified in figure 9(a), corresponding to the initial
solution when the nonlinear control was activated. Under the action of the nonlinear
optimal control, we see that the unsteady structures are washed downstream and the
flow pattern is stabilized to a two-dimensional steady flow, as discussed above for the
two-dimensional case.
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FIGURE 8. (Colour online) Contours of spanwise vorticity under the nonlinear optimal
control at (a) (Re, E) = (100, 0.01), (b) (Re, E) = (100, 0.02), (c) (Re, E) = (100, 0.05),
(d) (Re, E) = (200, 0.05), (e) (Re, E) = (300, 0.05) and (f ) (Re, E) = (1000, 0.05).
The result is collected at t = ⌧ = 30. Dashed lines, light solid lines and thick solid
lines represent negative spanwise vorticity, positive spanwise vorticity and zero streamwise
velocity respectively. The contour levels for spanwise vorticity are [�2, �1.2, �0.4,
0.4, 1.2, 2].
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FIGURE 9. (Colour online) Isosurfaces of spanwise vorticity �0.6 (blue) and 0.6 (red)
of three-dimensional flow under nonlinear optimal control at Re = 200, ⌧ = 30 and time
(a) t = 0, (b) t = 10, (c) t = 20 and (d) t = 30.
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FIGURE 10. Asymptotic stability of the steady flow subjected to the nonlinear optimal
control. Here, � denotes the maximum growth rate of the most unstable eigenmode at
spanwise wavenumber �.

In related flow stabilization works, sensitivity tests of global stability of a steady
base flow with respect to external forcing (Marquet et al. 2008) or steady boundary
forcing (Marquet & Sipp 2010) have been conducted, and the calculated sensitivity
was demonstrated to be effective in stabilizing the flow and subsequently eliminating
vortex shedding at 47 6 Re 6 80. In the current method, the controlled flow reaches
steady states and therefore enables a global stability study.

Asymptotic stability tests of the stabilized steady flow to two-dimensional and
three-dimensional perturbations were undertaken, as presented in figure 10, where �
denotes the maximum growth rate of the most unstable eigenmode and � represents
the spanwise wavenumber of different eigenmodes. We see that the stabilized flow
is asymptotically stable over the cases considered. The largest energy growth rate
corresponding to the most unstable mode changes slightly with respect to the control
cost used to obtain the steady flow, and the maximum value of these growth rates is
obtained at � = 0, corresponding to a two-dimensional perturbation. As the Reynolds
number increases, however, the most unstable eigenmodes become more unstable, but
over the parameters considered, the controlled flow is always asymptotically stable.

4.4. Mechanism of the optimal control
As already presented, the distribution of the optimal control changes notably
with increase of the control cost. At low control magnitudes, e.g. E = 10�5, the
nonlinear optimal control, which can be well approximated by the sensitivity, consists
primarily of low-magnitude leading edge suction, higher-magnitude (slightly upstream)
separation point suction and trailing edge blowing, as shown in figure 4. The leading
edge suction reduces the strength of the shear layer, the separation point suction
delays the separation and the trailing edge blowing pushes the upper and lower shear
layers away from each other. Clearly, all these mechanisms act on the uncontrolled
flow, and the response of the flow to the control, which can be significant at larger
control costs, is not counted, due to the linear nature of this control.

As discussed above, for higher values of control cost, the control spreads to
the downstream region of the uncontrolled separation points and keeps the shear
layer attached to the cylinder surface, while the blowing around the trailing edge
redirects the two shear layers to a pair of parallel shear layers in the wake. The
spreading of the control downstream of the uncontrolled separation point is a clear
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FIGURE 11. Schematic of the boundary layer attachment–redirection mechanism of the
nonlinear control. Thick dashed lines and thick solid lines are contour lines for vorticity
�3 and 3 at Re = 1000 under nonlinear control with E = 0.05 and t = ⌧ = 30. Dotted lines
denote the nonlinear optimal control, while lines inside and outside the cylinder represent
suction and blowing respectively, as indicated by the arrows.

nonlinear mechanism, i.e. as separation is delayed by control slightly upstream of
the uncontrolled separation point, the downstream control acts on the controlled flow
and further delays separation. We notice that this continuous delay of separation is
essential to the successful suppression of vortex shedding and cannot be predicted in
the linear control (sensitivity).

From the stabilized flow around the cylinder illustrated in figure 8, we see that
as the Reynolds number increases, the attachment point of the stabilized flow moves
downstream towards the trailing edge, resulting in shear layers being deflected by a
larger angle to form a parallel pair of shear layers. Therefore, a stronger redirection
force is required, which is consistent with the observation in figure 5 that the
magnitude of the nonlinear optimal control around the trailing edge (the blowing)
increases with the Reynolds number. It is worth noting that the control, which induces
separation delay and boundary layer redirection, acts mainly on the separating shear
layers. This attachment–redirection control mechanism, as schematically plotted in
figure 11, is observed for all the Reynolds numbers considered, and might be expected
at higher Reynolds numbers.

4.5. Controlled drag
When the vortex shedding is weakened, it can be expected that the forces acting on the
cylinder become less oscillatory, as illustrated in figure 12. We see that as the control
cost increases, the oscillation magnitude of drag (and lift which is not presented here)
reduces. At E = 0.05, where the vortex shedding is completely suppressed, the force
coefficient approaches steady values.

It is worth noting that under the control, the magnitude of drag reduces significantly,
indicating a strong correlation between unsteadiness and drag. This correlation can
be explained in the view of energy, i.e. the unsteady vortex shedding is associated
with vertical flow, whose energy is extracted from the streamwise flow, and therefore
decelerates the streamwise flow and generates drag. The variability of the forces
under the nonlinear optimal control at different Reynolds numbers is illustrated
in figure 12(b). We see that at control cost E = 0.05, the drag is reduced by
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FIGURE 12. Development of the drag coefficient Cd at (a) Re = 100 and various control
costs, and (b) E = 0.05 and various Reynolds numbers.

approximately 20 % at Re = 100 and over 70 % at Re = 1000 (similar results are
obtained at E = 0.02), indicating that a large proportion of the drag is associated
with the unsteadiness in the wake. If one decomposes the drag into form and viscous
components, it is found that the control reduces the form drag significantly but
increases the viscous drag, both effects due to the suppression of separation.

5. Discussion and conclusions

We have investigated algorithms to optimally suppress unsteadiness modelled as
fluctuation energy in incompressible flow. The control is introduced in the form of
wall-normal boundary velocity perturbations with a prescribed magnitude and temporal
frequency. We consider both the linear optimal control, i.e. the sensitivity, and the
nonlinear optimal control.

The sensitivity represents the gradient of the unsteadiness with respect to the
control and only requires an integration of a simplified adjoint equation without any
iterative optimization procedure. In the derivation of the simplified adjoint equation
for the sensitivity, the control-induced flow is assumed to be small compared with the
uncontrolled flow, and therefore this sensitivity is a linearly optimal control, which is
a good approximation of the nonlinear optimal control when the control magnitude
is small enough.

The nonlinear optimal control uses the decomposed NS equation and linearized NS
equation and the adjoint as the governing equations. The adjoint equation, as well as
its outflow boundary condition, is related with the uncontrolled and control-induced
velocity, and therefore the development history of the control-induced flow must be
recorded to solve the decomposed NS equation. In this scheme, a step length optimal
in a linear sense can be calculated by integrating the linearized NS equation twice.
Therefore, in each optimization step, the decomposed NS equation is at least called
once, the adjoint solver is called once and the linearized NS equation solver is called
twice, resulting in four calls of the governing equations in each optimization step.

The algorithms were applied to control the unsteady flow past a circular cylinder
for Re 6 1000. From the distribution of the sensitivity around the cylinder surface,
it was observed that the control is mostly located around the separation points
and the trailing edge, while a small proportion of the control is around the front
stagnation point. On testing the control effectiveness of the sensitivity at small values
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of control cost, it was observed that the most effective control occurs at frequencies of
! = 0, ! = 1.0355 and ! = 2.071. The first frequency corresponds to a steady control,
the second is the frequency of vortex shedding in the uncontrolled base flow and the
last one is a higher harmonic of the vortex shedding frequency. Since steady control
is the globally most effective one, in all the other calculations we set the frequency of
the control to ! = 0. The sensitivity was not completely symmetric on the upper and
lower surfaces of the cylinder due to the imposition of a finite value of the control
time interval, ⌧ , which was not commensurate with the periodic shedding from the
cylinder. As we increased ⌧ , the upper and lower parts of the sensitivity became
more symmetric. The sensitivity was also found to be insensitive to the Reynolds
number in the range Re = 100–1000, and the three-dimensional development of the
uncontrolled base flow did not yield significant changes to the sensitivity as tested at
a Reynolds number of 200.

Unlike the sensitivity, whose shape is independent of the control cost, the nonlinear
optimal control is a function of the control cost. The nonlinear optimal control is
concentrated downstream of the separation points and it contains a suction component
to postpone separation and a trailing edge blowing component to redirect the separated
shear layers to a pair of parallel shear layers. On comparing the sensitivity and
nonlinear optimal control at various control costs, it is confirmed that at small values
of the control cost, the two solutions overlap; at higher levels of control cost, the
nonlinear optimal control deviates from the sensitivity, in a more dramatic manner at
higher Reynolds number.

Under the nonlinear optimal control, the vortex shedding over the range of the
Reynolds number considered can be completely suppressed at E = 0.05. At the
highest Reynolds number tested, i.e. Re = 1000, complete suppression of vortex
shedding can be achieved at E = 0.02, corresponding to an r.m.s. value of the control
of 0.08, normalized by the free-stream velocity, with control effectiveness, defined
as the ratio of control-reduced drag power and input power (see appendix C), of
EC = 3.65. The fully developed three-dimensional flow was also tested and similar
control effects could be observed.

The asymptotic stability characteristics of the stabilized flow were studied
and we observed that the controlled steady flow is stable to both two- and
three-dimensional perturbations by calculating the largest growth rate of global
modes of the steady flow. The most unstable mode is a two-dimensional mode and
its growth rate changes slightly with the control cost used to obtain the steady flow.
As the Reynolds number increases, the growth rates of eigenmodes of the stabilized
flow approach the unstable threshold � = 0, but over the parameters considered, the
growth rates of all the eigenmodes are negative.

The force acting on the cylinder under control was also investigated. It was noticed
that as the vortex shedding was suppressed, both the oscillation and the mean value
of drag were reduced. At Re = 1000 and E = 0.02, the drag reduction was over 70 %.
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Appendix A. Derivation of (2.13)

The variation of the second term on the right-hand side of (2.11) with respect to
the perturbation velocity induced by the control is

�hu⇤, N(u)i(�u) = h�u, ru · u⇤
i + hu, r�u · u⇤

i. (A 1)

Substituting the formulation

r�u · u⇤
= r(�u · u⇤) � ru⇤ · �u (A 2)

into (A 1), we have

�hu⇤, N(u)i(�u) = h�u, ru · u⇤
� u · ru⇤

i + hu, r(�u · u⇤)i. (A 3)

Then, substituting

u · r(�u · u⇤) = r · (u�u · u⇤) � (r · u)�u · u⇤ (A 4)

into (A 3) and considering the divergence-free condition of u, we obtain

�hu⇤, N(u)i(�u) = h�u, ru · u⇤
� u · ru⇤

i + ⌧�1
Z ⌧

0

Z

⌦

r · (u�u · u⇤) dV dt. (A 5)

Then, implementing the divergence theorem, we reach (2.13):

�hu⇤, N(u)i(�u) = h�u, ru · u⇤
� u · ru⇤

i + ⌧�1
Z ⌧

0

Z

@⌦

(n · u)(�u · u⇤) dS dt. (A 6)

Appendix B. Procedure to calculate the nonlinear optimal control

The numerical procedure to calculate the nonlinear optimal control is as follows.
(1) Calculate the averaged base flow velocity Ua over time 0 6 t 6 ⌧ .
(2) Initialize un by random noise.
(3) Integrate (2.5) to calculate and save u(t) = N (un) for the time interval [0, ⌧ ].
(4) Calculate the total unsteadiness through (2.7).
(5) Solve the adjoint equation (2.15) to calculate the adjoint variables u⇤ and p⇤. It

should be noted that u(t) is used in this step.
(6) Substitute u⇤ and p⇤ into (2.17) to calculate g.
(7) Considering gf (t, !)n and unf (t, !)n as boundary conditions for the control

boundary and U + uk as the base flow, integrate (2.22) to obtain MU+u(g) and
MU+u(uk

n).
(8) Substitute MU+u(g) and MU+u(uk

n) into (2.21) to obtain uk+1
l and then substitute

uk+1
l into (2.7) to calculate the optimal (in linear sense) value of the step

length ↵.
(9) Update the control following (2.19) and the perturbation velocity uk+1 following

(2.20), where the governing equation (2.5) is called.
(10) Substitute uk+1 into (2.7) to check whether the unsteadiness is reduced. If not,

reduce the value of ↵ and repeat steps 9 and 10 until the unsteadiness reduces.
(11) Repeat steps 5–10 until the solution un converges.
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Appendix C. Cost/benefit analysis of control

To calculate the time-average cost and benefit of the control, we consider the
mean flow momentum and energy equations for flow inside a time-invariant domain
in an inertial reference frame. If the flow is decomposed into a time mean and a
fluctuation as u=u+u0, p=p+p0, with kinetic energy per unit mass of the mean flow
q = (u · u)/2, and time-mean strain rate S = [ru + (ru)T]/2, then the per-unit-mass
equations for time-average momentum and kinetic energy of incompressible flow are
respectively

r · u u + ⇢�1rp � 2⌫r · S + r · u0u0 = 0 (C 1)

and
u · rq + r · [⇢�1p u � 2⌫S · u + u0u0 · u] + 2⌫S : S � u0u0 : S = 0, (C 2)

or, adopting the notations ⌧ = 2⌫S � u0u0 and ⌧ n = ⌧ · n, where n is the domain’s unit
outward normal vector,

r · u u + ⇢�1rp � ⌧ = 0 (C 3)

and
u · rq + r · [⇢�1p u � ⌧ · u] + ⌧ : S = 0. (C 4)

Integrating over the control volume and using the divergence theorem, one obtains
the integrated forms of the momentum and energy equations,

I
u u · n dS + ⇢�1

I
pn dS �

I
⌧ n dS = 0 (C 5)

and I
q u · n dS + ⇢�1

I
p u · n dS �

I
⌧ n · u dS +

Z

V
⌧ : S dV = 0, (C 6)

where S is the domain boundary and V is its volume. The volume integral in (C 6)
represents the sum of mean-flow viscous dissipation and drain of energy from the
mean flow to the fluctuating flow.

In our analysis, the domain contains a single immersed body (circular cylinder)
that may, in the controlled case, have a permeable surface over which fluid can flow.
For further insight, we may decompose the domain boundary into SO, which is the
domain’s outer or far-field boundary, and SB, which is the boundary surface around
the enclosed body. The surface integrals above may then be decomposed into sums
of integrals over these two subsets. For (C 5) we can then write FO + FB = 0, where

F0 =

I
u u · n dSO + ⇢�1

I
pn dSO �

I
⌧ n dSO, (C 7)

FB =

I
u u · n dSB + ⇢�1

I
pn dSB �

I
⌧ n dSB, (C 8)

in which FB represents the time-average force (per unit mass) exerted by the fluid
on the contained body (instead – due to the sign convention adopted – of the
force exerted by the body on the fluid). We note that since the body surface
may be permeable, FB can contain terms associated with both time-average and
fluctuating velocities; these in turn would be associated with momentum transfers
(and forces) internal to the body, and so their inclusion in the mean body-force term
is sensible. Moreover, we note that, unlike the case for solid boundaries, there may
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be surface-normal viscous tractions acting on a permeable body, and that related work
terms also appear in (C 6).

If we take the far-field fluid to be at rest and the domain (and body) to be
translating with velocity �U1, then the drag power per unit mass required to drive
the body is PD = FB ·U1. The difference between the drag powers in the uncontrolled
and controlled cases, PDU � PDC , is the physical benefit to be obtained through control.

Now we turn to assessing the physical cost, which is the blowing power required
at the cylinder. We split the surface integrals in (C 6) into two parts. Writing

Ẇ0 =

I
qu · n dSO + ⇢�1

I
p u · n dSO �

I
⌧ n · u dSO, (C 9)

ẆB =

I
qu · n dSB + ⇢�1

I
p u · n dSB �

I
⌧ n · u dSB, (C 10)

which respectively represent the net energy flux, i.e. work rate, over the outer and
body boundaries, we realize that the second of these is the negative of the net power
per unit mass required for blowing (being zero if there is no blowing, and negative due
to the sign conventions adopted). Hence, the physical cost of surface blowing is �ẆB.

Finally, we come to a definition of control effectiveness, which is the benefit of
control divided by its cost:

EC = �(PDU � PDC)/ẆB. (C 11)

(We note that it is possible to obtain a negative value for EC.) The control
effectiveness of the nonlinear optimal control at Re = 1000 and E = 0.02 is found to
be EC = 3.65. It is worth noting that this effectiveness does not consider the actuator
efficiency and therefore is an upper-limit value.

In practice, we typically compute all the integrals in (C 6) as volume integrals,
relying on the divergence theorem and a separate computation of ẆO to find ẆB.
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