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Abstract

This work analyzes the O(2) symmetry breaking bifurcations in systems with ai©(2) symmetry group—wherg, and
0O(2) are, respectively, spatio-temporal and spatial symmetries—that are responsible for the transitions from two-dimensional
to three-dimensional hydrodynamic states. This symmetry group describes, for example, two-dimensional time-periodic
flows past bodies which have reflection symmetry across a wake center plane, such as symmetrical airfoils, circular and
square cylinders. Normal form analysis of these systems is based on a joint representation of the monodromy matrix for
the half-period-flip map (a composition of a half-period temporal evolution with a spatial reflection) and the spatial O(2)
symmetry. There are exactly two kinds of codimension-one synchronous bifurcations in these systems; one preserves the
Z, spatio-temporal symmetry, while the other breaks it. When the Floquet multipliers occur in complex-conjugate pairs
(non-resonant with the periodic basic state), there is a single codimension-one bifurcation, and at the bifurcation point two
different kind of solutions appear simultaneously: a pair of modulated traveling waves, and a circle of modulated standing
waves. At most one of these two types has stable solutions. The symmetries of the system also admit period-doubling
bifurcations, but these are codimension-two and the normal form analysis permits specific conclusions regarding these. There
are also a number of other codimension-two bifurcations leading to mixed modes and the strong 1:1 and 1:2 resonances. All
the codimension-one bifurcations are illustrated with reference to a concrete physical example.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The transition from two-dimensional to three-dimensional flows in hydrodynamics is a fundamental step to-
wards turbulence. There are numerous situations where the two-dimensional state is also time-periodic and has
symmetries additional to the invariance in the third dimension (usually referred to as the spanwise direction). A
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classic example is the two-dimensional periodically shedding wake of a bluff body, such as a circular cylinder,
i.e. the well-known von Karman vortex street. The transition from two-dimensional to three-dimensional flow is a
breaking of the O(2) symmetry in the spanwise direction, whereby the three-dimensional state has spatially periodic
structure in the spanwise direction and constitutes a breaking of the spanwise translation invariance component o
the O(2) symmetry. However, in this class of flows, it is not sufficient to consider just O(2) symmetry breaking,
as there are additional spatio-temporal symmetries that have important consequences for the symmetry breakin
process.

Spatio-temporal symmetry breaking has been considered in many contexts for time-periodic symmetric systems,
e.g. sed6-10]. The usual way to investigate the stability of time-periodic flows is to analyze the corresponding
Poincaré map, but in many time-periodic symmetric systems, the Poincaré map:th iterate of another map
that mixes a spatial symmetry (typically a reflection) with time evolution. Swift and Wiesdiif]donsidered the
simplest such spatio-temporal symmetry, consisting of a half-period temporal evolution composed with a spatial
reflection, and proved that this symmetry inhibits period doubling. These ideas have been general{ddd)(eugd
the dynamic consequences of this type of spatio-temporal symmetry have been explored in diverse circumstance
(e.g.[11,17).

These studies have focused on the implications imposed on the dynamics solely by the spatio-temporal symmetry
whereas in the class of problems we wish to address, one must also consider the implications of the spanwise O(2
symmetry. This requires the consideration of the joint action of the O(2) and the spatio-temporal symmetries.

In this paper, we first derive the joint representations of the spanwise O(2) symmetry and the spatially orthog-
onal (e.g. streamwise) spatio-temporal symmetry. Following this, the corresponding normal forms are derived in
center manifolds of low dimension and where the action of the O(2) symmetry is non-trivial—we are primarily
interested in the transition from two-dimensional to three-dimensional flows, and the cases where O(2) acts trivially
have essentially been treated in the studies of the spatio-temporal symmetry alone. The dynamics of the norma
forms, corresponding to codimension-one bifurcations to three-dimensional flows, are analyzed and compared to
nonlinear results (both computational and experimental) of a physical hydrodynamics example, which we detail in
the following section.

2. Periodically driven cavity flow

As an example to illustrate the general theory presented in this paper, we use the periodically driven cavity
flow, which we briefly describe here and refer the readeft@9] for further details, including experimental
observations, numerical Floquet analysis and numerical nonlinear computations. This flow provides examples of
all possible codimension-one local bifurcations from the basic state leading to three-dimensional flows.

The flow is confined in a rectangular cavity, as showRim 1(a), and is driven by the harmonic oscillations of the
wall atx = 0, with periodT’. Thex-extent of the cavityy, is used as the length scale. The other stationary cavity walls
are atx = h andy = £1h/2, wherel” is the aspect ratio. The basic state is invariant in the spamwdaection,
and is also invariant to the spatio-temporal symmetryconsisting of a spatial-reflection,K ,, composed with a
temporal evolution through half the forcing peridd, as illustrated irFig. 1(b). For three-dimensional flows we
assume-periodicity with wave numbeg.

The equations and boundary conditions of the problem are

Navier-Stokes : du +u - Vu = —p~ Vp+ vAu, (1)

incompressibility : V-u =0, 2)
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Fig. 1. (8) Schematic of the fluid domain for the periodically driven cavity flow, periodic in the z-direction and forced in the y-direction, with

isosurfaces representing different values of spanwise vorticity. (b) Two snapshots of velocity vectors of the base flow, half aforcing period apart,
illustrating its spatio-temporal symmetry.
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where (u, v, w) are the physical components of the velocity in Cartesian coordinates (x,y,z) € [0, k]
x [=Th/2,Th/2] x [—7h/B, wh/B]. These equations and boundary conditions are invariant to the following
Spatial symmetries:

z-trandation:  Ry(u, v, w)(x, y,z,0) = (u, v, w)(x, y,z + a, 1), 4

z-reflection:  K,(u, v, w)(x,y,z,0) = (u, v, —w)(x, y, —z, ). ©)
Reflectionin y, K, acts on avelocity field as

y-reflection :  Ky(u, v, w)(x,y,z, 0 = (u, —v, w)(x, =y, 2, 1). (6)

K, isnot asymmetry of the system, due to the periodic forcing in the y-direction, but is part of the spatio-temporal
symmetry H:

H-symmetry : H@u, v, w)(x, y,z,1) = (u, —v, w)(x, =y, z,t + %T). @)

R, generatesthe group SO(2), and K, generatesagroup Z», but R, and K, do not commute: R, K, = K, R_,. The
symmetry group generated by R, and K ; isO(2), acting in the periodic spanwise z-direction. Thetransformation K,
generates another Z» group and commutes with the spanwise O(2). The complete symmetry group of the problem
isZs x O(2).
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The action of the spatio-temporal symmetry H on the vorticity, V x u = (&, n, ¢), isdifferent to the action of H
on the velocity, and is given by

H-Symmetry : H(Sv n, C)(X, y, Z, t) = (_E’ n, _é‘)(x’ - t + %T) (8)

Physically, the two-dimensional basic state of the flow is generated by oscillatory Stokes layers that are produced
through the simple harmonic mation of the cavity wall at x = 0, and their containment by the stationary walls. The
basic state has spanwise ‘rollers’, as illustrated by the vorticity isosurfaces and velocity vectors of Fig. 1. Three
dimensionless parameters govern the flow: the Reynolds number Re = Vinaxh /v and the Stokes number & = h2/ Tv
(measuring the amplitude and period of the floor motion), and the aspect ratio I". The flow shares many physical
features with two-dimensional time-periodic bluff body wakes, and in fact is equivariant to the same symmetry
group.

In different regions of parameter space, the two-dimensional basic state (a Z2 x O(2)-invariant limit cycle), loses
stability to three-dimensional perturbationsin three distinct ways, leading to modes A, B and QP. The three modes
break the SO(2) group generated by R,. They differ in their time dependence (periodic or quasi-periodic), and in
the way they break the remaining symmetries 7 and K ;. Modes A and B are synchronous limit cycles—therefore
the critical Floquet multiplier of the Poincaré map is real—with long and short spanwise wavel engths, respectively,
and which bear similarities to the cylinder wake modes of the same names. Mode QP is a quasi-periodic solution,
with complex-conjugate pair critical Floquet multipliers.

3. Bifurcationswith a Zo spatio-temporal symmetry

Let us consider a non-autonomous ODE in afinite-dimensional linear space E, of the form:
x = f(x,0), f,t4+ 17 = fx,f) VteR, x€E, 9

representing our T-periodically forced system. Let K bealinear transformationin E representing the spatio-temporal
symmetry H of our problem, such that

Hf(x, 1) = KE(Kx, t + 31) = fx, ), K?=1 (10)

K = K, in the periodically driven cavity flow. The vector field f(x, 1) is defined in E = E x 2, the enhanced
phase space of our problem, with coordinates (x, r); ST is the unit circle on which ¢ is identified with ¢ + 7. The
ODE (9) becomes an autonomous ODE in E in anatural way by augmenting the ODE with the equation 7 = 1. A
global Poincaré map is defined by advancing any given initial condition, xg, aperiod T in time:

P:Ey > Ey, xo = Pxo = ¢(to + T xo, to), (11)
where ¢(t; xo, 1o) isthe solution of (9) at atime ¢ corresponding to theinitial condition xg at ¢ = 1o:
3p(t; x0, t0) = f(P(1; x0, 10), 1),  ¢(to; x0, 10) = Xo. (12)

E,, isthe section of E at an arbitrary giventimeq at which the Poincaré section is computed. In this ODE setting, all
E,, coincide with E. Strictly speaking, the function f(x, ) is defined in an open subset I/ C E, and the restrictions
of U to each E,,, Uy,, can be different, asillustrated in Fig. 2. If our dynamical system comes from a PDE, then E
isinfinite-dimensional. For example, if the dynamical system is the Navier—Stokes equations, with time-periodic
boundary conditions, then the space E isthe space of square-integrable solenoidal velocity fields (aHilbert space).
Since the boundary conditions may be different for different rg-values, U;, is the subspace of E satisfying the
boundary conditions of the problem at .
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Fig. 2. Schematic of the enhanced phase space E = E x S1.

The analysis of periodic solutions of (9) reducesto the analysis of fixed points of P. A spatio-temporal symmetry
‘H does not fit into the standard framework of normal form analysis of equivariant differential equations because
it mixes space and time, whereas the usual equivariant normal form theory has been developed for purely spatial
symmetry transformations. For systems with a spatio-temporal symmetry #, it is convenient to analyze the action
of H at agiveninitial timerg:

H: Ep > Eg, xo > Hxo = Ko (to + 3T xo, t0). (13)

The Poincaré map P is the square of the half-period-flip map #.
Typically, the given ODE (9) will have symmetries additional to . Let us assume that (9) is equivariant to the
symmetry group G, whose elements are linear transformationsin E:

Gf(x,t) = f(Gx, 1) VG €G. (14)

G isthe group of spatial symmetries. The complete group of symmetries of the ODE (9) is generated by G and K.
If they commute, thegroupis X' = G x Zo; if not, it may be the semidirect product X = G x Z», or it may have a
more complex structure. In any case, Z» is generated by K and it only has two elements, Z> = {I, K}.

The Poincaré map P is G-equivariant, i.e. it commuteswith G : GPx = PGx, for all G € G. In general, H isnot
G-equivariant, but satisfies

HGx = (KGKHHx VG e G, Vx e Ey. (15)

When H isnot G-equivariant, it is called atwisted equivariant map, or ak-symmetric map. In[13,14], k isdefined to
be the least positive integer such that K* commutes with all the elementsin G. Since K2 = I in our case, we either
have k = 1 (and H is G-equivariant), or k = 2 (and H is a 2-symmetric map). Therefore, H is G-equivariant iff K
commutes with G; inthiscase, ¥ = G x Z». In the driven cavity flow problem, H commuteswith G, ¥ = G x Z»
and H is not atwisted equivariant map, because k = 1.

In addition to the periodically forced cavity flow problem, periodic orbits with spatio-temporal symmetries are
common in many unforced hydrodynamic systems with symmetry following a Hopf bifurcation. The use of the
half-period-flip map is not only useful for periodically forced systems, but it can also be applied to autonomous
system with periodic solutions, when the periodic solution considered has a spatio-temporal symmetry. Examples
are bluff body wakes, Bénard convection and Taylor—Couette flows. The important point is that the bifurcations
from these periodic solutions are governed by exactly the same normal forms both in forced and unforced systems.
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Fig. 3. The T-periodic Poincaré return map P and the half-period-flip map . The basic state (on dashed-line limit cycle) is xo, afixed point of
P and H; x1 isan arbitrary initial point, closeto xo; x1, P(x1) and H(x1) are all different, although P(x1) = H?(x1).

Consider an autonomous ODE in afinite-dimensional space E, of theform y = g(y), with a T-periodic solution
do(t, yo) = ¢o(t + T, yo), where yg is any point of the periodic solution. Assume that this periodic solution is
invariant to a Z, spatio-temporal symmetry:

Hepo(t, yo) = Keo(t + 3T, yo) = do(t, yo). (16)

where K isalinear transformationin E representing the spatio-temporal symmetry of our problem, suchthat K2 = 1
and g(Kx) = Kg(x); weareassuming that K isasymmetry of the ODE, but this symmetry isbroken in the periodic
solution ¢o, which only retains the spatio-temporal symmetry #. Replacing y with ¢o(z, yo) + x in the origina
ODE resultsin anew ODE:

x = f(x, 1), fx,t+1 = f(x,t) VteR, xeE an

whichisanon-autonomous periodic ODE exactly of thesametypeas(9), andin particular f(Kx, 1+ T7/2) = Kf(x, ).
The analysis of the periodic solution ¢o(z, yo) reduces to the analysis of the fixed point xo = 0 of the Poincaré
map P or of the half-period-flip map #, and we have reverted to the previous problem. If xg isapoint of the periodic
orbit of (9) or (17), itisafixed point of both 7 and . The actions of P and # on points neighboring xg areillustrated
inFig. 3.
For the rest of this paper, we focus on the case G = O(2) and X' = O(2) x Z»; these are the symmetries of the
driven cavity flow, bluff body wakes, and other fluid dynamical systems.

4. Joint representationsof O(2) and Ly

The center manifolds, M., associated with the Poincaré map P and the half-period-flip map H are the same
[14]. The eigenvalues and eigenvectors/eigenfunctions at a bifurcation point are computed by Floquet analysis of
the governing equations linearized about the basic state. Since P = #?, the monodromy matrix of P, Lp, isthe
square of the monodromy matrix of H, Ly : Lp = L%I. Both linear operators L p and Ly act on E¢, the tangent
space of the center manifold M. at the basic state. Let . p and gy be the eigenvalues (Floquet multipliers) of L p
and L g, respectively; then up = ;L?H, and the (generalized) eigenvectors are the same. As the governing equations
are O(2)-equivariant, M is an O(2)-invariant manifold, and we seek the possible representations of O(2) in E¢.
But # isaso asymmetry of the problem, therefore we want to find the joint representations of O(2) and L g in Eg,
i.e. the matrix representations of the actions of these symmetries on abasisfor E¢. From them, the corresponding
analysis for Lp and P is immediate, and in addition, we gain a better understanding of the symmetry breaking
process, because the spatio-temporal symmetry is built into the definition of H.
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The irreducible representations® of O(2) are either one-dimensional (and the action of SO(2), trandations in
z, istrivia) or two-dimensional. Any representation of O(2) in E¢ is a direct sum of irreducible representations,
and E. splits into two invariant subspaces, Ec = W1 & Wa, where W1 contains the one-dimensional irreducible
components and W contains the two-dimensional irreducible components of the representation considered [9].
SO(2) actstrivially on W1, and the corresponding eigenvectors are SO(2)-invariant, i.e. they are independent of z.
The action of SO(2) in W» is non-trivial, and any eigenvector in W, breaks the translational invariance in z. W»
is even dimensional, and splits into a direct sum of two-dimensional irreducible representations. In a convenient
complex basis, {U, U}, the action of a two-dimensional irreducible representation of O(2) on the corresponding
complex amplitudes (A, A) is

ghr 0 0 1
we(%5%) k=(0Y) a9

where 8 = 27/ is the wavenumber of the eigenvector U in the spanwise direction.

As Ly commuteswith O(2), W1 and W5 are L y-invariant subspaces, and thejoint representationsof O(2) and L
split into adirect sum of representationsin Wy and W2 (see[9, Theorem 3.5]). Aswe areinterested in thetransitions
to three-dimensional flows, i.e. SO(2) symmetry breaking bifurcations, we now derive the joint representations
of O(2) and Ly in Wa. As W> is even, we present the results for the two-dimensional and four-dimensional
cases.

4.1. Two-dimensional center manifold

As the representation of O(2) on E¢ isirreducible, Lz must be a multiple of the identity because it commutes
with O(2), and that multiple, w g, must be real as Ly stems from areal dynamical system. Furthermore, at the
bifurcation, |1y | = 1, and so there are exactly two different two-dimensional joint representations of O(2) and L 4,
F5 and F; , corresponding to = 1and 1y = —1, respectively:

L 01 10
Py R“:(o eiﬂa)’ KZ=<1 o)’ L”=<o 1)’ (19)

_ gfr 0 01 -1 0
reor= (0 %) k= (0 w=(E ) @

Both representations have the same L p matrix, the identity 1. Although L p is always the identity map, we have
two different possibilities for Ly, either 1 or —1. In the first case, the eigenvectors preserve the spatio-temporal
symmetry 7, and in the second case, this symmetry isbroken. Thisresult istransparent from the map 7, but it isnot
obvious from the Poincaré map P. Note that the two-dimensional representations account only for real eigenvalues
of Ly (and L p); in order to accommodate compl ex-conjugate eigenval ues (i.e. Neimark—Sacker bifurcations, Hopf
bifurcations for maps) the center manifold M. must be at least four-dimensional.

An important consequence of the joint representations found, is that period doubling in the Poincaré map P is
inhibited when M. istwo-dimensional, even though the multipliers have multiplicity 2. Thisis an extension of the
result of [18] to bifurcations with O(2) symmetry in addition to a spatio-temporal symmetry H. If the system only
had SO(2) symmetry instead of O(2) symmetry, then L p and Lz would not be restricted to being proportional to

1 A representation of agroup in alinear space V is irreducible when its only invariant subspaces are the null space {0} and the whole space
V. Further, it is absolutely irreducible if the only linear operators commuting with the representation are multiples of the identity. Complex
irreducible finite-dimensional representations are absol utely irreducible.



254 F. Marques et al./ Physica D 189 (2004) 247276

the identity and period doubling would be possible when M_ istwo-dimensional. For example, L p and Ly could

have forms (L2, = Lp):
i 0\> (-1 0 0 -1\’ (-1 0 -
0o -i) 0 -1 1 0/ \o0o -1)°
When M. istwo-dimensional, E. is K -invariant. In fact, any real solution ug = exp(iy)U + exp(—ip)U in E¢ is
invariant to a z-reflection centered not about the origin z = 0, but about an appropriate z = y/8:

(Ry/pK;R_yp)uo = uo. (22)

We say that the symmetry K, is preserved in the two-dimensional joint representations ]—'2+ and 7, (F3,s = %).
4.2. Four-dimensional center manifold

Let usnow consider the case wherethe center manifold M. isfour-dimensiona. Therepresentation of O(2) in E¢
splitsinto two irreducible representations of the form (18) and we have five possibilitiesfor the joint representations
of O(2) and Ly in Eg; the details can be found in Appendix A. Two of these representations are new, and the
other three are constructed using 3, as building blocks. These latter compound representations are the direct sums
Ff o F, Ff @ F, and F, ® F, , inwhich the value of 8 (the wave number in the spanwise direction) need
not be the same in both elements of the direct sum. These essentially represent mixed modes.

The two new representations are

éfe 0 0 o0
R 0 e 0 0 X
o o0 e o |V o

0 0 0 ¢b

o O - O
o O O Bk
=, O O O
o O O

Ly= , (23

ghe 0 0 0010
o 0 001
B Re= 0 ¢ Q 0 , K, = 7
0 0 e'fr 0 1 000
0 0 0 elipe 0100
S 51-1 0 0
0 s 0 O
Lu=1¢o o & sy | (24)
0 0 0 s

wheres = 1, uy isacomplex number with | gy| = 1andIm(uy) # 0,and sy isany non-zeroreal number, usually
1, or avaluethat simplifies L p. The basis associated with these representationsis of theform AU+ BV + AU + BV,
and the matrices are the action of the symmetry operators on (A, B, A, B). In fact, there are two families of
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four-dimensional representations, one (F;) parameterized by the complex number uy = €92 with o e (0, 2n),
and the other (F,) parameterized by the signs = 1.

The map Ly does not have any restriction, and depending on the system studied, any of the possibilitiesin (23)
and (24) can occur. The Poincaré map L p however, being the square of L g, hasonly the following options, obtained
by sguaring the matrices of Ly in (23) and (24):

up O 0 O 16 0 0
o w0 0 lo 10
Le=109 0 7 o @ »=|g 0 1 5 (25)
0 0 0 7 000 1

for the cases F; and F,, respectively, where j1p = u%, dp =256y, and usualy §p = 1sothat §y = s/2.

Period doubling in the Poincaré map L p isnow possible; wemay have up = —1in(25) by taking gy = i = €7/2
in (23). So, if we have O(2) symmetry and the action of SO(2) is non-trivial, the center manifold M. must be at
least four-dimensional for period doubling to be possible.

5. Normal forms
The details of the derivation of the normal forms are given in Appendix B, and follows the method of [10].
5.1. Normal formfor F, : H-invariant synchronous bifurcation

Let usconsider thejoint representation ]—'2+ (19) inatwo-dimensional center manifold. Thelinear part of H inthe
center manifold, parameterized by the amplitudes (A, A), is Ly = 1. The normal form for # is (Appendix B.1):

A A[1+ P(A% o), (26)

where the polynomia P is real. Up to third order in A, we obtain the codimension-one normal form (where the
signs of ¢ and a have been chosen for convenience):

H: A AQ+E—alAP), acR. 27)

This normal form istypical of the pitchfork bifurcation, except that here A is complex. The fixed points of H are
the basic state A = 0, which isunstable for £ > 0, and an invariant circle of bifurcated fixed points:

o (E\Y? g

Ap =€’ (-) , 0el0,2n), = >0, (28)
a a

parameterized by the angle 6, that exists for £/a > 0. This is a pitchfork of revolution. The action of al the

symmetries on these bifurcated solutionsis

RoAg = €7 Ag = Agy g, K.Apg=A_y, HAp = Ayg. (29)

The SO(2) symmetry is broken, and R,, transforms a solution on the invariant circle into a different solution on the
sameinvariant circle. Thetwo solutions Ag and A, are K -invariant, andinfact Ry/s K, R_g/gAg = Ag; thismeans
that Ay isinvariant to a z-reflection centered not about the origin, z = 0, but about z = 6/8. We say that the K,
symmetry is preserved. The spatio-tempora symmetry # is also retained.

The H-symmetric synchronous instability mode of the periodically driven cavity, mode B, isillustrated in Fig. 4,
which shows vorticity isosurfaces at two instants, 7/2 apart. The figure shows the saturated periodic state at Re
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to+T/2

)

/

Fig. 4. Isosurfaces of the x-component (solid) and z-component (translucent) of vorticity for the ]-‘2+ (synchronous, H-symmetric) mode B of
the periodically driven cavity flow, at & = 20, Re = 535, § = 8.75. This Re is slightly above critical for the value of & and the spanwise
wavenumber isthe critical value at the bifurcation. The plots are at two phasesin the oscillation of the floor: 1o and g + 7/2.

dlightly above Re; for the given value of & = 20, and the spanwise wavenumber 8 corresponds to the critical value
at the bifurcation. Contours of perturbation eigenfunction velocity components for this state are shown in Fig. 5.
By inspection of the eigenfunction velocity components, we see that mode B is H-symmetric (7), and so at the
bifurcation u g = 41 for thismode. This can also be seenin Fig. 4, using the action of H on the vorticity (8).

The normal form corresponding to the Poincaré map is obtained by squaring that of #, and has exactly the same
form as the normal form for H:

P:A> Al+e—alAP), =23 a=2a. (30)

Asareadily computable measure of the perturbation amplitude A, we employ the square root of the normalized
instantaneous kinetic energy in the first spanwise Fourier mode, u1, a times o + nT during the nonlinear evolution
of the perturbed flow, i.e.

1 h pTh/2 pah)2 12

E, = —/ / uy-u1(to+nT)dzdydx . (3D
! AVaa 2y Jo J_mmj2 )2

Fig. 6 showsthe nonlinear growth of E,, for the mode B instability of the periodically driven cavity flow at (S = 20,

Re = 535), where ¢ = 0.0600. The observed growth fits very well to the normal form expression for P, and from

the saturation value E, asn — oo, i.e. Eoo, Wehavea = 7.45 x 103V32,.

to

to+T/2

Fig. 5. Contours of the critical eigenfunction velocity components for the }'2+ mode B of the periodically driven rectangular cavity, plotted in
the mid-depth plane at x = h/2; y € [—h, h] (vertical extent), z € [/ B¢, 7/ Bc] (horizontal extent). Black (gray) contours represent positive
(negative) values. Parameters values are S = 20, Re; = 532.5 and g = 8.75.
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Fig. 6. Nonlinear growth of a measure of perturbation amplitude for the mode B instability of the periodically driven cavity a (S = 20,
Re = 535). In order to avoid clutter, only every third cycle is represented.

The measure shown in Fig. 7, which is related to the mean squared saturation amplitude (A2.) (and (EZ.)):

1 my2 Ah/2
g, = —/ / / 2y dzdydx (32)
z 4Vr%axl'712k 0 J-m2 Ah/z

is the normalized contribution to the time-averaged kinetic energy from the spanwise velocity component, which
is zero for the base state. (The time-averaged value is used because in |ater examples, w?, and E,% have oscillatory
behavior.) As expected for a supercritical pitchfork bifurcation, the growth of g, with |Re — Reg| islinear.

5.2. Normal formfor ¥, : synchronous bifurcation breaking the # symmetry

Let us consider the joint representation ,,” (20) in atwo-dimensional center manifold. The linear part of # in
the center manifoldis Ly = —1, and the normal form for # is (Appendix B.1):

A A[-1+ P(|A%, &)] (33)
with P areal polynomial. The normal form of 4 uptothird order in A is
H:Ar A(-1—F+alA®), aeR, a#0 (34)

which is the normal form typical of period-doubling bifurcations, except that here A is complex. The only fixed
point, HA = A, isthe basic state A = 0, which is unstable for £ > 0. The period-two points are the solutions of

4x107% ——
3x10-5 -
o 2x1078 —

10-5 —

ol 1
520 530 540 550 560 570 580
Re

Fig. 7. Analysis of the growth in energy of the saturated perturbation flow, ¢,, with departure from the critica Reynolds number Re; = 532.5
at S = 20 for mode B of the cavity flow.
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HA = —A:

Ag = ei9<

the same expression as in (28). For ¢/a > 0 we have an invariant circle of period-two bifurcated solutions,
parameterized by the angle 6 (note that a period-two point of 7 has a period equal to that of the forcing period, 7).
The actions of all the symmetries on these bifurcated solutions are

>0,

Q| M

1/2
) , 0¢€]l0,2n),

Q| ™

RyAg =€ Ag = Agpa, K. Ag = A_y, HAp = —Ap = Ry/pAs. (35)

The SO(2) symmetry isbrokenand K ; ispreserved, asinthej'-‘z+ case. Inthej'-‘z+ casetheeigenvector isH-symmetric,
asisthe basic state. Therefore, the full solution of the problem (basic state plus perturbation) is aso #-symmetric.
However, in the 7, case, applying H to the eigenvector results in the same eigenvector with the sign changed
(akind of anti-symmetry). The full solution of the problem, being the sum of the H-symmetric basic state plus
the (anti-symmetric) perturbation, does not exhibit a simple behavior under the H-symmetry. We ssimply say that
the H-symmetry is broken. Nevertheless, the system retains a spatio-temporal symmetry, the transformation
composed With Ry/g : Ry/gHAg = Ag. Both H and R,/ symmetries are broken, but their combination is still a
spatio-temporal symmetry: a half-wavelength translation in the spanwise direction z plus areflection in y together
with a 7/2 temporal evolution.

All the bifurcated solutions for 7, period double on the half-period-flip map, but since the period of H is 7/2,
they have the same period as the forcing, T', and so are synchronous bifurcations of the Poincaré map. The normal
form corresponding to the Poincaré map is obtained by squaring that of #, and keeping terms up to third order in
A and first order in £ gives

P:A> Al+e—alAP), =23 a=2a. (36)

The bifurcated solutions now form an invariant circle of fixed pointsfor P, it isapitchfork of revolution. R, and H
symmetries are broken, and K, is preserved. All that remains of R, and H is a single spatio-temporal symmetry,
Ry M, that generates a Z; group.

Thenormal formscorresponding to the Poincaré map for ]_-2+ and F, casesareexactly thesame(36). Theessentia
difference between both cases is that ]-"2+ preserves the spatio-temporal symmetry H and 7, breaks it. That the
two have different spatio-temporal symmetriesis clearly evident from the normal forms of the half-period-flip map
‘H, but is completely hidden in the normal form of P.

The 7, mode of the periodically driven cavity, mode A, isillustrated in Fig. 8, which shows vorticity isosurfaces
at two instants, 7/2 apart. The figure shows the saturated periodic state at Re slightly above Re. for the given value

Y 2

to+T/2 s 7

-3

Fig. 8. Isosurfaces of the x-component (solid) and z-component (transl ucent) of vorticity for the 7, (synchronous, H-symmetry breaking) mode
A of the periodically driven cavity flow, at S = 160, Re = 1250, 8 = 1.7. This Reis slightly above critical for the value of S and the spanwise
wavenumber is the critical value at the bifurcation. The plots are at two phases in the oscillation of the floor: 1o and to + 7/2.
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Fig. 9. Contours of the critical eigenfunction velocity components for the 7, mode A of the periodically driven rectangular cavity, plotted in
the mid-depth plane at x = h/2; y € [—h, h] (vertical extent), z € [—n/Bc, 7/ Bc] (horizontal extent). Black (gray) contours represent positive
(negative) values. Parameters values are & = 160, Re; = 1191 and B; = 1.7.

of & = 160, and the spanwise wavenumber S corresponds to the critical value at the bifurcation. Contours of
perturbation eigenfunction velocity components for this state are shown in Fig. 9. By inspection, the eigenfunction
velocity components for this mode A break #-symmetry (7), and so at the bifurcation uy = —1. This can also be
seen in Fig. 8, using the action of 4 on the vorticity (8).

In the driven cavity flow, the long wavelength mode A is of ., type and the short wavelength mode B is of ]—'2+
type. In contrast, for the wake flows the opposite is true; the long wavelength mode A is of ]—'2+ type and the short
wavelength mode B is of 7, type [1-3,5,16].

In the driven cavity flow case, the nonlinear growth of the perturbation amplitude for the mode A instability does
not follow the expression obtained from the normal form (36), because in this particular example we are very close
to a degenerate case, where the coefficient a is very small. We now consider this degenerate case separately.

5.2.1. Normal formfor F, : degenerate case
In the driven cavity flow, the coefficient & of |A|2 in (34) is very close to zero, so the bifurcation is degenerate,
and we must keep terms to fifth order in the normal form. The normal form is now codimensi on-two:

H:Ar A(1—F—7lAP+alA)Y), aeR, a+#0. (37)

Theonly fixed point isthe basic state, A = 0. Depending on the values of £ and 7, there are either 0, 1 or 2 invariant
circles of period doubled bifurcated solutions. The corresponding regions in (g, )-space where these exist are
labeled (i), (ii) and (iii), respectively, in Fig. 10, where the casea > O isshown. If a < 0, Fig. 10 must be reflected
through the vertical axis. Thesolidlineg = Oisaline of period-doubling bifurcations. The curve separating regions

Fig. 10. Regions in parameter space with O (region (i)), 1 (region (ii)) and 2 (region (iii)) bifurcating circles of solutions.
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| / a
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Fig. 11. Amplitude A of the bifurcated solutions as a function of ¢. The circle of bifurcated solutions can be obtained by rotation around the
horizontal axis. Solid (dashed) lines correspond to stable (unstable) states. The horizontal axisisthe basic state.

(i) and (iii) is a line of saddle-node bifurcations of period-two solutions, and it is given by 7 = 2(—a#)¥/2. The
symmetries of the bifurcated solutions are exactly the same as in the non-degenerate case.
The normal form for the Poincaré map in the degenerate case is given by

P:Ar> Al+e+ AR —alAY, e=28, n=27, a=2a, (38)

where higher order termsin A, ¢ and n have been neglected as before; the normal formisvalid in aneighborhood of
the origin where n = O(¢1/4) and A = O(¢1/2). All the bifurcated states are fixed points of P, and the bifurcation
is a degenerate pitchfork of revolution. In Fig. 11, the fixed points of P are plotted as functions of ¢, showing that
the pitchfork bifurcation is supercritical for n < 0, subcritical for n > 0, and n = 0 is the degenerate case.

Fig. 12 shows the nonlinear growth of the perturbation amplitude for the mode A instability of the periodically
driven cavity flow at (S = 160, Re = 1250), where ¢ = 0.0141. The curve adjusts very well to the normal form
expression for P, (38), and the fitted coefficients are n = 55V, ~ 0 anda = 6.7 x 10°V 4.

Fig. 13 showsthegrowth of ¢, asafunction of Re. Instead of thelinear growth corresponding to the non-degenerate
case, we have a square root behavior, that corresponds to i & 0; from (38), ¢, « |A|? « £1/2 o« |Re — Reg| /2.

5.3. Normal formfor " non-resonant Neimark-Sacker bifurcation

Asbefore, thenormal formisfirst computed for  andthenfor P. Inthiscase, thereareapair of complex-conjugate
Floquet multipliers, uy = €t19/2,9 e (0, 27), that havemultiplicity 2. The center manifold M _ isfour-dimensional,
and the actions of L and O(2) are given by the joint representation 73, (23), inabasis (U, V, U, V). The actions
of Ly, Ry and K, on theamplitudes A and B of U and V are given by

e’z 0 i 0 01
LH:( 0 ei9/2>’ Rﬂl:( 0 eiﬁa)’ KZ=<1 0) (39)
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B (1+e+nA2-aA *)4A,
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0 B il | 1 | 1
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Fig. 12. Nonlinear growth of a measure of perturbation amplitude for the mode A instability of the periodically driven cavity at (S = 160,
Re = 1250). In order to avoid clutter, only every tenth cycle is represented.
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Fig. 13. Analysis of the growth in energy of the saturated perturbation flow, ¢, with departure from the critical Reynolds number Re; = 1191 at
S = 160 for mode A of the cavity flow.

and the actionson A and B are given by the corresponding complex-conjugate matrices. The normal form for 7£ in
the non-resonant case (6/2x irrationa) is (Appendix B.2):

A A[€9? + P(A)?, |B)? ). B B[€9? + P(|B?, |A], ¢)]. (40)
Up to third order in A and B, the normal formis
A A2 + & +alA1? + bIBP), .
H: _ R g, a,beC. (42)
B B(€92 + &+ a|B|? + b|A?),
Introducing the moduli and phases of A = r1 €1 and B = r, €%2, the normal form becomes
ri—>ri(l+¢e— ZII"% — Z)r%),
ra > ra(1+& —ard — brd),

9 .
¢1|—>¢1+§+n+crf+dr§, g, n,a,b,c,deR. (42)

0
¢2'—>¢2+§+n+cr§+dr§,

This is a codimension-two bifurcation containing two real parameters & and n. Nevertheless, the dynamics of ¢
and ¢ are trivial; the phases increase approximately by 6/2 every half-period 7/2, and are slightly modulated by
the coefficients ¢ and d and the moduli r1 = |A| and r» = | B|. The dynamics of r1 and rp are decoupled from the
phase dynamics, and we effectively end up with a codimension-one two-dimensional map for r1 and r:

1 r1(1+§—&r%—l~7r%), -
: . g,a,beR. (43)
ra > ra(1+&—arg — br?),
The normal form for the Poincaré map is
ri—>ri(l+e— ar% - br%), -
: =28, a=2a, b=2b. (44)
o r2(1+s—ar§ — bl’%),

The phase dynamics for P are the same asfor #, with the phases ¢1 and ¢» increasing by 6 every period T of P. In
the (non-resonant) quasi-periodic case, there are no differences between the normal forms for 4 and P. The result
isanalogous to that for the Hopf bifurcation with O(2) symmetry, and the subsequent analysis follows closely that
of [10]. We present the results for P; substituting ¢ = 2&, a = 2a and b = 2b gives the corresponding results for .
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Fig. 14. Regionsin (a, b)-parameter space for the normal form (44), where different phase portraits exist. The corresponding phase portraits are
shownin Fig. 15.

The normal form (44) has four different fixed points:
po=(0,0), (45)

n=([5]"0). (@)
pa = (o, [2]1/2) , (47)

Pe= <[aib}l/2’[aib}l/z>' 9

po exists for all values of ¢, and is stableiff ¢ < 0; p1 and p, exist only for ¢/a > 0, and are stable iff ¢ > 0 and
(a —b)/a < 0; and p3 existsonly for ¢/(a + b) > 0, and itisstableiff ¢ > 0and (a — b)/(a + b) > 0 (Appendix
B.2).

In (a, b)-parameter space, there are six different regions separated by three bifurcation curves: a = 0, where p1
and p» disappear going to infinity; a + b = 0, where p3 disappears going to infinity; and a — b = 0, where one
of the eigenvalues of p1, p2 and p3 changes sign. These six regions are drawn in Fig. 14, and phase portraits for
¢ < 0and e > 0aredrawn for the six regionsin Fig. 15. In these phase portraits, when ¢ crosses zero, p1, p2 and
p3 Simultaneously collide with pg and are born or destroyed.

L LR
P v

e<0 (III) >0 e<0 (IV) €>0

e<0 (V) €>0 e<0 (VI) e>0

Fig. 15. Phase portraits corresponding to the six regionsin Fig. 14. po isthe fixed point at the origin, p1 lieson the horizontal (r1) axis, p2 lies
on the vertical (r2) axis, and p3 ison the bisector. Solid (hollow) points are stable (unstable).
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Fig. 16. Nonlinear growth of a measure of perturbation amplitude for the mode QP instability of the periodically driven cavity at & = 100 and
Re = 1225. Every cycleis represented.

The equilibria p1, p2 and p3 are represented as fixed points in Fig. 15, where only r1 and r» coordinates are
displayed. However, the center manifold is four-dimensional, and we must also consider the two phases ¢1 and ¢2;
these phases correspond to independent rotationsin the planes (4, A) and (B, B). In doing so, p1 and p» become
circles (T1), and p3 becomes a two torus (T2). These T1 and T2 are located in the Poincaré section of the original
dynamica system. Considered as invariant manifolds (by time evolution) of the original system, p; and p, are
two-tori (T2) and ps isathree-torus (T3). Aswe shall see, however, ps isaT? because both phases ¢1 and ¢» have
exactly the same frequency; what we have is a continuous family of invariant (by time evolution) T?2 that together
span aT3.

Fig. 16 shows the nonlinear growth of E, for the mode QP instability of the periodically driven cavity flow at
S = 100 and Re = 1225, where ¢ = 0.0513. For modulated traveling waves (TW), Fig. 16(a), E, fits very well
to the normal form expression for p1 and p», while for modulated standing waves (SW), Fig. 16(b), E,, exhibits
oscillations absent in the normal form expression for ps. Introducing A, = (r? + r3)%/2 as a measure of the
amplitude, we obtain from (44):

TW: Ap1=A,(1+¢—aAd), (49)
SW: A,1=A,(1+¢—05[a+b]A>). (50)

The velocity field of the TW solutions after a period isthe same asthe initial field, except for atrandation in z (see
Fig. 17). Therefore E,, which is an integrated quantity over a spanwise wavelength, does not contain the second
frequency of the TW solution, that manifests only as a spanwise translation. E,, then follows (49). Thisis clearly
seen in Fig. 16(a); the small oscillation present is a transient that decays for largen. At & = 100 and Re = 1225,
the saturation value E, providesa = 7.25 x 103V,52,.

For the SW solutionsthe situation ismore complicated. The second frequency isnot associated with any symmetry
operation, and it is not easy to find a measure of the amplitude of the solution. Fig. 16(b) shows that E, is
not proportional to the amplitude (in the normal form sense) of the SW, but contains oscillations with the second
frequency of theflow. Thedetailed form of the oscillatory behavior isacombined consequence of thereal projection
of the perturbation mode amplitude oscillating harmonically at the secondary frequency [4], and E,, containing
contributions from all locations in the domain, where the perturbation amplitudes are not required to have the same
temporal phase. The solid linein Fig. 16(b) shows that averaging over the second frequency oscillations, the curve
obtained (solid line) fits very well the normal form prediction (50). At & = 100 and Re = 1225, the saturation
value E, provides 0.5(a + b) = 14.1 x 10%V;2.. Using the value of « obtained from the TW solutions, we obtain
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Fig. 17. Vorticity dynamics of modulated +z-traveling waves for the joint representation F, in the periodically driven cavity flow [4], shown
in a spanwise (z) domain extent of one wavelength, at & = 100 and Re = 1225. Solid isosurfaces are of the out-of-page (x) component of
vorticity, positive and negative of equal magnitude, while translucent isosurfaces represent the z-component of vorticity. The driven cavity wall
lies further into the page than the structures, and oscillates in the £ y-direction.

b = 20.95 x 10%V;;2 > 7.25 x 10°V;2, = a, in full agreement with the normal form theory prediction b > a.
This corresponds to Case I, Fig. 15, where TW solutions are stable.

Consider the action of O(2), H and P (Egs. (39), (42) and (44), respectively) on the solutions p1 and p». Asthe
moduli r1 and r> do not change, let us focus on the respective phases ¢1 (for p1) and ¢2 (for p2). From (39) we
obtain

pr: Heé1=¢1+ 30, Po1 = ¢1+ 6, Ry = ¢1+ Ba, (51)
p2: Hba=¢2+30, Pa=¢2+0,  Rad2=2— po, (52)

whered = 6+ 25 + 2ce/a (from (42) and (46)). p1 and p» are K -conjugate, K, transforms oneinto the other. The
action of H and P (advancing in time) is exactly the same as the action of an appropriate SO(2) element (a specific
tranglation R,, in the spanwise z-direction). Therefore p1 and p, aretraveling wavesin z, and they travel in opposite
directions. Asthe action of P coincides with the action of R/ the phase velocity isc, = +6/ T8, where T isthe
forcing period; the plus sign correspondsto p1 and the minussign to p». Notice that the phase velocity at criticality
is given by the imaginary part of the critical eigenvalue, ¢, = 6/ T8, and varies linearly with the parametersin a
neighborhood of the bifurcation point: ¢, = (6 + 2y + 2ce/a)/ T8; this linear dependence can be used to estimate
the normal form constant ¢/a. Although we use the term traveling wave for these solutions, p1 and p2, they are not
true traveling waves: due to the time-dependent nature of the basic state, we do not have afixed pattern translating
in space as time evolves, but rather we have a time-dependent pattern that after aforcing period T has exactly the
sameform asthat at the beginning of the period, but trandlated in space; a modul ated traveling wave (TW). A given
solution is not invariant by the action of R,, but becomes a different solution on the T?; it is the T that is R,, [and
SO(2)] invariant.

The modulated traveling waves p; and p; break the K, symmetry. p1 and p» live on two invariant T2, by time
evolution and by SO(2); K, transformsone T2 into the other. For thesetraveling waves, advancing time by the period
T isthe same as az-trandlation; and the action of the spatio-temporal symmetry H isalso the same asaz-tranglation.
Although H symmetry isnot preserved (it changesthe phase ¢), thereis still apreserved spatio-temporal symmetry,
the combination HR_é/Zﬁ, i.e. in a frame of reference tranglating in z at the phase speed, p1 and p, appear
‘H-invariant. All these symmetries of the TW have been observed in the numerically computed solutions for the
driven cavity flow, and many of them are apparent from Fig. 17.

Isosurfaces of vorticity of modulated traveling waves (TW) of the periodically driven cavity flow computed
at S = 100 and Re = 1225, which is at a Reynolds number just slightly above the bifurcation (Re; = 1212 at
S = 100) areshownin Fig. 17. We see from the figure that the second frequency introduced by the Neimark—Sacker
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bifurcation manifests itself as a trandation in z after advancing a forcing period in time. The action of # is aso
equivalent to a z-tranglation. The K, symmetry is broken, and applying it changes the sign of the z-translation, so
the resulting TW moves in the opposite direction.

Now consider the action of O(2), H and P on p3. Asthe moduli 1 and r, do not change, we focus on the phases
¢1 and ¢». To simplify the discussion, let

b=+, Y =2(p1— ). (53)

From (39) we obtain

n(3)=(0F) #(0)-=(%") 59
R”@):(wfﬁa)’ KZ($>=<—¢w)’ (55)

where§ = 6 + 25 + 2(c + d)¢/(a + b). Both H and P leave y invariant (54), and so time evolution (iterates of P
and H) only modifies the phase ¢. The T? obtained by keeping v = o constant contains any solution obtained
with the given v asinitial condition. Any p3 solution lieson aT?, and asit isalinear combination of two equal
amplitude modulated traveling waves, traveling in opposite directions, we call it a modulated standing wave (SW)
solution. The O(2) symmetries R, and K. change v (55), and therefore the aforementioned T2 (with ¥ = ) is
not O(2)-invariant. Nevertheless, thereis a particular combination of R, and K, that keeps v invariant:

Ryo/pKzR—yq/p ($0> = <$0> . (56)

Thisisaz-reflection, centered not about the origin z = 0, but about z = o/ 8. Thisisexactly the same behavior we
found with the synchronous modes A and B corresponding to cases]—‘zi, and we say that K, symmetry is preserved.
SO(2) symmetry (trandations in the spanwise direction) and H symmetry are broken (they change the phase ¢),
and SW do not retain any spatio-temporal symmetry, because all the space symmetries keep ¢ fixed.

All these symmetries of SW have been observed in the numerically computed solutionsfor the driven cavity flow,
and many of them are apparent from Fig. 18, which shows vorticity isosurfaces at & = 100 and Re = 1225, which
is at a Reynolds number just slightly above the bifurcation (Re; = 1212 at & = 100). The figure shows that K, is
preserved, but the SW solution is fully quasi-periodic, in the sense that advancing in time is not equivalent to any

= %0 T I
‘?jﬁ{\ 3

- > - -
————

i

0 176 2T/6 3T/6 4T/6 5T/6 T

Fig. 18. Vorticity dynamics of modulated standing and traveling waves for the joint representation 7, in the periodically driven cavity flow [4],
shown in a spanwise (z) domain extent of one wavelength, at S = 100 and Re = 1225. Solid isosurfaces are of the out-of-page (x) component
of vorticity, positive and negative of equal magnitude, while translucent isosurfaces represent the z-component of vorticity. The driven cavity
wall lies further into the page than the structures, and oscillates in the +y-direction.
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Fig. 19. Schematic of the standing and traveling wave sol utions and their symmetries, on aPoincarésection. p; and p, arethetwo traveling waves,
K. -related. MSW solutionsform the central T2, whichis K . -invariant; individual modulated standing wave solutions p3 are not SO(2)-invariant,
but are invariant under a conveniently translated (rotated in the plot) K, symmetry. Time evolution is indicated by an arrow labeled 7, and the
action of SO(2) is aso indicated.

space symmetry. Any non-trivial z-trandlation (not amultiple of the z-wavelength), produces a new solution of SW
type.

In summary, modulated traveling wave solutions break Z, and retain SO(2), and so there exist two different
modulated traveling waves, p1 and po, that are Zs-conjugates. Modulated standing wave solutions break SO(2)
and retain Zo, and so there exists a continuous family of T2 that span a T2. From one of the standing wave
solutions (a T?), the action of SO(2) generates the T3, and this T2 is a manifold invariant by O(2) and by time
evolution. The traveling wave solutions retain a spatio-temporal symmetry (different from #), and the standing
waves do not have any spatio-temporal symmetry at all. Fig. 19 shows a schematic of the standing and traveling
wave solutions and their symmetries; the plots arein a Poincaré section, so the T2 and T° are represented as T and
T2, respectively. The dotted lineistheflip line of the K. symmetry; the elements of SO(2) are rotationsinto the plot
plane.

The persistence of the p1, p2 and p3 solutions under arbitrary small perturbations can be proved exactly with the
samemethodsasthose presentedin[10]. Therefore, p1, p2, and p3 arestructurally stable(they persist under arbitrary
but small perturbations). However, the phase dynamics on these T2 solutions depends on 6 = 6 + 2, + constant
being rational or irrational. In the rational case, we have periodic solutions on the T2, while in the irrational case
we have quasi-periodic solutions densely filling the T2. Any small perturbation can transform one type of solution
into the other, and the dynamics on the T? is not structurally stable. We need a second parameter, , to unfold the
subtleties of the phase dynamics on the T?; these subtleties include the presence of Arnold tongues and frequency
locking phenomena [12]. The bifurcation is truly of codimension-two, but the existence and stability properties
of p1, p2, and p3 are codimension-one properties. This is exactly the same situation as with the Neimark—Sacker
bifurcation without symmetries[12].

In many problems, e.g. in fluid dynamics, the basic state pg is the only fixed point that existsfor ¢ < 0, and p1,
p2, and p3 only exist for ¢ > 0. In this case, we have only two possible scenarios, the onesin regions | and Il of
Fig. 14. Inregion |, p1 and p, are stable and p3 is unstable; in region || we have the opposite situation: only p3 is
stable, whereas p1 and p» are unstable. Which one of these scenarios takes place depends on the particular problem
at hand. In region | (stable traveling waves) we have a < b; in region |1, where the standing waves are stable, we
have a > b. These conditions on the growth rate of the L,-norm of the bifurcated perturbations of the basic state,
lead to arule of thumb that the stable solution corresponds to the one with the largest growth rate. From (46)—48)
we have

£\1/2 2 72
Ilpal = llpall = (=) ||ps||=[m} (57)
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Fig. 20. The growth with Re for ameasure of the perturbation energy for the saturated TW and SW statesat S = 100 and Re; = 1212. Solutions
on the TW branch have largest energy, and are stable to perturbations; those on the SW branch have lower energy, and are unstable.

and | p1ll > |l p3ll iff a < b. Inthedriven cavity flow, the Neimark—Sacker bifurcation leadsto scenario | dynamics,
with TW being stable and || TW|| > [|SW|| [4,5]. Thisis also the case for the wake flows [3].

Fig. 20 shows the variation of ¢, for TW and SW, for & = 100, as afunction of Re. The growth rate of ¢, with
|Re — Re¢| for TW is greater than that of SW—recall that the saturation coefficient for TW in Fig. 16 was greater
than for SW—and the SW are unstable, according to the normal form analysis. We have been able to compute the
unstable SW by time evolution (as shown in Fig. 18) by restricting the ssimulationsto a K ,-invariant subspace where
SW exist.

5.4. Normal formfor F,: resonant cases and period doubling

The normal form for # in the resonant case (/2 rational) is (Appendix B.2):

A A[e™/k2 1 p(|A12,|B12, (AB)*2, (AB)*2)] 4+ A*2~1B*2 (1|2, |BI?, (AB)*2, (AB)*2),
B+ B[é™/kz  p(|B2, |42, (AB)*2, (AB)}2)] 4+ A*2B*2~10(1B2, | A[?, (AB)*2, (AB)*2), (58)

where P, Q arecomplex. The resonances do not modify the normal forms (43) and (44) up to fourth order, except in
the special caseky/k, = 1/2whered = ,i.e. uy = €72 =i and up = —1. Thisisprecisely the period-doubling
case mentioned at the end of Section 4. Asarg(u g /2r) = 1/4, this case corresponds to a 1:4 resonance for #. In
this case (k1/k2 = 1/2), the normal form up to third order is

A A(i+2+alA2+b|B? + ¢AB?,

H: ) o (59)
B> B(i + &+ a|B|? + b|A|?) + ¢A2B,

where £, 4, b and ¢ € C; and for the Poincaré map P

A A(=1+¢e+alAl?+b|B|®>) + cAB?,

P: - (60)
{ B> B(—1+ ¢+ a|B|?> + b|A|?) + cA®B,

where e = 2i¢, a = 2ia, b = 2ib and ¢ = 2i¢.

The analysis of these normal forms remains incomplete. Since the phase dynamics is now coupled with the
amplitude dynamics through the resonant term, this is a codimension-two bifurcation which is not reducible to a
codimension-one hifurcation as was possible in the non-resonant case. Period doubling in either the driven cavity
flow or the wake flows has not yet been observed as a bifurcation directly from the basic state [3].
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5.5. Normal formfor F," resonances 1:1 and 1:2

In this case, the center manifold M is aso four-dimensional. The normal form for A in the amplitudes A, B, A
and B, corresponding to F; (24), is of the form (Appendix B.3):

A Als+ P(|A|?, AB — AB, ¢)],
B> B[s+ P(|A|?, AB — AB, &)] + A[6u + O(A|%, AB — AB, n)], (61)

plus the compl ex-conjugate equations giving the action of the map on A and B. The normal form for 7 up to third
order is
A A(s+2+alA2+b(AB— AB)),

H: o ] o ) (62)
B> B(s+ &+ alAI?+b(AB — AB)) + A(8y + 1 + ¢|A|?> + d(AB — AB)),

where &, 7, &, b, ¢ and d are real. These are codimension-two bifurcations, with bifurcation parameters &, 7, and
with four coefficients (a, b, ¢ and d), reminiscent of the strong 1:1 (s = 1) and 1:2 (s = —1) resonances (e.g. see
[12]), but more involved because here the amplitudes A and B are complex. The normal form for the Poincaré map
Pis

(63)

{ A A[l+e+alA2+b(AB — AB)],

B+ B[l+¢+alAl?+b(AB— AB)] + ASp +n+c|Al? +d(AB — AB)],
where & = 252, 8p = 258y, n = 2(s7j + 8pé), a = 25, b = 2sb, ¢ = 2(s¢ + dya) and d = 2(sd + Syb);
usually 6p = 1. As we have aready found in the analysis of 7, the normal form for the Poincaré map P does

not distinguish between the cases s = +1, but they are clearly different for H. The analysis of these normal forms
remains to be done.

5.6. Normal formfor F,* @ F,?: non-resonant case

Inaconvenientbasis{U, U} of F,* and{V, V} of F,?2, theaction of O(2) and L ;; inthe corresponding amplitudes
A, A, Band B, is

ghe 0 0 0 0100 s1 0 0 O
0 eifie 0 1000 0 s4 0 O
R 0 0 éfe o |’ K=o 00 1| Lu=149 o s2 0
0 0 0 glibe 0010 0 0 0 s

(64)

We assume different g-values in each ;. The normal form for # in the non-resonant case (81/p2 irrational) can
be written as (Appendix B.3):

A Alsi+ P(AP B e).  Br Bls2+ QAP BI% n)] (65)
and the normal forms for 4 and P up to third order are
A > A(s1+ &+ alA12 + b|B|?),
: . (66)
B+ B(sp + i) + ¢|A|?> + d|B|?),
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A A(l+ ¢ +alA2 +b|BP), 7
| B> BA+1n+clA?+d|BP),

where all the coefficients and parameters are real, and ¢ = 251¢, a = 2s1a, b = 2s1b, n = 2s71, ¢ = 2s»¢ and
d = 29221. Again, the normal forms for #H distinguish between the different values of s; and s, but the normal
forms for P do not. These normal forms are of codimension-two, and the normal form for P has been analyzed
(including one of the fifth order terms) in [2], where they describe possible interactions between the synchronous
modes A and B (corresponding to 7, and . ', respectively) in the wake of acircular cylinder in terms of amixed
mode, F;” @& F .

5.7. Normal formfor ,* & F,?: resonant case

The normal form for # in the resonant case (81/82 = r/s rational) can be written as (Appendix B.3):

A Alsi+ Pi(A%, |BI2, A°B, ASB', e)] + A 1B Po(|A1%, |BI?, AB', A°B', 1),
B> Blsa+ 01(1A1%, |BI?, A°B’, AB", )] + A*B"102(1AI%, | B2, A*B", A*B', p), (68)

where the polynomials P and Q areredl. If » + s > 5, the resonant terms appear at fourth order or higher, and
up to third order the normal form is the same as in the non-resonant case. In any case, these bifurcations are of
codimension-two or greater, and their analysis has not been done yet, except in the particular case mentioned at the
end of the preceding section.

6. Conclusions

Thetransition from two-dimensional to three-dimensional flow impliesabreaking of the tranglational component
of the spatial O(2) symmetry and that the center manifold has even dimension. With two-dimensional center man-
ifolds, there are only two types of possible bifurcations leading to three-dimensional states. While these are both
synchronous, one preserves the spatio-temporal H symmetry (j_-2+ ), Whereas the other breaks H symmetry (F, ).
With four-dimensional center manifolds, there are anumber of possibilities that generally lead to non-synchronous
states, described by two families of joint representations, 7, and F,. The F, cases, in the absence of reso-
nances, correspond to Neimark—Sacker bifurcationsin which the phase dynamics aretrivial and they are essentially
codimension-one bifurcations. The breaking of O(2) symmetry in the four-dimensional case spawns two classes of
nonlinear states: traveling waves and standing waves, both types modulated by the time-periodic basic state.

Thelowest dimension of the center manifold that can support period doubling isfour, and these are aresonant case
of the F; Neimark—Sacker bifurcations, corresponding to the 1:4 resonance. The other resonances (except for 1:1and
1:2) share the same normal form, up to fourth order, asthe non-resonant Neimark—Sacker. The 1:4 resonance (period
doubling) isacodimension-two bifurcation, whereasall the other Neimark—Sackersare essentially codimension-one
bifurcations with trivial phase dynamics. The 7, cases correspond to the 1:1 and 1:2 resonance cases, with s = +
and s = —, respectively. They are codimension-two bifurcations, so only occur at apoint in (Re, St)-space, and so
one may expect to find them somewhere along the Neimark—Sacker curve (like other resonances); the difference
is that these resonances have particular dynamics associated with them. Little is yet known in detail; see [12] for
adiscussion of the generic 1:1 and 1:2 resonances that occur without additional complications from symmetries,
which make the normal form amplitudes complex. With a four-dimensional center manifold, there can also be
three-dimensional mixed-mode solutions, corresponding to the various compositions between }‘{ and F, ; these
also are manifest via codimension-two bifurcations.
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We have analyzed bifurcations where al the critical eigenfunctions break the spanwise translation symmetry
SO(2), leading to three-dimensional flows. Intermsof the decomposition E; = W1 & W, mentioned at the beginning
of Section 4, we have analyzed the case W1 = {0}. The complementary case, W, = {0}, correspondsto bifurcations
where the flow remains two-dimensiona, i.e. z-independent. It is also possible to have bifurcations with both Wy
and W» non-trivial. These bifurcations lead to mixed modes with some eigenfunctions preserving SO(2) symmetry
and other eigenfunctions breaking it. These mixed-mode bifurcations are of codimension-two or higher, and their
analysisis|left for future investigations.
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Appendix A. Four-dimensional joint representationsof O(2) and L g

In the four-dimensional case, the representation of O(2) in E isadirect sum of two irreducible representations
of the form (18), and E is the direct sum of two two-dimensional subspaces. E; = V1 @ V. When the spanwise
wavenumber of the two representations are different, 81 # B2, these two representations are not isomorphic, and
any linear operator in Ec commuting with the representation leaves V; and Vo invariant (see [9, Lemma 3.4]).
Therefore, the joint representation of SO(2) and L  also splitsinto adirect sum of two irreducible representations
of theform 7, s = +.

When 81 = B2 = B, V1 and V; are not necessarily L y-invariant subspaces, and we need to find the general
form of the operator L ;; commuting with the representation of O(2). Let {U, U} and {V, V} be bases of V1 and V>,
respectively, and let AU + AU + BV + BV be an element of Ec. The action of O(2) and Ly on (A, A, B, B) is

| My 0 (N 0 (L1 L2
R“‘( 0 Ma)’ KZ_(O N>’ LH_<L3 L4)’ (A1)
where we have used block notation, and the elements of the matrices are 2 x 2 complex matrices. In particular
dfr 0 01
w4 0%) =00, o

An easy computation using that Ly isarea operator that commutes with R, and K, and that the representation
(A.2) of O(2) isirreducible, shows that the four matrices L; are real multiples of the 2 x 2-identity, L; = a;12,
a; € R. Computing the eigenvalues of Ly gives

det(Ly — uuls) = [(np — a1)(uy — as) — azas]® = 0 (A3)

and the eigenvalues have multiplicity 2, i, = (a1 + aa + s[(a1 — aa)? + 4a2a3)Y/?)/2, where s = £1. Aswe
are in the center manifold, the eigenvalues of the map L z must have modulus one, and there are three cases to be
considered.

Casel. (Ff @ F5) : (a1 — aa)? + dazaz > 0.
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The eigenvalues %, are real and different, therefore they must be +1 and —1, and a3 + a4 = 0, af + agaz = 1.
The four eigenvectors are

N e1 = (a1 + DU + a3V,
nwy=1: _ _
e2 = (a1 + DU + a3V = ey,

e3 = (a1 — 1)U + a3V,
my=—1: _ _
e4 = (a1 — DU + a3V = es.

Theactions of Ry, K, and L i on this base are

M, O 1 0
R, = , KZ=<N 0), Ly = , (A.4)
0 M, 0 N 0 -1

where we have used block notation. This is the compound representation }“2+ @ F, , with the same value of 8 in
both components.

Casell. (Ff): (a1 — aa)? + 4azaz < 0.
The eigenvalues /ﬁgl and 1}, are complex conjugates, and aja4 — azaz = 1. Thefour eigenvectors are

+_ 2. Jea=al+ (€72 —apV,
o ez = a2l + (@2 —apV,

w02, 1 B= aU + (€792 —apV = ey,
H ' ea = asU + (€792 — gV = &».

Theactions of Ry, K, and L iy on thisbase are

(M, O (N 0 (im0
RO(_< 0 M_a)’ KZ_(O N)v LH—( O /1]-]12)7 (A5)

where we have used block notation, and written .z = €9/2. Thisisthe representation 7 .

Caselll. (F}): (a1 — as)? + 4azaz = 0.
The four eigenvalues coincide, uy = s = (a1 + aa)/2, and we have two possibilities, s = +1. Inthiscase, Ly
does not diagonalize and the four generalized eigenvectors are

e1=aU 4+ (s—apV, e2=46qV, es=aU + (s —a))V = é1, ea =306V = ey,

where §g isan arbitrary non-zero real number, usually taken as 1 or avalue that simplifies L p. The actions of R,
K, and Ly onthisbase are

ghey, 0 0 N Ns O
RO{ —_— ( O e_|ﬁa12> ’ KZ - <N O ) k] LH —_— ( 0 Ng) k] (A6)
where we have used block notation, and written
_ N 5[-[
Ns = (O s > . (A7)

Thisisthe representation 7, .
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The results obtained can be summarized as follows: the four-dimensional joint representations of O(2) and L g
are of the form 7, 7, and F,* & F,?, and in the last case, the B-value of each of the ;-components can be
different.

Appendix B. Normal forms

For some low-codimension bifurcations in finite-dimensional systems, dynamical systems theory provides a
center manifold reduction and a normal form. For infinite-dimensional systems, certain technical regquirements
must be satisfied in order to invoke the theorem, see [15] for details; the Navier—Stokes equationsfor confined flows
fulfill these requirements. The normal form is a low-dimensional, low-order polynomial system that captures the
dynamics of the full nonlinear system in the neighborhood of the bifurcation (e.g. [10]). The normal form containsa
number of parametersthat unfold the bifurcation; the number of parameters being the codimension of the bifurcation
considered. Arbitrary perturbations of the normal form are usually accounted for by these unfolding parameters
(see[20] for details and examples), and they result in atopologically equivalent system preserving all the dynamics
of the normal form; thisis the case for the well-known local codimension-one bifurcations [12]. However, when
the codimension of the system is 2 or greater, persistence of al the dynamical features of the normal form is not
always guaranteed. One may still perform a normal form analysis on the original system, truncate at some finite
(low) order and extract some of the characteristic dynamics of the original system. The derivation of the normal
forms in the presence of symmetries in this appendix follows the method of [10].

B.1. Normal formfor 75, s = +1

The normal form for A is of the form:

A SA+ Q(A, A, ) (B.1)
and to any given finite order in A and A, the function Q satisfies (e.g. see[10]):

O(LpA, LyA) = Ly Q(A, A), (B.2)

O(K A, K A) = K. Q(A, A), (B.3)

Q(RyA, RyA) = Ry Q(A, A). (B.4)

Thisresultsin Q(A, A, €) = AP(|A|?, &), with P areal polynomia satisfying P(|A|2, 0) = O(|A|?).

Proof. Theactionsof K. and R, on A and A (and on Q and Q) are

LyA =sA LyA =sA, (B.5)
K. A=A, K.A=A, (B.6)
RoA =éPr4, RyA=¢P4, (B.7)

The action of Ly isthe identity for s = 1, and coincides with R/ for s = —1. Substituting the action of K, and
Ry into (B.3) and (B.4), we obtain

Q(A, A)=Q(A,A), QEPA e q) =ePQ(A, A),

valid for any value of «. Applying these relations to amonomial cA” A", ¢ € C, weobtainc € R, m =n + 1, and
Q contains only monomials of the form cAJA|2". O
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B.2. Normal formfor 7

The normal form for A is

A €924+ P(A, B, A, B), B €Y?B+ Q(A, B, A, B) (B.8)
and to any given finite order in A, B, A and B, thefunctions P and Q satisfy

P24, %2 6710124 71928y = d92p(A, B, A, B), (B.9)

PEPra, e Pep ey Pepy — P P(A, B, A, B), (B.10)

Q(A,B,A,B) = P(B, A, B, A) (B.11)

for any value of . Q aso satisfies (B.9) and (B.10), but these additional equations are obtained using (B.11),
which in fact gives Q once P has been obtained, and so do not provide any additional information. Applying these
relationships to amonomial A” B1A™ B, we obtain

p+q—m—n—l=k%r, p—q—m+n—1=0, (B.12)
where the integer k is not zero in the resonant case (27/6 rational).

First consider the non-resonant case, where /2 isirrational and k = 0. Solving (B.12) for p and ¢ we obtain
p =m+1landg = n, and themonomialsin P must be of theform A|A|2"|B|%*. Therefore, P = AP(|A|2, | B|2, ¢)
and O = BP(|B|2, |A|2, ¢), i.e. we obtain (40).

In the resonant case 6/(2r) = k1/k2 € (0, 1) isrational and (B.12) has additional solutions. We can take the
fraction k1 / ko asirreducible with both k1 and k2 positive: 0 < k1 < kg, andkp > 2.In(B.12), p+g—m—n—1=
ptg—m—-n—-1+p—g—m+n—1=2(p—m—1)iseven; and 4rk/60 = 2kka/ k1, SO kko/ k1 isan integer,
and since k1/ k2 isirreducible, k must be amultiple of k1 : k = jky. Finally, Eq. (B.12) can be written as

p—-m—-1=g—n=jky, jeZ. (B.13)
The monomialsin P are of the form Alket1pike|A|2n |12t j e 7, i.e.
P(A, B, A, B) = AP(|A|%, |BI%, (AB)*2, (AB)*2)] + A% 1B Q(|A[?, | B, (AB)*2, (AB)"2). (B.14)

The monomials in Q are obtained from P by interchanging A and B. This gives (58). For j = 0 we obtain the
non-resonant case. The resonant monomial of lowest order in P is Ak2=1B*2_ of order 2k, — 1; since ks > 2, itis
of order threefor k1/k2 = 1/2, and of order greater than or equal to 5 in any other case.

Sability of the equilibria p; (48), in the non-resonant case. The Jacobians of the system (44) at the four fixed
points (48) are

1 2ae 2be

_(1+¢ O |7 a+p  a+b
Jo= < 0 1—{—5)’ Ja= 2be 1 2ae |’ (B.15)

a+b a+b

— —b

1-2¢ 0 1+8(a ) 0
J1= ea—>n) |- Jo = a . (B.16)
0 1+— 0 1-2

Their eigenvalues are: for po, 1 + ¢ isdouble; p1 and p, have eigenvalues 1 — 2¢ and 1 + ¢(b — a) /a; and p3 has
1—2¢and1+ 2¢(b —a)/(a+ b). A fixed point is stable iff their eigenvalues have moduli less than 1.
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B.3. Normal formfor F,

The normal form for  is
A sA+ P(A, B, A, B), B> 8yA+SB+ Q(A,B, A, B), (B.17)
plus the complex-conjugate equations. Due to the O(2) symmetry, the functions P and Q satisfy
PP, ePep e a e p) = P*P(A, B, A, B), (B.18)
P(A, B, A, B) = P(A, B, A, B), (B.19)

aswell asidentical equationsfor Q. Applying these relationsto amonomial, aA? B A™ B", we obtain p + g — m —
n—1=0andared; p+qg+m+n =p+q+m+n:|:(p+q—nz—n—~l):2(p+q)—1=2(m+n)+l,
and all the monomials are of odd order. L also gives conditionson P and Q:

P(SA, 8yA + SB,sA,8yA +sB) = sP(A, B, A, B), (B.20)
Q(SA, 8y A + SB, sA, 8yA +sB) = 8y P(A, B, A, B) + sQ(A, B, A, B). (B.21)
The solution of these equationsis

P(A, B, A, B) = AP(|A|%, AB — AB, ¢),
O(A, B, A, B) = BP(|A|?>, AB — AB, &) + AQ(|A|?, AB — AB, n), (B.22)

i.e. Eq. (61).

Proof. Taking the derivatives of (B.20) and (B.21) with respect to § 7, and putting §y = 0, gives

AdpP+ AdzP =0,  AdpQ+ Adz0 = P. (B.23)
Using new variablesx = A, y = A,z = AB — AB andt = B, these equations reduce to

&P =0, Ad,Q = P. (B.24)

The solution for P is P(x, y, z, 1) = ®(x, y, z) = XP(xy, z), using (B.19). The equation for Q0 is 9,0 = P(xy, z),
whose solution is Q = tP(xy, z) + ¥(x, v, z). Again, using (B.18) for Q, ¥(x, y, z) = xQ(xy, z) and we arrive at
(B.22). It can be verified by direct substitution that (B.22) satisfies (B.20) and (B.21). O

B.4. Normal formfor F,* & F,?

The normal form for H can be written as
Ar> s1A+ P(A,B,A,B), B> 2B+ Q(A, B, A, B) (B.25)
and P and Q satisfy
PP A dfep gibiej gifapy — dPlpA B A, B), (B.26)
0P gfrp giPre j eibapy — dF22 (A B A, B), (B.27)

P(A,B, A, B) = P(A, B, A, B), (B.28)
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O(A, B, A, B) = Q(A, B, A, B), (B.29)
P(s1A, s2B, s1A, s2B) = s1P(A, B, A, B), (B.30)
O(s1A, s2B, s1A, soB) = s20(A, B, A, B). (B.31)

Applying these relations to amonomial aA” BYA™ B" in P and Q, we obtain

P: Bip—m—D+palg—n) =0, s G =1,
O: Pp—m)+Palg—n—1=0, syG =1 (B.32)

and a must be redl. In the non-resonant case, where 1/8, is irrational, the coefficients of g1 and B2 in the last
equation must be zero, and the equationsinvolving s and s, areidentically satisfied. P and Q are of the form:

P(A,B, A, B)=AP(|A1%,|B%,s),  Q(A, B, A, B) =BQ(|AI? |B% 1)

whichis (65).

Resonant case. The analysisisthe same asin the non-resonant case up to Eq. (B.32). Now theratio 1/82 = r/s
is rational. Without loss of generality, we cantake 0 < 1 < B2, and the fraction r/s irreducible (i.e.,, 0 < r < s).
Eq. (B.32) for P givesr(p —m — 1) = s(n — q), and asr/s isirreducible, p = m + 1+ js,n = g +jr, j € Z.
The form of the monomial is A(ASB")/|A|?"| B[4, j € Z. The condition on s1 and s, gives (s§s5)/ = 1, therefore
J must be even when 5355, = —1. Treating O andogously, we arrive at

P(A, B, A, B) = AP1(|A|%, |B]?, ASB", A°B", &) + A* YB"P>(|A|%, |B|%, A*B", A*B", n),
O(A, B, A, B) = BQu(|A|?, |BI?, AB", A*B", 1) + A*B"102(|A%, |BI?, A*B, AR, p), (B.33)

where e, n, A and p are real parameters, and when s3s5, = —1, Py and Q1 are even and P, and Q2 are odd in their
third and fourth arguments [ Py(x1, x2, —x3, —x4) = P1(x1, x2, X3, x4), and so on]. This gives the norma form
(68).
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