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Abstract

This work analyzes the O(2) symmetry breaking bifurcations in systems with anZ2×O(2) symmetry group—whereZ2 and
O(2) are, respectively, spatio-temporal and spatial symmetries—that are responsible for the transitions from two-dimensional
to three-dimensional hydrodynamic states. This symmetry group describes, for example, two-dimensional time-periodic
flows past bodies which have reflection symmetry across a wake center plane, such as symmetrical airfoils, circular and
square cylinders. Normal form analysis of these systems is based on a joint representation of the monodromy matrix for
the half-period-flip map (a composition of a half-period temporal evolution with a spatial reflection) and the spatial O(2)
symmetry. There are exactly two kinds of codimension-one synchronous bifurcations in these systems; one preserves the
Z2 spatio-temporal symmetry, while the other breaks it. When the Floquet multipliers occur in complex-conjugate pairs
(non-resonant with the periodic basic state), there is a single codimension-one bifurcation, and at the bifurcation point two
different kind of solutions appear simultaneously: a pair of modulated traveling waves, and a circle of modulated standing
waves. At most one of these two types has stable solutions. The symmetries of the system also admit period-doubling
bifurcations, but these are codimension-two and the normal form analysis permits specific conclusions regarding these. There
are also a number of other codimension-two bifurcations leading to mixed modes and the strong 1:1 and 1:2 resonances. All
the codimension-one bifurcations are illustrated with reference to a concrete physical example.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The transition from two-dimensional to three-dimensional flows in hydrodynamics is a fundamental step to-
wards turbulence. There are numerous situations where the two-dimensional state is also time-periodic and has
symmetries additional to the invariance in the third dimension (usually referred to as the spanwise direction). A
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classic example is the two-dimensional periodically shedding wake of a bluff body, such as a circular cylinder,
i.e. the well-known von Kármán vortex street. The transition from two-dimensional to three-dimensional flow is a
breaking of the O(2) symmetry in the spanwise direction, whereby the three-dimensional state has spatially periodic
structure in the spanwise direction and constitutes a breaking of the spanwise translation invariance component of
the O(2) symmetry. However, in this class of flows, it is not sufficient to consider just O(2) symmetry breaking,
as there are additional spatio-temporal symmetries that have important consequences for the symmetry breaking
process.

Spatio-temporal symmetry breaking has been considered in many contexts for time-periodic symmetric systems,
e.g. see[6–10]. The usual way to investigate the stability of time-periodic flows is to analyze the corresponding
Poincaré map, but in many time-periodic symmetric systems, the Poincaré map is thenth iterate of another map
that mixes a spatial symmetry (typically a reflection) with time evolution. Swift and Wiesenfeld[18] considered the
simplest such spatio-temporal symmetry, consisting of a half-period temporal evolution composed with a spatial
reflection, and proved that this symmetry inhibits period doubling. These ideas have been generalized (e.g.[14]), and
the dynamic consequences of this type of spatio-temporal symmetry have been explored in diverse circumstances
(e.g.[11,17]).

These studies have focused on the implications imposed on the dynamics solely by the spatio-temporal symmetry,
whereas in the class of problems we wish to address, one must also consider the implications of the spanwise O(2)
symmetry. This requires the consideration of the joint action of the O(2) and the spatio-temporal symmetries.

In this paper, we first derive the joint representations of the spanwise O(2) symmetry and the spatially orthog-
onal (e.g. streamwise) spatio-temporal symmetry. Following this, the corresponding normal forms are derived in
center manifolds of low dimension and where the action of the O(2) symmetry is non-trivial—we are primarily
interested in the transition from two-dimensional to three-dimensional flows, and the cases where O(2) acts trivially
have essentially been treated in the studies of the spatio-temporal symmetry alone. The dynamics of the normal
forms, corresponding to codimension-one bifurcations to three-dimensional flows, are analyzed and compared to
nonlinear results (both computational and experimental) of a physical hydrodynamics example, which we detail in
the following section.

2. Periodically driven cavity flow

As an example to illustrate the general theory presented in this paper, we use the periodically driven cavity
flow, which we briefly describe here and refer the reader to[4,19] for further details, including experimental
observations, numerical Floquet analysis and numerical nonlinear computations. This flow provides examples of
all possible codimension-one local bifurcations from the basic state leading to three-dimensional flows.

The flow is confined in a rectangular cavity, as shown inFig. 1(a), and is driven by the harmonic oscillations of the
wall atx = 0, with periodT . Thex-extent of the cavity,h, is used as the length scale. The other stationary cavity walls
are atx = h andy = ±Γh/2, whereΓ is the aspect ratio. The basic state is invariant in the spanwisez-direction,
and is also invariant to the spatio-temporal symmetryH, consisting of a spatialy-reflection,Ky, composed with a
temporal evolution through half the forcing period,T , as illustrated inFig. 1(b). For three-dimensional flows we
assumez-periodicity with wave numberβ.

The equations and boundary conditions of the problem are

Navier–Stokes : ∂tu + u · ∇u = −ρ−1∇p+ ν�u, (1)

incompressibility : ∇ · u = 0, (2)
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Fig. 1. (a) Schematic of the fluid domain for the periodically driven cavity flow, periodic in the z-direction and forced in the y-direction, with
isosurfaces representing different values of spanwise vorticity. (b) Two snapshots of velocity vectors of the base flow, half a forcing period apart,
illustrating its spatio-temporal symmetry.
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where (u, v,w) are the physical components of the velocity in Cartesian coordinates (x, y, z) ∈ [0, h]
× [−Γh/2, Γh/2] × [−πh/β, πh/β]. These equations and boundary conditions are invariant to the following
spatial symmetries:

z-translation : Rα(u, v,w)(x, y, z, t) = (u, v,w)(x, y, z+ α, t), (4)

z-reflection : Kz(u, v,w)(x, y, z, t) = (u, v,−w)(x, y,−z, t). (5)

Reflection in y, Ky, acts on a velocity field as

y-reflection : Ky(u, v,w)(x, y, z, t) = (u,−v,w)(x,−y, z, t). (6)

Ky is not a symmetry of the system, due to the periodic forcing in the y-direction, but is part of the spatio-temporal
symmetryH:

H-symmetry : H(u, v,w)(x, y, z, t) = (u,−v,w)(x,−y, z, t + 1
2T). (7)

Rα generates the group SO(2), andKz generates a group Z2, but Rα andKz do not commute: RαKz = KzR−α. The
symmetry group generated byRα andKz is O(2), acting in the periodic spanwise z-direction. The transformationKy
generates another Z2 group and commutes with the spanwise O(2). The complete symmetry group of the problem
is Z2 × O(2).
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The action of the spatio-temporal symmetryH on the vorticity, ∇ × u = (ξ, η, ζ), is different to the action ofH
on the velocity, and is given by

H-symmetry : H(ξ, η, ζ)(x, y, z, t) = (−ξ, η,−ζ)(x,−y, z, t + 1
2T). (8)

Physically, the two-dimensional basic state of the flow is generated by oscillatory Stokes layers that are produced
through the simple harmonic motion of the cavity wall at x = 0, and their containment by the stationary walls. The
basic state has spanwise ‘ rollers’ , as illustrated by the vorticity isosurfaces and velocity vectors of Fig. 1. Three
dimensionless parameters govern the flow: the Reynolds number Re = Vmaxh/ν and the Stokes number St = h2/Tν

(measuring the amplitude and period of the floor motion), and the aspect ratio Γ . The flow shares many physical
features with two-dimensional time-periodic bluff body wakes, and in fact is equivariant to the same symmetry
group.

In different regions of parameter space, the two-dimensional basic state (a Z2 ×O(2)-invariant limit cycle), loses
stability to three-dimensional perturbations in three distinct ways, leading to modes A, B and QP. The three modes
break the SO(2) group generated by Rα. They differ in their time dependence (periodic or quasi-periodic), and in
the way they break the remaining symmetries H and Kz. Modes A and B are synchronous limit cycles—therefore
the critical Floquet multiplier of the Poincarémap is real—with long and short spanwise wavelengths, respectively,
and which bear similarities to the cylinder wake modes of the same names. Mode QP is a quasi-periodic solution,
with complex-conjugate pair critical Floquet multipliers.

3. Bifurcations with a Z2 spatio-temporal symmetry

Let us consider a non-autonomous ODE in a finite-dimensional linear space E, of the form:

ẋ = f(x, t), f(x, t + T) = f(x, t) ∀t ∈ R, x ∈ E, (9)

representing ourT -periodically forced system. LetK be a linear transformation inE representing the spatio-temporal
symmetryH of our problem, such that

Hf(x, t) = Kf(Kx, t + 1
2T) = f(x, t), K2 = I. (10)

K = Ky in the periodically driven cavity flow. The vector field f(x, t) is defined in Ẽ = E × S1, the enhanced
phase space of our problem, with coordinates (x, t); S1 is the unit circle on which t is identified with t + T . The
ODE (9) becomes an autonomous ODE in Ẽ in a natural way by augmenting the ODE with the equation ṫ = 1. A
global Poincaré map is defined by advancing any given initial condition, x0, a period T in time:

P : Et0 
→ Et0 , x0 
→ Px0 = φ(t0 + T ; x0, t0), (11)

where φ(t; x0, t0) is the solution of (9) at a time t corresponding to the initial condition x0 at t = t0:

∂tφ(t; x0, t0) = f(φ(t; x0, t0), t), φ(t0; x0, t0) = x0. (12)

Et0 is the section of Ẽ at an arbitrary given time t0 at which the Poincarésection is computed. In this ODE setting, all
Et0 coincide with E. Strictly speaking, the function f(x, t) is defined in an open subset U ⊂ Ẽ, and the restrictions
of U to each Et0 , Ut0 , can be different, as illustrated in Fig. 2. If our dynamical system comes from a PDE, then E
is infinite-dimensional. For example, if the dynamical system is the Navier–Stokes equations, with time-periodic
boundary conditions, then the space E is the space of square-integrable solenoidal velocity fields (a Hilbert space).
Since the boundary conditions may be different for different t0-values, Ut0 is the subspace of E satisfying the
boundary conditions of the problem at t0.
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Fig. 2. Schematic of the enhanced phase space Ẽ = E× S1.

The analysis of periodic solutions of (9) reduces to the analysis of fixed points of P. A spatio-temporal symmetry
H does not fit into the standard framework of normal form analysis of equivariant differential equations because
it mixes space and time, whereas the usual equivariant normal form theory has been developed for purely spatial
symmetry transformations. For systems with a spatio-temporal symmetry H, it is convenient to analyze the action
ofH at a given initial time t0:

H : Et0 
→ Et0 , x0 
→ Hx0 = Kφ(t0 + 1
2T ; x0, t0). (13)

The Poincaré map P is the square of the half-period-flip mapH.
Typically, the given ODE (9) will have symmetries additional to H. Let us assume that (9) is equivariant to the

symmetry group G, whose elements are linear transformations in E:

Gf(x, t) = f(Gx, t) ∀G ∈ G. (14)

G is the group of spatial symmetries. The complete group of symmetries of the ODE (9) is generated by G and K.
If they commute, the group is Σ = G× Z2; if not, it may be the semidirect product Σ = G� Z2, or it may have a
more complex structure. In any case, Z2 is generated by K and it only has two elements, Z2 = {I,K}.

The Poincaré map P is G-equivariant, i.e. it commutes with G : GPx = PGx, for all G ∈ G. In general,H is not
G-equivariant, but satisfies

HGx = (KGK−1)Hx ∀G ∈ G, ∀x ∈ Et0 . (15)

WhenH is not G-equivariant, it is called a twisted equivariant map, or a k-symmetric map. In [13,14], k is defined to
be the least positive integer such that Kk commutes with all the elements in G. Since K2 = I in our case, we either
have k = 1 (and H is G-equivariant), or k = 2 (and H is a 2-symmetric map). Therefore, H is G-equivariant iff K
commutes with G; in this case, Σ = G× Z2. In the driven cavity flow problem,H commutes with G, Σ = G× Z2

andH is not a twisted equivariant map, because k = 1.
In addition to the periodically forced cavity flow problem, periodic orbits with spatio-temporal symmetries are

common in many unforced hydrodynamic systems with symmetry following a Hopf bifurcation. The use of the
half-period-flip map is not only useful for periodically forced systems, but it can also be applied to autonomous
system with periodic solutions, when the periodic solution considered has a spatio-temporal symmetry. Examples
are bluff body wakes, Bénard convection and Taylor–Couette flows. The important point is that the bifurcations
from these periodic solutions are governed by exactly the same normal forms both in forced and unforced systems.
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Fig. 3. The T -periodic Poincaré return map P and the half-period-flip mapH. The basic state (on dashed-line limit cycle) is x0, a fixed point of
P andH; x1 is an arbitrary initial point, close to x0; x1, P(x1) andH(x1) are all different, although P(x1) = H2(x1).

Consider an autonomous ODE in a finite-dimensional space E, of the form ẏ = g(y), with a T -periodic solution
φ0(t, y0) = φ0(t + T, y0), where y0 is any point of the periodic solution. Assume that this periodic solution is
invariant to a Z2 spatio-temporal symmetry:

Hφ0(t, y0) = Kφ0(t + 1
2T, y0) = φ0(t, y0), (16)

whereK is a linear transformation inE representing the spatio-temporal symmetry of our problem, such thatK2 = I

and g(Kx) = Kg(x); we are assuming thatK is a symmetry of the ODE, but this symmetry is broken in the periodic
solution φ0, which only retains the spatio-temporal symmetry H. Replacing y with φ0(t, y0) + x in the original
ODE results in a new ODE:

ẋ = f(x, t), f(x, t + T) = f(x, t) ∀t ∈ R, x ∈ E (17)

which is a non-autonomous periodic ODE exactly of the same type as (9), and in particular f(Kx, t+T/2) = Kf(x, t).
The analysis of the periodic solution φ0(t, y0) reduces to the analysis of the fixed point x0 = 0 of the Poincaré

mapP or of the half-period-flip mapH, and we have reverted to the previous problem. If x0 is a point of the periodic
orbit of (9) or (17), it is a fixed point of bothP andH. The actions ofP andH on points neighboring x0 are illustrated
in Fig. 3.

For the rest of this paper, we focus on the case G = O(2) and Σ = O(2) × Z2; these are the symmetries of the
driven cavity flow, bluff body wakes, and other fluid dynamical systems.

4. Joint representations of O(2) and LH

The center manifolds, Mc, associated with the Poincaré map P and the half-period-flip map H are the same
[14]. The eigenvalues and eigenvectors/eigenfunctions at a bifurcation point are computed by Floquet analysis of
the governing equations linearized about the basic state. Since P = H2, the monodromy matrix of P, LP , is the
square of the monodromy matrix of H, LH : LP = L2

H . Both linear operators LP and LH act on Ec, the tangent
space of the center manifoldMc at the basic state. Let µP and µH be the eigenvalues (Floquet multipliers) of LP
and LH , respectively; then µP = µ2

H , and the (generalized) eigenvectors are the same. As the governing equations
are O(2)-equivariant,Mc is an O(2)-invariant manifold, and we seek the possible representations of O(2) in Ec.
ButH is also a symmetry of the problem, therefore we want to find the joint representations of O(2) and LH in Ec,
i.e. the matrix representations of the actions of these symmetries on a basis for Ec. From them, the corresponding
analysis for LP and P is immediate, and in addition, we gain a better understanding of the symmetry breaking
process, because the spatio-temporal symmetry is built into the definition ofH.
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The irreducible representations1 of O(2) are either one-dimensional (and the action of SO(2), translations in
z, is trivial) or two-dimensional. Any representation of O(2) in Ec is a direct sum of irreducible representations,
and Ec splits into two invariant subspaces, Ec = W1 ⊕ W2, where W1 contains the one-dimensional irreducible
components and W2 contains the two-dimensional irreducible components of the representation considered [9].
SO(2) acts trivially on W1, and the corresponding eigenvectors are SO(2)-invariant, i.e. they are independent of z.
The action of SO(2) in W2 is non-trivial, and any eigenvector in W2 breaks the translational invariance in z. W2

is even dimensional, and splits into a direct sum of two-dimensional irreducible representations. In a convenient
complex basis, {U, Ū}, the action of a two-dimensional irreducible representation of O(2) on the corresponding
complex amplitudes (A, Ā) is

Rα =
(

eiβα 0
0 e−iβα

)
, Kz =

(
0 1
1 0

)
, (18)

where β = 2π/λ is the wavenumber of the eigenvector U in the spanwise direction.
AsLH commutes with O(2),W1 andW2 areLH -invariant subspaces, and the joint representations of O(2) andLH

split into a direct sum of representations inW1 andW2 (see [9, Theorem 3.5]). As we are interested in the transitions
to three-dimensional flows, i.e. SO(2) symmetry breaking bifurcations, we now derive the joint representations
of O(2) and LH in W2. As W2 is even, we present the results for the two-dimensional and four-dimensional
cases.

4.1. Two-dimensional center manifold

As the representation of O(2) on Ec is irreducible, LH must be a multiple of the identity because it commutes
with O(2), and that multiple, µH , must be real as LH stems from a real dynamical system. Furthermore, at the
bifurcation, |µH | = 1, and so there are exactly two different two-dimensional joint representations of O(2) and LH ,
F+

2 and F−
2 , corresponding to µH = 1 and µH = −1, respectively:

F+
2 : Rα =

(
eiβα 0

0 e−iβα

)
, Kz =

(
0 1
1 0

)
, LH =

(
1 0
0 1

)
, (19)

F−
2 : Rα =

(
eiβα 0

0 e−iβα

)
, Kz =

(
0 1
1 0

)
, LH =

(−1 0
0 −1

)
. (20)

Both representations have the same LP matrix, the identity 1. Although LP is always the identity map, we have
two different possibilities for LH , either 1 or −1. In the first case, the eigenvectors preserve the spatio-temporal
symmetryH, and in the second case, this symmetry is broken. This result is transparent from the mapH, but it is not
obvious from the Poincarémap P. Note that the two-dimensional representations account only for real eigenvalues
of LH (and LP ); in order to accommodate complex-conjugate eigenvalues (i.e. Neimark–Sacker bifurcations, Hopf
bifurcations for maps) the center manifoldMc must be at least four-dimensional.

An important consequence of the joint representations found, is that period doubling in the Poincaré map P is
inhibited whenMc is two-dimensional, even though the multipliers have multiplicity 2. This is an extension of the
result of [18] to bifurcations with O(2) symmetry in addition to a spatio-temporal symmetry H. If the system only
had SO(2) symmetry instead of O(2) symmetry, then LP and LH would not be restricted to being proportional to

1 A representation of a group in a linear space V is irreducible when its only invariant subspaces are the null space {0} and the whole space
V . Further, it is absolutely irreducible if the only linear operators commuting with the representation are multiples of the identity. Complex
irreducible finite-dimensional representations are absolutely irreducible.
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the identity and period doubling would be possible whenMc is two-dimensional. For example, LP and LH could
have forms (L2

H = LP ):(
i 0
0 −i

)2

=
(−1 0

0 −1

)
or

(
0 −1
1 0

)2

=
(−1 0

0 −1

)
. (21)

WhenMc is two-dimensional, Ec is Kz-invariant. In fact, any real solution u0 = exp(iγ)U + exp(−iγ)Ū in Ec is
invariant to a z-reflection centered not about the origin z = 0, but about an appropriate z = γ/β:

(Rγ/βKzR−γ/β)u0 = u0. (22)

We say that the symmetry Kz is preserved in the two-dimensional joint representations F+
2 and F−

2 (F s2, s = ±).

4.2. Four-dimensional center manifold

Let us now consider the case where the center manifoldMc is four-dimensional. The representation of O(2) inEc

splits into two irreducible representations of the form (18) and we have five possibilities for the joint representations
of O(2) and LH in Ec; the details can be found in Appendix A. Two of these representations are new, and the
other three are constructed using Fs2 as building blocks. These latter compound representations are the direct sums
F+

2 ⊕ F+
2 , F+

2 ⊕ F−
2 and F−

2 ⊕ F−
2 , in which the value of β (the wave number in the spanwise direction) need

not be the same in both elements of the direct sum. These essentially represent mixed modes.
The two new representations are

Fc4 : Rα =




eiβα 0 0 0

0 e−iβα 0 0

0 0 e−iβα 0

0 0 0 eiβα


 , Kz =




0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


 ,

LH =



µH 0 0 0

0 µH 0 0

0 0 µ̄H 0

0 0 0 µ̄H


 , (23)

Fs4 : Rα =




eiβα 0 0 0

0 eiβα 0 0

0 0 e−iβα 0
0 0 0 e−iβα


 , Kz =




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0


 ,

LH =



s δH 0 0
0 s 0 0
0 0 s δH

0 0 0 s


 , (24)

where s = ±1,µH is a complex number with |µH | = 1 and Im(µH) �= 0, and δH is any non-zero real number, usually
1, or a value that simplifiesLP . The basis associated with these representations is of the formAU+BV +ĀŪ+B̄V̄ ,
and the matrices are the action of the symmetry operators on (A,B, Ā, B̄). In fact, there are two families of
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four-dimensional representations, one (F c4 ) parameterized by the complex number µH = eiθ/2, with θ ∈ (0, 2π),
and the other (F s4) parameterized by the sign s = ±1.

The map LH does not have any restriction, and depending on the system studied, any of the possibilities in (23)
and (24) can occur. The PoincarémapLP however, being the square ofLH , has only the following options, obtained
by squaring the matrices of LH in (23) and (24):

LP =



µP 0 0 0
0 µP 0 0
0 0 µP 0
0 0 0 µP


 and LP =




1 δP 0 0
0 1 0 0
0 0 1 δP

0 0 0 1


 (25)

for the cases F c4 and F s4 , respectively, where µP = µ2
H , δP = 2sδH , and usually δP = 1 so that δH = s/2.

Period doubling in the PoincarémapLP is now possible; we may haveµP = −1 in (25) by takingµH = i = eiπ/2

in (23). So, if we have O(2) symmetry and the action of SO(2) is non-trivial, the center manifoldMc must be at
least four-dimensional for period doubling to be possible.

5. Normal forms

The details of the derivation of the normal forms are given in Appendix B, and follows the method of [10].

5.1. Normal form for F+
2 :H-invariant synchronous bifurcation

Let us consider the joint representationF+
2 (19) in a two-dimensional center manifold. The linear part ofH in the

center manifold, parameterized by the amplitudes (A, Ā), is LH = 1. The normal form forH is (Appendix B.1):

A 
→ A[1 + P(|A|2, ε)], (26)

where the polynomial P is real. Up to third order in A, we obtain the codimension-one normal form (where the
signs of ε and ã have been chosen for convenience):

H : A 
→ A(1 + ε̃− ã|A|2), ã ∈ R. (27)

This normal form is typical of the pitchfork bifurcation, except that here A is complex. The fixed points of H are
the basic state A = 0, which is unstable for ε̃ > 0, and an invariant circle of bifurcated fixed points:

Aθ = eiθ
(
ε̃

ã

)1/2

, θ ∈ [0, 2π),
ε̃

ã
≥ 0, (28)

parameterized by the angle θ, that exists for ε̃/ã > 0. This is a pitchfork of revolution. The action of all the
symmetries on these bifurcated solutions is

RαAθ = eiβαAθ = Aθ+βα, KzAθ = A−θ, HAθ = Aθ. (29)

The SO(2) symmetry is broken, and Rα transforms a solution on the invariant circle into a different solution on the
same invariant circle. The two solutionsA0 andAπ areKz-invariant, and in fact Rθ/βKzR−θ/βAθ = Aθ; this means
that Aθ is invariant to a z-reflection centered not about the origin, z = 0, but about z = θ/β. We say that the Kz
symmetry is preserved. The spatio-temporal symmetryH is also retained.

TheH-symmetric synchronous instability mode of the periodically driven cavity, mode B, is illustrated in Fig. 4,
which shows vorticity isosurfaces at two instants, T/2 apart. The figure shows the saturated periodic state at Re
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Fig. 4. Isosurfaces of the x-component (solid) and z-component (translucent) of vorticity for the F+
2 (synchronous, H-symmetric) mode B of

the periodically driven cavity flow, at St = 20, Re = 535, β = 8.75. This Re is slightly above critical for the value of St and the spanwise
wavenumber is the critical value at the bifurcation. The plots are at two phases in the oscillation of the floor: t0 and t0 + T/2.

slightly above Rec for the given value of St = 20, and the spanwise wavenumber β corresponds to the critical value
at the bifurcation. Contours of perturbation eigenfunction velocity components for this state are shown in Fig. 5.
By inspection of the eigenfunction velocity components, we see that mode B is H-symmetric (7), and so at the
bifurcation µH = +1 for this mode. This can also be seen in Fig. 4, using the action ofH on the vorticity (8).

The normal form corresponding to the Poincarémap is obtained by squaring that ofH, and has exactly the same
form as the normal form forH:

P : A 
→ A(1 + ε− a|A|2), ε = 2ε̃, a = 2ã. (30)

As a readily computable measure of the perturbation amplitude A, we employ the square root of the normalized
instantaneous kinetic energy in the first spanwise Fourier mode, u1, at times t0 + nT during the nonlinear evolution
of the perturbed flow, i.e.

En =
[

1

4V 2
maxΓh

2λ

∫ h

0

∫ Γh/2

−Γh/2

∫ λh/2

−λh/2
u1 · ū1(t0 + nT ) dz dy dx

]1/2

. (31)

Fig. 6 shows the nonlinear growth ofEn for the mode B instability of the periodically driven cavity flow at (St = 20,
Re = 535), where ε = 0.0600. The observed growth fits very well to the normal form expression for P, and from
the saturation value En as n → ∞, i.e. E∞, we have a = 7.45 × 103V−2

max.

Fig. 5. Contours of the critical eigenfunction velocity components for the F+
2 mode B of the periodically driven rectangular cavity, plotted in

the mid-depth plane at x = h/2; y ∈ [−h, h] (vertical extent), z ∈ [−π/βc, π/βc] (horizontal extent). Black (gray) contours represent positive
(negative) values. Parameters values are St = 20, Rec = 532.5 and βc = 8.75.
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Fig. 6. Nonlinear growth of a measure of perturbation amplitude for the mode B instability of the periodically driven cavity at (St = 20,
Re = 535). In order to avoid clutter, only every third cycle is represented.

The measure shown in Fig. 7, which is related to the mean squared saturation amplitude 〈A2∞〉 (and 〈E2∞〉):

qz = 1

4V 2
maxΓh

2λ

∫ h

0

∫ Γh/2

−Γh/2

∫ λh/2

−λh/2
〈w2〉 dz dy dx (32)

is the normalized contribution to the time-averaged kinetic energy from the spanwise velocity component, which
is zero for the base state. (The time-averaged value is used because in later examples, w2, and E2

n, have oscillatory
behavior.) As expected for a supercritical pitchfork bifurcation, the growth of qz with |Re − Rec| is linear.

5.2. Normal form for F−
2 : synchronous bifurcation breaking theH symmetry

Let us consider the joint representation F−
2 (20) in a two-dimensional center manifold. The linear part of H in

the center manifold is LH = −1, and the normal form forH is (Appendix B.1):

A 
→ A[−1 + P(|A|2, ε)] (33)

with P a real polynomial. The normal form ofH up to third order in A is

H : A 
→ A(−1 − ε̃+ ã|A|2), ã ∈ R, ã �= 0 (34)

which is the normal form typical of period-doubling bifurcations, except that here A is complex. The only fixed
point, HA = A, is the basic state A = 0, which is unstable for ε̃ > 0. The period-two points are the solutions of

Fig. 7. Analysis of the growth in energy of the saturated perturbation flow, qz, with departure from the critical Reynolds number Rec = 532.5
at St = 20 for mode B of the cavity flow.
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HA = −A:

Aθ = eiθ
(
ε̃

ã

)1/2

, θ ∈ [0, 2π),
ε̃

ã
≥ 0,

the same expression as in (28). For ε̃/ã > 0 we have an invariant circle of period-two bifurcated solutions,
parameterized by the angle θ (note that a period-two point ofH has a period equal to that of the forcing period, T ).
The actions of all the symmetries on these bifurcated solutions are

RαAθ = eiβαAθ = Aθ+βα, KzAθ = A−θ, HAθ = −Aθ = Rπ/βAθ. (35)

The SO(2) symmetry is broken andKz is preserved, as in theF+
2 case. In theF+

2 case the eigenvector isH-symmetric,
as is the basic state. Therefore, the full solution of the problem (basic state plus perturbation) is alsoH-symmetric.
However, in the F−

2 case, applying H to the eigenvector results in the same eigenvector with the sign changed
(a kind of anti-symmetry). The full solution of the problem, being the sum of the H-symmetric basic state plus
the (anti-symmetric) perturbation, does not exhibit a simple behavior under the H-symmetry. We simply say that
the H-symmetry is broken. Nevertheless, the system retains a spatio-temporal symmetry, the transformation H
composed with Rπ/β : Rπ/βHAθ = Aθ . Both H and Rπ/β symmetries are broken, but their combination is still a
spatio-temporal symmetry: a half-wavelength translation in the spanwise direction z plus a reflection in y together
with a T/2 temporal evolution.

All the bifurcated solutions for F−
2 period double on the half-period-flip map, but since the period of H is T/2,

they have the same period as the forcing, T , and so are synchronous bifurcations of the Poincaré map. The normal
form corresponding to the Poincaré map is obtained by squaring that of H, and keeping terms up to third order in
A and first order in ε̃ gives

P : A 
→ A(1 + ε− a|A|2), ε = 2ε̃, a = 2ã. (36)

The bifurcated solutions now form an invariant circle of fixed points for P, it is a pitchfork of revolution. Rα andH
symmetries are broken, and Kz is preserved. All that remains of Rα and H is a single spatio-temporal symmetry,
Rπ/βH, that generates a Z2 group.

The normal forms corresponding to the Poincarémap forF+
2 andF−

2 cases are exactly the same (36). The essential
difference between both cases is that F+

2 preserves the spatio-temporal symmetry H and F−
2 breaks it. That the

two have different spatio-temporal symmetries is clearly evident from the normal forms of the half-period-flip map
H, but is completely hidden in the normal form of P.

TheF−
2 mode of the periodically driven cavity, mode A, is illustrated in Fig. 8, which shows vorticity isosurfaces

at two instants, T/2 apart. The figure shows the saturated periodic state at Re slightly above Rec for the given value

Fig. 8. Isosurfaces of the x-component (solid) and z-component (translucent) of vorticity for theF−
2 (synchronous,H-symmetry breaking) mode

A of the periodically driven cavity flow, at St = 160, Re = 1250, β = 1.7. This Re is slightly above critical for the value of St and the spanwise
wavenumber is the critical value at the bifurcation. The plots are at two phases in the oscillation of the floor: t0 and t0 + T/2.
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Fig. 9. Contours of the critical eigenfunction velocity components for the F−
2 mode A of the periodically driven rectangular cavity, plotted in

the mid-depth plane at x = h/2; y ∈ [−h, h] (vertical extent), z ∈ [−π/βc, π/βc] (horizontal extent). Black (gray) contours represent positive
(negative) values. Parameters values are St = 160, Rec = 1191 and βc = 1.7.

of St = 160, and the spanwise wavenumber β corresponds to the critical value at the bifurcation. Contours of
perturbation eigenfunction velocity components for this state are shown in Fig. 9. By inspection, the eigenfunction
velocity components for this mode A breakH-symmetry (7), and so at the bifurcation µH = −1. This can also be
seen in Fig. 8, using the action ofH on the vorticity (8).

In the driven cavity flow, the long wavelength mode A is of F−
2 type and the short wavelength mode B is of F+

2
type. In contrast, for the wake flows the opposite is true; the long wavelength mode A is of F+

2 type and the short
wavelength mode B is of F−

2 type [1–3,5,16].
In the driven cavity flow case, the nonlinear growth of the perturbation amplitude for the mode A instability does

not follow the expression obtained from the normal form (36), because in this particular example we are very close
to a degenerate case, where the coefficient a is very small. We now consider this degenerate case separately.

5.2.1. Normal form for F−
2 : degenerate case

In the driven cavity flow, the coefficient ã of |A|2 in (34) is very close to zero, so the bifurcation is degenerate,
and we must keep terms to fifth order in the normal form. The normal form is now codimension-two:

H : A 
→ A(−1 − ε̃− η̃|A|2 + ã|A|4), ã ∈ R, ã �= 0. (37)

The only fixed point is the basic state,A = 0. Depending on the values of ε̃ and η̃, there are either 0, 1 or 2 invariant
circles of period doubled bifurcated solutions. The corresponding regions in (ε̃, η̃)-space where these exist are
labeled (i), (ii) and (iii), respectively, in Fig. 10, where the case ã > 0 is shown. If ã < 0, Fig. 10 must be reflected
through the vertical axis. The solid line ε̃ = 0 is a line of period-doubling bifurcations. The curve separating regions

Fig. 10. Regions in parameter space with 0 (region (i)), 1 (region (ii)) and 2 (region (iii)) bifurcating circles of solutions.
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Fig. 11. Amplitude A of the bifurcated solutions as a function of ε. The circle of bifurcated solutions can be obtained by rotation around the
horizontal axis. Solid (dashed) lines correspond to stable (unstable) states. The horizontal axis is the basic state.

(i) and (iii) is a line of saddle-node bifurcations of period-two solutions, and it is given by η̃ = 2(−aε̃)1/2. The
symmetries of the bifurcated solutions are exactly the same as in the non-degenerate case.

The normal form for the Poincaré map in the degenerate case is given by

P : A 
→ A(1 + ε+ η|A|2 − a|A|4), ε = 2ε̃, η = 2η̃, a = 2ã, (38)

where higher order terms inA, ε and η have been neglected as before; the normal form is valid in a neighborhood of
the origin where η = O(ε1/4) and A = O(ε1/2). All the bifurcated states are fixed points of P, and the bifurcation
is a degenerate pitchfork of revolution. In Fig. 11, the fixed points of P are plotted as functions of ε, showing that
the pitchfork bifurcation is supercritical for η < 0, subcritical for η > 0, and η = 0 is the degenerate case.

Fig. 12 shows the nonlinear growth of the perturbation amplitude for the mode A instability of the periodically
driven cavity flow at (St = 160, Re = 1250), where ε = 0.0141. The curve adjusts very well to the normal form
expression for P, (38), and the fitted coefficients are η = 55V−2

max ≈ 0 and a = 6.7 × 105V−4
max.

Fig. 13 shows the growth of qz as a function of Re. Instead of the linear growth corresponding to the non-degenerate
case, we have a square root behavior, that corresponds to η ≈ 0; from (38), qz ∝ |A|2 ∝ ε1/2 ∝ |Re − Rec|1/2.

5.3. Normal form for F c4 : non-resonant Neimark–Sacker bifurcation

As before, the normal form is first computed forH and then forP. In this case, there are a pair of complex-conjugate
Floquet multipliers,µH = e±iθ/2, θ ∈ (0, 2π), that have multiplicity 2. The center manifoldMc is four-dimensional,
and the actions of LH and O(2) are given by the joint representation Fc4, (23), in a basis {U,V , Ū, V̄ }. The actions
of LH , Rα and Kz on the amplitudes A and B of U and V are given by

LH =
(

eiθ/2 0
0 eiθ/2

)
, Rα =

(
eiβα 0

0 e−iβα

)
, Kz =

(
0 1
1 0

)
(39)

Fig. 12. Nonlinear growth of a measure of perturbation amplitude for the mode A instability of the periodically driven cavity at (St = 160,
Re = 1250). In order to avoid clutter, only every tenth cycle is represented.



F. Marques et al. / Physica D 189 (2004) 247–276 261

Fig. 13. Analysis of the growth in energy of the saturated perturbation flow, qz with departure from the critical Reynolds number Rec = 1191 at
St = 160 for mode A of the cavity flow.

and the actions on Ā and B̄ are given by the corresponding complex-conjugate matrices. The normal form forH in
the non-resonant case (θ/2π irrational) is (Appendix B.2):

A 
→ A[eiθ/2 + P(|A|2, |B|2, ε)], B 
→ B[eiθ/2 + P(|B|2, |A|2, ε)]. (40)

Up to third order in A and B, the normal form is

H :

{
A 
→ A(eiθ/2 + ε̂+ â|A|2 + b̂|B|2),
B 
→ B(eiθ/2 + ε̂+ â|B|2 + b̂|A|2),

ε̂, â, b̂ ∈ C. (41)

Introducing the moduli and phases of A = r1 eiφ1 and B = r2 eiφ2 , the normal form becomes

H :




r1 
→ r1(1 + ε̃− ãr2
1 − b̃r2

2),

r2 
→ r2(1 + ε̃− ãr2
2 − b̃r2

1),

φ1 
→ φ1 + θ

2
+ η+ cr2

1 + dr2
2,

φ2 
→ φ2 + θ

2
+ η+ cr2

2 + dr2
1,

ε̃, η, ã, b̃, c, d ∈ R. (42)

This is a codimension-two bifurcation containing two real parameters ε̃ and η. Nevertheless, the dynamics of φ1

and φ2 are trivial; the phases increase approximately by θ/2 every half-period T/2, and are slightly modulated by
the coefficients c and d and the moduli r1 = |A| and r2 = |B|. The dynamics of r1 and r2 are decoupled from the
phase dynamics, and we effectively end up with a codimension-one two-dimensional map for r1 and r2:

H :

{
r1 
→ r1(1 + ε̃− ãr2

1 − b̃r2
2),

r2 
→ r2(1 + ε̃− ãr2
2 − b̃r2

1),
ε̃, ã, b̃ ∈ R. (43)

The normal form for the Poincaré map is

P :

{
r1 
→ r1(1 + ε− ar2

1 − br2
2),

r2 
→ r2(1 + ε− ar2
2 − br2

1),
ε = 2ε̃, a = 2ã, b = 2b̃. (44)

The phase dynamics for P are the same as forH, with the phases φ1 and φ2 increasing by θ every period T of P. In
the (non-resonant) quasi-periodic case, there are no differences between the normal forms forH and P. The result
is analogous to that for the Hopf bifurcation with O(2) symmetry, and the subsequent analysis follows closely that
of [10]. We present the results for P; substituting ε = 2ε̃, a = 2ã and b = 2b̃ gives the corresponding results forH.
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Fig. 14. Regions in (a, b)-parameter space for the normal form (44), where different phase portraits exist. The corresponding phase portraits are
shown in Fig. 15.

The normal form (44) has four different fixed points:

p0 = (0, 0), (45)

p1 =
([ ε
a

]1/2
, 0

)
, (46)

p2 =
(

0,
[ ε
a

]1/2
)
, (47)

p3 =
([

ε

a+ b

]1/2

,

[
ε

a+ b

]1/2
)
. (48)

p0 exists for all values of ε, and is stable iff ε < 0; p1 and p2 exist only for ε/a > 0, and are stable iff ε > 0 and
(a− b)/a < 0; and p3 exists only for ε/(a+ b) > 0, and it is stable iff ε > 0 and (a− b)/(a+ b) > 0 (Appendix
B.2).

In (a, b)-parameter space, there are six different regions separated by three bifurcation curves: a = 0, where p1

and p2 disappear going to infinity; a + b = 0, where p3 disappears going to infinity; and a − b = 0, where one
of the eigenvalues of p1, p2 and p3 changes sign. These six regions are drawn in Fig. 14, and phase portraits for
ε < 0 and ε > 0 are drawn for the six regions in Fig. 15. In these phase portraits, when ε crosses zero, p1, p2 and
p3 simultaneously collide with p0 and are born or destroyed.

Fig. 15. Phase portraits corresponding to the six regions in Fig. 14. p0 is the fixed point at the origin, p1 lies on the horizontal (r1) axis, p2 lies
on the vertical (r2) axis, and p3 is on the bisector. Solid (hollow) points are stable (unstable).
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TW SW

(a) (b)

Fig. 16. Nonlinear growth of a measure of perturbation amplitude for the mode QP instability of the periodically driven cavity at St = 100 and
Re = 1225. Every cycle is represented.

The equilibria p1, p2 and p3 are represented as fixed points in Fig. 15, where only r1 and r2 coordinates are
displayed. However, the center manifold is four-dimensional, and we must also consider the two phases φ1 and φ2;
these phases correspond to independent rotations in the planes (A, Ā) and (B, B̄). In doing so, p1 and p2 become
circles (T1), and p3 becomes a two torus (T2). These T

1 and T
2 are located in the Poincaré section of the original

dynamical system. Considered as invariant manifolds (by time evolution) of the original system, p1 and p2 are
two-tori (T2) and p3 is a three-torus (T3). As we shall see, however, p3 is a T

2 because both phases φ1 and φ2 have
exactly the same frequency; what we have is a continuous family of invariant (by time evolution) T

2 that together
span a T

3.
Fig. 16 shows the nonlinear growth of En for the mode QP instability of the periodically driven cavity flow at

St = 100 and Re = 1225, where ε = 0.0513. For modulated traveling waves (TW), Fig. 16(a), En fits very well
to the normal form expression for p1 and p2, while for modulated standing waves (SW), Fig. 16(b), En exhibits
oscillations absent in the normal form expression for p3. Introducing An = (r2

1 + r2
2)

1/2 as a measure of the
amplitude, we obtain from (44):

TW : An+1 = An(1 + ε− aA2
n), (49)

SW : An+1 = An(1 + ε− 0.5[a+ b]A2
n). (50)

The velocity field of the TW solutions after a period is the same as the initial field, except for a translation in z (see
Fig. 17). Therefore En, which is an integrated quantity over a spanwise wavelength, does not contain the second
frequency of the TW solution, that manifests only as a spanwise translation. En then follows (49). This is clearly
seen in Fig. 16(a); the small oscillation present is a transient that decays for large n. At St = 100 and Re = 1225,
the saturation value E∞ provides a = 7.25 × 103V−2

max.
For the SW solutions the situation is more complicated. The second frequency is not associated with any symmetry

operation, and it is not easy to find a measure of the amplitude of the solution. Fig. 16(b) shows that En is
not proportional to the amplitude (in the normal form sense) of the SW, but contains oscillations with the second
frequency of the flow. The detailed form of the oscillatory behavior is a combined consequence of the real projection
of the perturbation mode amplitude oscillating harmonically at the secondary frequency [4], and En containing
contributions from all locations in the domain, where the perturbation amplitudes are not required to have the same
temporal phase. The solid line in Fig. 16(b) shows that averaging over the second frequency oscillations, the curve
obtained (solid line) fits very well the normal form prediction (50). At St = 100 and Re = 1225, the saturation
value En provides 0.5(a+ b) = 14.1 × 103V−2

max. Using the value of a obtained from the TW solutions, we obtain
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Fig. 17. Vorticity dynamics of modulated +z-traveling waves for the joint representation Fc4 in the periodically driven cavity flow [4], shown
in a spanwise (z) domain extent of one wavelength, at St = 100 and Re = 1225. Solid isosurfaces are of the out-of-page (x) component of
vorticity, positive and negative of equal magnitude, while translucent isosurfaces represent the z-component of vorticity. The driven cavity wall
lies further into the page than the structures, and oscillates in the ±y-direction.

b = 20.95 × 103V−2
max > 7.25 × 103V−2

max = a, in full agreement with the normal form theory prediction b > a.
This corresponds to Case I, Fig. 15, where TW solutions are stable.

Consider the action of O(2),H and P (Eqs. (39), (42) and (44), respectively) on the solutions p1 and p2. As the
moduli r1 and r2 do not change, let us focus on the respective phases φ1 (for p1) and φ2 (for p2). From (39) we
obtain

p1 : Hφ1 = φ1 + 1
2 θ̃, Pφ1 = φ1 + θ̃, Rαφ1 = φ1 + βα, (51)

p2 : Hφ2 = φ2 + 1
2 θ̃, Pφ2 = φ2 + θ̃, Rαφ2 = φ2 − βα, (52)

where θ̃ = θ+ 2η+ 2cε/a (from (42) and (46)). p1 and p2 areKz-conjugate,Kz transforms one into the other. The
action ofH and P (advancing in time) is exactly the same as the action of an appropriate SO(2) element (a specific
translationRα in the spanwise z-direction). Therefore p1 and p2 are traveling waves in z, and they travel in opposite
directions. As the action of P coincides with the action of R

θ̃/β
, the phase velocity is cz = ±θ̃/Tβ, where T is the

forcing period; the plus sign corresponds to p1 and the minus sign to p2. Notice that the phase velocity at criticality
is given by the imaginary part of the critical eigenvalue, cz = θ/Tβ, and varies linearly with the parameters in a
neighborhood of the bifurcation point: cz = (θ + 2η+ 2cε/a)/Tβ; this linear dependence can be used to estimate
the normal form constant c/a. Although we use the term traveling wave for these solutions, p1 and p2, they are not
true traveling waves: due to the time-dependent nature of the basic state, we do not have a fixed pattern translating
in space as time evolves, but rather we have a time-dependent pattern that after a forcing period T has exactly the
same form as that at the beginning of the period, but translated in space; a modulated traveling wave (TW). A given
solution is not invariant by the action of Rα, but becomes a different solution on the T

2; it is the T
2 that is Rα [and

SO(2)] invariant.
The modulated traveling waves p1 and p2 break the Kz symmetry. p1 and p2 live on two invariant T

2, by time
evolution and by SO(2);Kz transforms one T

2 into the other. For these traveling waves, advancing time by the period
T is the same as a z-translation; and the action of the spatio-temporal symmetryH is also the same as a z-translation.
AlthoughH symmetry is not preserved (it changes the phase φ), there is still a preserved spatio-temporal symmetry,
the combination HR−θ̃/2β, i.e. in a frame of reference translating in z at the phase speed, p1 and p2 appear
H-invariant. All these symmetries of the TW have been observed in the numerically computed solutions for the
driven cavity flow, and many of them are apparent from Fig. 17.

Isosurfaces of vorticity of modulated traveling waves (TW) of the periodically driven cavity flow computed
at St = 100 and Re = 1225, which is at a Reynolds number just slightly above the bifurcation (Rec = 1212 at
St = 100) are shown in Fig. 17. We see from the figure that the second frequency introduced by the Neimark–Sacker
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bifurcation manifests itself as a translation in z after advancing a forcing period in time. The action of H is also
equivalent to a z-translation. The Kz symmetry is broken, and applying it changes the sign of the z-translation, so
the resulting TW moves in the opposite direction.

Now consider the action of O(2),H and P on p3. As the moduli r1 and r2 do not change, we focus on the phases
φ1 and φ2. To simplify the discussion, let

φ = 1
2 (φ1 + φ2), ψ = 1

2 (φ1 − φ2). (53)

From (39) we obtain

H

(
φ

ψ

)
=
(
φ + 1

2 θ̂

ψ

)
, P

(
φ

ψ

)
=
(
φ + θ̂

ψ

)
, (54)

Rα

(
φ

ψ

)
=
(

φ

ψ + βα

)
, Kz

(
φ

ψ

)
=
(
φ

−ψ
)
, (55)

where θ̂ = θ + 2η+ 2(c + d)ε/(a+ b). BothH and P leave ψ invariant (54), and so time evolution (iterates of P
and H) only modifies the phase φ. The T

2 obtained by keeping ψ = ψ0 constant contains any solution obtained
with the given ψ0 as initial condition. Any p3 solution lies on a T

2, and as it is a linear combination of two equal
amplitude modulated traveling waves, traveling in opposite directions, we call it a modulated standing wave (SW)
solution. The O(2) symmetries Rα and Kz change ψ (55), and therefore the aforementioned T

2 (with ψ = ψ0) is
not O(2)-invariant. Nevertheless, there is a particular combination of Rα and Kz that keeps ψ0 invariant:

Rψ0/βKzR−ψ0/β

(
φ

ψ0

)
=
(
φ

ψ0

)
. (56)

This is a z-reflection, centered not about the origin z = 0, but about z = ψ0/β. This is exactly the same behavior we
found with the synchronous modes A and B corresponding to casesF±

2 , and we say thatKz symmetry is preserved.
SO(2) symmetry (translations in the spanwise direction) and H symmetry are broken (they change the phase φ),
and SW do not retain any spatio-temporal symmetry, because all the space symmetries keep φ fixed.

All these symmetries of SW have been observed in the numerically computed solutions for the driven cavity flow,
and many of them are apparent from Fig. 18, which shows vorticity isosurfaces at St = 100 and Re = 1225, which
is at a Reynolds number just slightly above the bifurcation (Rec = 1212 at St = 100). The figure shows that Kz is
preserved, but the SW solution is fully quasi-periodic, in the sense that advancing in time is not equivalent to any

Fig. 18. Vorticity dynamics of modulated standing and traveling waves for the joint representation Fc4 in the periodically driven cavity flow [4],
shown in a spanwise (z) domain extent of one wavelength, at St = 100 and Re = 1225. Solid isosurfaces are of the out-of-page (x) component
of vorticity, positive and negative of equal magnitude, while translucent isosurfaces represent the z-component of vorticity. The driven cavity
wall lies further into the page than the structures, and oscillates in the ±y-direction.
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Fig. 19. Schematic of the standing and traveling wave solutions and their symmetries, on a Poincaré section.p1 andp2 are the two traveling waves,
Kz-related. MSW solutions form the centralT2, which isKz-invariant; individual modulated standing wave solutions p3 are not SO(2)-invariant,
but are invariant under a conveniently translated (rotated in the plot) Kz symmetry. Time evolution is indicated by an arrow labeled t, and the
action of SO(2) is also indicated.

space symmetry. Any non-trivial z-translation (not a multiple of the z-wavelength), produces a new solution of SW
type.

In summary, modulated traveling wave solutions break Z2 and retain SO(2), and so there exist two different
modulated traveling waves, p1 and p2, that are Z2-conjugates. Modulated standing wave solutions break SO(2)
and retain Z2, and so there exists a continuous family of T

2 that span a T
3. From one of the standing wave

solutions (a T
2), the action of SO(2) generates the T

3, and this T
3 is a manifold invariant by O(2) and by time

evolution. The traveling wave solutions retain a spatio-temporal symmetry (different from H), and the standing
waves do not have any spatio-temporal symmetry at all. Fig. 19 shows a schematic of the standing and traveling
wave solutions and their symmetries; the plots are in a Poincarésection, so the T

2 and T
3 are represented as T

1 and
T

2, respectively. The dotted line is the flip line of theKz symmetry; the elements of SO(2) are rotations into the plot
plane.

The persistence of the p1, p2 and p3 solutions under arbitrary small perturbations can be proved exactly with the
same methods as those presented in [10]. Therefore,p1,p2, andp3 are structurally stable (they persist under arbitrary
but small perturbations). However, the phase dynamics on these T

2 solutions depends on θ̃ = θ + 2η + constant
being rational or irrational. In the rational case, we have periodic solutions on the T

2, while in the irrational case
we have quasi-periodic solutions densely filling the T

2. Any small perturbation can transform one type of solution
into the other, and the dynamics on the T

2 is not structurally stable. We need a second parameter, η, to unfold the
subtleties of the phase dynamics on the T

2; these subtleties include the presence of Arnold tongues and frequency
locking phenomena [12]. The bifurcation is truly of codimension-two, but the existence and stability properties
of p1, p2, and p3 are codimension-one properties. This is exactly the same situation as with the Neimark–Sacker
bifurcation without symmetries [12].

In many problems, e.g. in fluid dynamics, the basic state p0 is the only fixed point that exists for ε < 0, and p1,
p2, and p3 only exist for ε > 0. In this case, we have only two possible scenarios, the ones in regions I and II of
Fig. 14. In region I, p1 and p2 are stable and p3 is unstable; in region II we have the opposite situation: only p3 is
stable, whereas p1 and p2 are unstable. Which one of these scenarios takes place depends on the particular problem
at hand. In region I (stable traveling waves) we have a < b; in region II, where the standing waves are stable, we
have a > b. These conditions on the growth rate of the L2-norm of the bifurcated perturbations of the basic state,
lead to a rule of thumb that the stable solution corresponds to the one with the largest growth rate. From (46)–(48)
we have

‖p1‖ = ‖p2‖ =
( ε
a

)1/2
, ‖p3‖ =

[
2ε

a+ b

]1/2

(57)
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Fig. 20. The growth with Re for a measure of the perturbation energy for the saturated TW and SW states at St = 100 and Rec = 1212. Solutions
on the TW branch have largest energy, and are stable to perturbations; those on the SW branch have lower energy, and are unstable.

and ‖p1‖ > ‖p3‖ iff a < b. In the driven cavity flow, the Neimark–Sacker bifurcation leads to scenario I dynamics,
with TW being stable and ‖TW‖ > ‖SW‖ [4,5]. This is also the case for the wake flows [3].

Fig. 20 shows the variation of qz for TW and SW, for St = 100, as a function of Re. The growth rate of qz with
|Re − Rec| for TW is greater than that of SW—recall that the saturation coefficient for TW in Fig. 16 was greater
than for SW—and the SW are unstable, according to the normal form analysis. We have been able to compute the
unstable SW by time evolution (as shown in Fig. 18) by restricting the simulations to aKz-invariant subspace where
SW exist.

5.4. Normal form for F c4 : resonant cases and period doubling

The normal form forH in the resonant case (θ/2π rational) is (Appendix B.2):

A 
→ A[eiπk1/k2 + P(|A|2, |B|2, (AB)k2 , (AB)k2)] + Āk2−1B̄k2Q(|A|2, |B|2, (AB)k2 , (AB)k2),

B 
→ B[eiπk1/k2 + P(|B|2, |A|2, (AB)k2 , (AB)k2)] + Āk2 B̄k2−1Q(|B|2, |A|2, (AB)k2 , (AB)k2), (58)

where P ,Q are complex. The resonances do not modify the normal forms (43) and (44) up to fourth order, except in
the special case k1/k2 = 1/2 where θ = π, i.e.µH = eiπ/2 = i andµP = −1. This is precisely the period-doubling
case mentioned at the end of Section 4. As arg(µH/2π) = 1/4, this case corresponds to a 1:4 resonance for H. In
this case (k1/k2 = 1/2), the normal form up to third order is

H :

{
A 
→ A(i + ε̂+ â|A|2 + b̂|B|2)+ ĉĀB̄2,

B 
→ B(i + ε̂+ â|B|2 + b̂|A|2)+ ĉĀ2B̄,
(59)

where ε̂, â, b̂ and ĉ ∈ C; and for the Poincaré map P:

P :

{
A 
→ A(−1 + ε+ a|A|2 + b|B|2)+ cĀB̄2,

B 
→ B(−1 + ε+ a|B|2 + b|A|2)+ cĀ2B̄,
(60)

where ε = 2iε̂, a = 2iâ, b = 2ib̂ and c = 2iĉ.
The analysis of these normal forms remains incomplete. Since the phase dynamics is now coupled with the

amplitude dynamics through the resonant term, this is a codimension-two bifurcation which is not reducible to a
codimension-one bifurcation as was possible in the non-resonant case. Period doubling in either the driven cavity
flow or the wake flows has not yet been observed as a bifurcation directly from the basic state [3].
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5.5. Normal form for F s4 : resonances 1:1 and 1:2

In this case, the center manifoldMc is also four-dimensional. The normal form forH in the amplitudes A, B, Ā
and B̄, corresponding to F s4 (24), is of the form (Appendix B.3):

A 
→ A[s+ P(|A|2, ĀB − AB̄, ε)],

B 
→ B[s+ P(|A|2, ĀB − AB̄, ε)] + A[δH +Q(|A|2, ĀB − AB̄, η)], (61)

plus the complex-conjugate equations giving the action of the map on Ā and B̄. The normal form forH up to third
order is

H :



A 
→ A(s+ ε̂+ â|A|2 + b̂(ĀB − AB̄)),

B 
→ B(s+ ε̂+ â|A|2 + b̂(ĀB − AB̄))+ A(δH + η̂+ ĉ|A|2 + d̂(ĀB − AB̄)),
(62)

where ε̂, η̂, â, b̂, ĉ and d̂ are real. These are codimension-two bifurcations, with bifurcation parameters ε̂, η̂, and
with four coefficients (â, b̂, ĉ and d̂), reminiscent of the strong 1:1 (s = 1) and 1:2 (s = −1) resonances (e.g. see
[12]), but more involved because here the amplitudes A and B are complex. The normal form for the Poincarémap
P is

P :

{
A 
→ A[1 + ε+ a|A|2 + b(ĀB − AB̄)],

B 
→ B[1 + ε+ a|A|2 + b(ĀB − AB̄)] + AδP + η+ c|A|2 + d(ĀB − AB̄)],
(63)

where ε = 2sε̂, δP = 2sδH , η = 2(sη̂ + δH ε̂), a = 2sâ, b = 2sb̂, c = 2(sĉ + δH â) and d = 2(sd̂ + δH b̂);
usually δP = 1. As we have already found in the analysis of F s2 , the normal form for the Poincaré map P does
not distinguish between the cases s = ±1, but they are clearly different for H. The analysis of these normal forms
remains to be done.

5.6. Normal form for F s12 ⊕ F s22 : non-resonant case

In a convenient basis {U, Ū} ofF s12 and {V , V̄ } ofF s22 , the action of O(2) andLH in the corresponding amplitudes
A, Ā, B and B̄, is

Rα =




eiβ1α 0 0 0
0 e−iβ1α 0 0
0 0 eiβ2α 0
0 0 0 e−iβ2α


 , Kz =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


 , LH =



s1 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 s2


 .
(64)

We assume different β-values in each F s2 . The normal form for H in the non-resonant case (β1/β2 irrational) can
be written as (Appendix B.3):

A 
→ A[s1 + P(|A|2, |B|2, ε)], B 
→ B[s2 +Q(|A|2|, B|2, η)] (65)

and the normal forms forH and P up to third order are

H :

{
A 
→ A(s1 + ε̂+ â|A|2 + b̂|B|2),
B 
→ B(s2 + η̂+ ĉ|A|2 + d̂|B|2),

(66)
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P :

{
A 
→ A(1 + ε+ a|A|2 + b|B|2),
B 
→ B(1 + η+ c|A|2 + d|B|2),

(67)

where all the coefficients and parameters are real, and ε = 2s1ε̂, a = 2s1â, b = 2s1b̂, η = 2s2η̂, c = 2s2ĉ and
d = 2s2d̂. Again, the normal forms for H distinguish between the different values of s1 and s2, but the normal
forms for P do not. These normal forms are of codimension-two, and the normal form for P has been analyzed
(including one of the fifth order terms) in [2], where they describe possible interactions between the synchronous
modes A and B (corresponding to F−

2 and F+
2 , respectively) in the wake of a circular cylinder in terms of a mixed

mode, F+
2 ⊕ F−

2 .

5.7. Normal form for F s12 ⊕ F s22 : resonant case

The normal form forH in the resonant case (β1/β2 = r/s rational) can be written as (Appendix B.3):

A 
→ A[s1 + P1(|A|2, |B|2, ĀsBr, AsB̄r, ε)] + Ās−1BrP2(|A|2, |B|2, ĀsBr, AsB̄r, η),
B 
→ B[s2 +Q1(|A|2, |B|2, ĀsBr, AsB̄r, λ)] + AsB̄r−1Q2(|A|2, |B|2, ĀsBr, AsB̄r, ρ), (68)

where the polynomials P and Q are real. If r + s ≥ 5, the resonant terms appear at fourth order or higher, and
up to third order the normal form is the same as in the non-resonant case. In any case, these bifurcations are of
codimension-two or greater, and their analysis has not been done yet, except in the particular case mentioned at the
end of the preceding section.

6. Conclusions

The transition from two-dimensional to three-dimensional flow implies a breaking of the translational component
of the spatial O(2) symmetry and that the center manifold has even dimension. With two-dimensional center man-
ifolds, there are only two types of possible bifurcations leading to three-dimensional states. While these are both
synchronous, one preserves the spatio-temporal H symmetry (F+

2 ), whereas the other breaks H symmetry (F−
2 ).

With four-dimensional center manifolds, there are a number of possibilities that generally lead to non-synchronous
states, described by two families of joint representations, F c4 and F s4 . The F c4 cases, in the absence of reso-
nances, correspond to Neimark–Sacker bifurcations in which the phase dynamics are trivial and they are essentially
codimension-one bifurcations. The breaking of O(2) symmetry in the four-dimensional case spawns two classes of
nonlinear states: traveling waves and standing waves, both types modulated by the time-periodic basic state.

The lowest dimension of the center manifold that can support period doubling is four, and these are a resonant case
of theF c4 Neimark–Sacker bifurcations, corresponding to the 1:4 resonance. The other resonances (except for 1:1 and
1:2) share the same normal form, up to fourth order, as the non-resonant Neimark–Sacker. The 1:4 resonance (period
doubling) is a codimension-two bifurcation, whereas all the other Neimark–Sackers are essentially codimension-one
bifurcations with trivial phase dynamics. The F s4 cases correspond to the 1:1 and 1:2 resonance cases, with s = +
and s = −, respectively. They are codimension-two bifurcations, so only occur at a point in (Re, St)-space, and so
one may expect to find them somewhere along the Neimark–Sacker curve (like other resonances); the difference
is that these resonances have particular dynamics associated with them. Little is yet known in detail; see [12] for
a discussion of the generic 1:1 and 1:2 resonances that occur without additional complications from symmetries,
which make the normal form amplitudes complex. With a four-dimensional center manifold, there can also be
three-dimensional mixed-mode solutions, corresponding to the various compositions between F+

2 and F−
2 ; these

also are manifest via codimension-two bifurcations.
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We have analyzed bifurcations where all the critical eigenfunctions break the spanwise translation symmetry
SO(2), leading to three-dimensional flows. In terms of the decompositionEc = W1⊕W2 mentioned at the beginning
of Section 4, we have analyzed the caseW1 = {0}. The complementary case,W2 = {0}, corresponds to bifurcations
where the flow remains two-dimensional, i.e. z-independent. It is also possible to have bifurcations with both W1

andW2 non-trivial. These bifurcations lead to mixed modes with some eigenfunctions preserving SO(2) symmetry
and other eigenfunctions breaking it. These mixed-mode bifurcations are of codimension-two or higher, and their
analysis is left for future investigations.
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Appendix A. Four-dimensional joint representations of O(2) and LH

In the four-dimensional case, the representation of O(2) in Ec is a direct sum of two irreducible representations
of the form (18), and Ec is the direct sum of two two-dimensional subspaces: Ec = V1 ⊕ V2. When the spanwise
wavenumber of the two representations are different, β1 �= β2, these two representations are not isomorphic, and
any linear operator in Ec commuting with the representation leaves V1 and V2 invariant (see [9, Lemma 3.4]).
Therefore, the joint representation of SO(2) and LH also splits into a direct sum of two irreducible representations
of the form F s2 , s = ±.

When β1 = β2 = β, V1 and V2 are not necessarily LH -invariant subspaces, and we need to find the general
form of the operator LH commuting with the representation of O(2). Let {U, Ū} and {V , V̄ } be bases of V1 and V2,
respectively, and let AU + AU + BV + BV be an element of Ec. The action of O(2) and LH on (A, Ā, B, B̄) is

Rα =
(
Mα 0
0 Mα

)
, Kz =

(
N 0
0 N

)
, LH =

(
L1 L2

L3 L4

)
, (A.1)

where we have used block notation, and the elements of the matrices are 2 × 2 complex matrices. In particular

Mα =
(

eiβα 0
0 e−iβα

)
, N =

(
0 1
1 0

)
. (A.2)

An easy computation using that LH is a real operator that commutes with Rα and Kz, and that the representation
(A.2) of O(2) is irreducible, shows that the four matrices Li are real multiples of the 2 × 2-identity, Li = ai12,
ai ∈ R. Computing the eigenvalues of LH gives

det(LH − µH14) = [(µH − a1)(µH − a4)− a2a3]2 = 0 (A.3)

and the eigenvalues have multiplicity 2, µsH = (a1 + a4 + s[(a1 − a4)
2 + 4â2â3]1/2)/2, where s = ±1. As we

are in the center manifold, the eigenvalues of the map LH must have modulus one, and there are three cases to be
considered.

Case I. (F+
2 ⊕ F−

2 ) : (a1 − a4)
2 + 4â2â3 > 0.
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The eigenvalues µsH are real and different, therefore they must be +1 and −1, and a1 + a4 = 0, a2
1 + a2a3 = 1.

The four eigenvectors are

µ+
H = 1 :



e1 = (a1 + 1)U + a3V ,

e2 = (a1 + 1)Ū + a3V̄ = ē1,

µ−
H = −1 :



e3 = (a1 − 1)U + a3V ,

e4 = (a1 − 1)Ū + a3V̄ = ē3.

The actions of Rα, Kz and LH on this base are

Rα =

Mα 0

0 Mα


 , Kz =

(
N 0
0 N

)
, LH =


 12 0

0 −12


 , (A.4)

where we have used block notation. This is the compound representation F+
2 ⊕ F−

2 , with the same value of β in
both components.

Case II. (F c4 ) : (a1 − a4)
2 + 4a2a3 < 0.

The eigenvalues µ+
H and µ−

H are complex conjugates, and a1a4 − a2a3 = 1. The four eigenvectors are

µ+
H = eiθ/2 :

{
e1 = a2U + (eiθ/2 − a1)V ,

e2 = a2Ū + (eiθ/2 − a1)V̄ ,

µ−
H = e−iθ/2 :

{
e3 = a2Ū + (e−iθ/2 − a1)V̄ = ē1,

e4 = a2U + (e−iθ/2 − a1)V = ē2.

The actions of Rα, Kz and LH on this base are

Rα =
(
Mα 0
0 M−α

)
, Kz =

(
N 0
0 N

)
, LH =

(
µH12 0

0 µ̄H12

)
, (A.5)

where we have used block notation, and written µH = eiθ/2. This is the representation F c4 .

Case III. (F s4 ) : (a1 − a4)
2 + 4a2a3 = 0.

The four eigenvalues coincide, µH = s = (a1 + a4)/2, and we have two possibilities, s = ±1. In this case, LH
does not diagonalize and the four generalized eigenvectors are

e1 = a2U + (s− a1)V , e2 = δHV , e3 = a2Ū + (s− a1)V̄ = ē1, e4 = δH V̄ = ē2,

where δH is an arbitrary non-zero real number, usually taken as 1 or a value that simplifies LP . The actions of Rα,
Kz and LH on this base are

Rα =
(

eiβα12 0
0 e−iβα12

)
, Kz =

(
0 N

N 0

)
, LH =

(
Nδ 0
0 Nδ

)
, (A.6)

where we have used block notation, and written

Nδ =
(
s δH

0 s

)
. (A.7)

This is the representation F c4 .
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The results obtained can be summarized as follows: the four-dimensional joint representations of O(2) and LH
are of the form F c4 , F s4 and F s12 ⊕ F s22 , and in the last case, the β-value of each of the F s2 -components can be
different.

Appendix B. Normal forms

For some low-codimension bifurcations in finite-dimensional systems, dynamical systems theory provides a
center manifold reduction and a normal form. For infinite-dimensional systems, certain technical requirements
must be satisfied in order to invoke the theorem, see [15] for details; the Navier–Stokes equations for confined flows
fulfill these requirements. The normal form is a low-dimensional, low-order polynomial system that captures the
dynamics of the full nonlinear system in the neighborhood of the bifurcation (e.g. [10]). The normal form contains a
number of parameters that unfold the bifurcation; the number of parameters being the codimension of the bifurcation
considered. Arbitrary perturbations of the normal form are usually accounted for by these unfolding parameters
(see [20] for details and examples), and they result in a topologically equivalent system preserving all the dynamics
of the normal form; this is the case for the well-known local codimension-one bifurcations [12]. However, when
the codimension of the system is 2 or greater, persistence of all the dynamical features of the normal form is not
always guaranteed. One may still perform a normal form analysis on the original system, truncate at some finite
(low) order and extract some of the characteristic dynamics of the original system. The derivation of the normal
forms in the presence of symmetries in this appendix follows the method of [10].

B.1. Normal form for F s2 , s = ±1

The normal form forH is of the form:

A 
→ sA +Q(A, Ā, ε) (B.1)

and to any given finite order in A and Ā, the function Q satisfies (e.g. see [10]):

Q(LHA,LHĀ) = LHQ(A, Ā), (B.2)

Q(KzA,KzĀ) = KzQ(A, Ā), (B.3)

Q(RαA,RαĀ) = RαQ(A, Ā). (B.4)

This results in Q(A, Ā, ε) = AP(|A|2, ε), with P a real polynomial satisfying P(|A|2, 0) = O(|A|2).

Proof. The actions of Kz and Rα on A and Ā (and on Q and Q̄) are

LHA = sA, LHĀ = sĀ, (B.5)

KzA = Ā, KzĀ = A, (B.6)

RαA = eiβαA, RαĀ = e−iβαĀ. (B.7)

The action of LH is the identity for s = 1, and coincides with Rπ/β for s = −1. Substituting the action of Kz and
Rα into (B.3) and (B.4), we obtain

Q(Ā,A) = Q(A, Ā), Q(eiβαA, e−iβαĀ) = eiβαQ(A, Ā),

valid for any value of α. Applying these relations to a monomial cAmĀn, c ∈ C, we obtain c ∈ R, m = n+ 1, and
Q contains only monomials of the form cA|A|2n. �
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B.2. Normal form for F c4

The normal form forH is

A 
→ eiθ/2A+ P̃(A,B, Ā, B̄), B 
→ eiθ/2B + Q̃(A,B, Ā, B̄) (B.8)

and to any given finite order in A, B, Ā and B̄, the functions P̃ and Q̃ satisfy

P̃(eiθ/2A, eiθ/2B, e−iθ/2Ā, e−iθ/2B̄) = eiθ/2P̃(A,B, Ā, B̄), (B.9)

P̃(eiβαA, e−iβαB, e−iβαĀ, eiβαB̄) = eiβαP̃(A,B, Ā, B̄), (B.10)

Q̃(A,B, Ā, B̄) = P̃(B,A, B̄, Ā) (B.11)

for any value of α. Q̃ also satisfies (B.9) and (B.10), but these additional equations are obtained using (B.11),
which in fact gives Q̃ once P̃ has been obtained, and so do not provide any additional information. Applying these
relationships to a monomial ApBqĀmB̄n, we obtain

p+ q−m− n− 1 = k
4π

θ
, p− q−m+ n− 1 = 0, (B.12)

where the integer k is not zero in the resonant case (2π/θ rational).
First consider the non-resonant case, where θ/2π is irrational and k = 0. Solving (B.12) for p and q we obtain

p = m+ 1 and q = n, and the monomials in P̃ must be of the formA|A|2m|B|2n. Therefore, P̃ = AP(|A|2, |B|2, ε)
and Q̃ = BP(|B|2, |A|2, ε), i.e. we obtain (40).

In the resonant case θ/(2π) = k1/k2 ∈ (0, 1) is rational and (B.12) has additional solutions. We can take the
fraction k1/k2 as irreducible with both k1 and k2 positive: 0 < k1 < k2, and k2 ≥ 2. In (B.12), p+q−m−n− 1 =
p+ q−m− n− 1 + p− q−m+ n− 1 = 2(p−m− 1) is even; and 4πk/θ = 2kk2/k1, so kk2/k1 is an integer,
and since k1/k2 is irreducible, k must be a multiple of k1 : k = jk1. Finally, Eq. (B.12) can be written as

p−m− 1 = q− n = jk2, j ∈ Z. (B.13)

The monomials in P̃ are of the form Ajk2+1Bjk2 |A|2m|B|2n, j ∈ Z, i.e.

P̃(A,B, Ā, B̄) = AP(|A|2, |B|2, (AB)k2 , (AB)k2)] + Āk2−1B̄k2Q(|A|2, |B|2, (AB)k2 , (AB)k2). (B.14)

The monomials in Q̃ are obtained from P̃ by interchanging A and B. This gives (58). For j = 0 we obtain the
non-resonant case. The resonant monomial of lowest order in P̃ is Āk2−1B̄k2 , of order 2k2 − 1; since k2 ≥ 2, it is
of order three for k1/k2 = 1/2, and of order greater than or equal to 5 in any other case.

Stability of the equilibria pi (48), in the non-resonant case. The Jacobians of the system (44) at the four fixed
points (48) are

J0 =
(

1 + ε 0
0 1 + ε

)
, J3 =




1 − 2aε

a+ b
− 2bε

a+ b

− 2bε

a+ b
1 − 2aε

a+ b


 , (B.15)

J1 =

 1 − 2ε 0

0 1 + ε(a− b)

a


 , J2 =


 1 + ε(a− b)

a
0

0 1 − 2ε


 . (B.16)

Their eigenvalues are: for p0, 1 + ε is double; p1 and p2 have eigenvalues 1 − 2ε and 1 + ε(b− a)/a; and p3 has
1 − 2ε and 1 + 2ε(b− a)/(a+ b). A fixed point is stable iff their eigenvalues have moduli less than 1.
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B.3. Normal form for F s4

The normal form forH is

A 
→ sA + P̃(A,B, Ā, B̄), B 
→ δHA+ sB +Q(A,B, Ā, B̄), (B.17)

plus the complex-conjugate equations. Due to the O(2) symmetry, the functions P̃ and Q̃ satisfy

P̃(eiβαA, eiβαB, e−iβαĀ, e−iβαB̄) = eiβαP̃(A,B, Ā, B̄), (B.18)

P̃(Ā, B̄, A,B) = P̃(A,B, Ā, B̄), (B.19)

as well as identical equations for Q̃. Applying these relations to a monomial, aApBqĀmB̄n, we obtain p+ q−m−
n− 1 = 0 and a real; p+ q+m+ n = p+ q+m+ n± (p+ q−m− n− 1) = 2(p+ q)− 1 = 2(m+ n)+ 1,
and all the monomials are of odd order. LH also gives conditions on P̃ and Q̃:

P̃(sA, δHA+ sB, sĀ, δHĀ+ sB̄) = sP̃(A,B, Ā, B̄), (B.20)

Q̃(sA, δHA+ sB, sĀ, δHĀ+ sB̄) = δHP̃(A,B, Ā, B̄)+ sQ̃(A,B, Ā, B̄). (B.21)

The solution of these equations is

P̃(A,B, Ā, B̄) = AP(|A|2, ĀB − AB̄, ε),

Q̃(A,B, Ā, B̄) = BP(|A|2, ĀB − AB̄, ε)+ AQ(|A|2, ĀB − AB̄, η), (B.22)

i.e. Eq. (61).

Proof. Taking the derivatives of (B.20) and (B.21) with respect to δH , and putting δH = 0, gives

A∂BP̃ + Ā∂B̄P̃ = 0, A∂BQ̃+ Ā∂B̄Q̃ = P̃ . (B.23)

Using new variables x = A, y = Ā, z = ĀB − AB̄ and t = B, these equations reduce to

∂tP̃ = 0, A∂tQ̃ = P̃ . (B.24)

The solution for P̃ is P̃(x, y, z, t) = Φ(x, y, z) = xP(xy, z), using (B.19). The equation for Q̃ is ∂tQ̃ = P(xy, z),
whose solution is Q̃ = tP(xy, z) + Ψ(x, y, z). Again, using (B.18) for Q̃, Ψ(x, y, z) = xQ(xy, z) and we arrive at
(B.22). It can be verified by direct substitution that (B.22) satisfies (B.20) and (B.21). �

B.4. Normal form for F s12 ⊕ F s22

The normal form forH can be written as

A 
→ s1A+ P̃(A,B, Ā, B̄), B 
→ s2B + Q̃(A,B, Ā, B̄) (B.25)

and P̃ and Q̃ satisfy

P̃(eiβ1αA, eiβ2αB, e−iβ1αĀ, e−iβ2αB̄) = eiβ1αP̃(A,B, Ā, B̄), (B.26)

Q̃(eiβ1αA, eiβ2αB, e−iβ1αĀ, e−iβ2αB̄) = eiβ2αQ̃(A,B, Ā, B̄), (B.27)

P̃(Ā, B̄, A,B) = P̃(A,B, Ā, B̄), (B.28)
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Q̃(Ā, B̄, A,B) = Q̃(A,B, Ā, B̄), (B.29)

P̃(s1A, s2B, s1Ā, s2B̄) = s1P̃(A,B, Ā, B̄), (B.30)

Q̃(s1A, s2B, s1Ā, s2B̄) = s2Q̃(A,B, Ā, B̄). (B.31)

Applying these relations to a monomial aApBqĀmB̄n in P̃ and Q̃, we obtain

P̃ : β1(p−m− 1)+ β2(q− n) = 0, s
p+m−1
1 s

q+n
2 = 1,

Q̃ : β1(p−m)+ β2(q− n− 1) = 0, s
p+m
1 s

q+n−1
2 = 1 (B.32)

and a must be real. In the non-resonant case, where β1/β2 is irrational, the coefficients of β1 and β2 in the last
equation must be zero, and the equations involving s1 and s2 are identically satisfied. P̃ and Q̃ are of the form:

P̃(A,B, Ā, B̄) = AP(|A|2, |B|2, ε), Q̃(A,B, Ā, B̄) = BQ(|A|2, |B|2, η)
which is (65).

Resonant case. The analysis is the same as in the non-resonant case up to Eq. (B.32). Now the ratio β1/β2 = r/s

is rational. Without loss of generality, we can take 0 < β1 ≤ β2, and the fraction r/s irreducible (i.e., 0 < r ≤ s).
Eq. (B.32) for P̃ gives r(p − m − 1) = s(n − q), and as r/s is irreducible, p = m + 1 + js, n = q + jr, j ∈ Z.
The form of the monomial is A(AsB̄r)j|A|2m|B|2q, j ∈ Z. The condition on s1 and s2 gives (ss1s

r
2)
j = 1, therefore

j must be even when ss1s
r
2 = −1. Treating Q̃ analogously, we arrive at

P̃(A,B, Ā, B̄) = AP1(|A|2, |B|2, ĀsBr, AsB̄r, ε)+ Ās−1BrP2(|A|2, |B|2, ĀsBr, AsB̄r, η),
Q̃(A,B, Ā, B̄) = BQ1(|A|2, |B|2, ĀsBr, AsB̄r, λ)+ AsB̄r−1Q2(|A|2, |B|2, ĀsBr, AsB̄r, ρ), (B.33)

where ε, η, λ and ρ are real parameters, and when ss1s
r
2 = −1, P1 and Q1 are even and P2 and Q2 are odd in their

third and fourth arguments [P1(x1, x2,−x3,−x4) = P1(x1, x2, x3, x4), and so on]. This gives the normal form
(68).
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