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Exact coherent structures in pipe flow in
the presence of wall transpiration
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The linear instability of the flow in a pipe subjected to a wavelike transpiration
velocity at the walls is considered. The fully nonlinear problem is formulated at high
Reynolds numbers and small transpiration velocities. Solutions of the nonlinear system
describing the bifurcation of disturbances caused by the transpiration are calculated and
a complex bifurcation structure is uncovered with several nonlinear states possible at
some transpiration amplitudes. The symmetries and structure of the nonlinear solutions
are discussed.
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1. Introduction

There has been considerable interest over many years in how transitional and turbulent
flows may be controlled by suction. Suction has been applied as a feasible and effective
method of controlling boundary layers since Prandtl’s era. Pfenninger (1977) summarizes
the research work done at Northrop on the use of suction to control transition in laminar
boundary layers. It is known that boundary layer suction can prevent laminar separation
and transition in flows with a streamwise pressure rise even at high Reynolds numbers.
In the context of Tollmien–Schlichting waves, Nayfeh, Reed & Ragab (1986) investigated
the effects of different suction-strip configurations on stability using linear triple-deck
theory while Balakumar & Hall (1999) derived optimal suction profiles for the control
of Tollmien–Schlichting waves and crossflow vortices. For turbulent flows, Sumitani &
Kasagi (1995) conducted a direct numerical simulation of turbulent flow in a channel,
where uniform suction was applied at one wall and uniform injection at the opposite
wall. Though more difficult to implement in practice, spatially varying suction has been
extensively investigated for control purposes and the particular case of spatially periodic
transpiration (distributed suction and blowing) has received significant attention; the
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reader is referred to the paper by Quadrio, Floryan & Luchini (2007) for a discussion
of some of the early work in the context of turbulent flows. However, as found by Floryan
(2003), periodic transpiration can itself lead to instability so that transpiration might be a
viable means to promote transition in a situation where mixing is required.

Here our concern is with the instability of Hagen–Poiseuille flow with axially periodic
transpiration imposed at the pipe wall. It is widely believed that the corresponding flow
in a smooth pipe is linearly stable at all Reynolds numbers, although dating back to the
work of Smith & Bodonyi (1982), it is now well known that finite amplitude equilibrium
perturbations from Hagen–Poiseuille flow exist; see Faisst & Eckhardt (2003), Hof et al.
(2004), Fitzerald (2004), Wedin & Kerswell (2004), Eckhardt et al. (2007) and Ozcakir
et al. (2016). The Smith & Bodonyi solution has not been observed experimentally, but
observations of pipe flow at Reynolds numbers of order 1000 have many similarities with
computed exact coherent structures; see Eckhardt et al. (2007).

The physical mechanism to sustain such steady states for a large Reynolds number is
now well understood and can be traced back to studies of vortex-wave interactions by Hall
& Smith (1991). In all of the sustaining mechanisms described in that work energy is fed
by the wave into the roll part of a roll–streak flow. The roll then drives the streak and
the wave, which is a linear instability of the streak, extracts energy from that streak. The
generation of the roll flow by the wave is through Reynolds stress terms, and as such it is
similar to the mechanism by which time-periodic flows induce steady streaming; see, for
example, Stuart (1966). Various forms of vortex–wave interactions, henceforth VWI for
short, were discussed by Hall & Smith, but the one which has been conclusively shown to
sustain the numerically computed exact coherent structures in shear flows by, for example,
Nagata (1990) and Wang, Gibson & Waleffe (2007) concerns a wave with length scales in
all directions comparable to the channel depth or pipe radius; we refer to that scenario as
VWIa. The mechanism of VWI is essentially identical to that of the self-sustaining process
(SSP) subsequently uncovered by Waleffe (1997) through analysis of numerical solutions
of the full Navier–Stokes equations. Vortex–wave interactions can be understood as a
high-Reynolds-number asymptotic explanation of the SSP roll-wave-streak interactions;
subsequently Hall & Sherwin (2010) showed that the VWI formulation produces very
accurate predictions of SSP states at even quite low Reynolds numbers.

A second sustaining mechanism, not anticipated in Hall & Smith (1991), was discovered
by Deguchi & Hall (2014) in boundary layers, and a closely related structure takes the form
of centre modes in pipe flows; see Ozcakir et al. (2016). In the boundary layer problem
nonlinear sustaining states are generated in a thin layer at the edge of the boundary layer.
Unlike the VWI case the interaction involves all streamwise modes and there is not a
clear separation of rolls, waves and the streak. In the pipe problem the interaction again
involves all streamwise modes and localizes around the position where the unperturbed
flow has maximum velocity. A further form of VWI discussed briefly by Hall & Smith
(1991), who referred to it as the ‘square vortex’ case, has the same form as VWIa except
that the wave is now stationary so that the roll is driven within a viscous wall layer. It is
believed that the interaction equations for this case, VWIb for short, have no solutions,
but Hall (2022) showed that the interaction equations of VWIb when augmented by wall
forcing or transpiration predict linear instability of the base flow. Thus, a hybrid form of
VWIb state turns out to describe the instability of shear flows subject to wall forcing. Here
our primary focus is on the numerical integration of the interaction equations for VWIb in
the presence of forcing.

Motivation for studying the effect of wall forcing comes in part from heat transfer
applications where wavy walls have long been used as an aid to mixing; see,
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e.g. Kandlikar (2008). Numerical investigations by Floryan (2002) in channel flows of
periodically varying depth in the streamwise direction showed that streamwise vortex
instabilities can be excited and Hall (2020, 2021) showed how the linearised form of
VWIb can be used to predict that instability at high amplitudes with small forcing. Hall
& Ozcakir (2021) showed that a similar instability is excited in pipe flows and also found
that pipes corrugated in both the streamwise and azimuthal directions support flows that
are more stable than those corrugated only in the streamwise direction. Loh & Blackburn
(2011) considered only the latter case in their numerical investigations and their results are
broadly in agreement with those of Hall & Ozcakir. Wall transpiration has often been
used as a simplified prototype model to understand the effect of boundary forcing on
flows; see Floryan (2003) who studied the effect of transpiration on the linear stability of
Couette flow and Gómez et al. (2016), who considered the effect of streamwise-periodic
transpiration on turbulent flows.

In the following we investigate instabilities in pipe flows induced by axially periodic
transpiration at high Reynolds numbers and small transpiration amplitudes; the results are
relevant at transitional Reynolds numbers before the flow becomes turbulent. In § 2 we
discuss instability of the base flow using the nonlinear interaction equations first derived
asymptotically (see Hall 2022) and in § 3 we describe the computational problem. We
solve these interaction equations numerically and in § 4 discuss results obtained for a wide
range of transpiration wavelengths and amplitudes. Section 5 contains further discussion
of the results and some conclusions.

2. Interaction equations for Hagen–Poiseuille flow with transpiration

We use the centreline axial velocity Uc and pipe radius a as velocity and length
scales to define the Reynolds number Re = Uca/ν, where ν is kinematic viscosity. The
incompressible Navier–Stokes equations in coordinate-free form are then

∂tû + û · ∇û = −∇p̂ + Re−1∇2û, ∇ · û = 0, (2.1)

which we utilize in cylindrical polar coordinates (r, θ, z) with corresponding velocity
û = (û, v̂, ŵ). The transpiration at the wall takes the form û = 2δ cos(βz) with axial
wavenumber β, and, as shown in Hall (2022), for Re � 1, the flow adjusts to the
transpiration in a viscous wall layer of thickness Re−1/3. Since the layer is thin, the
structure in the wall layer is essentially identical to that given by Hall (2022) for channel
flows; therefore, we give only the most important points of the analysis in the wall layer
here and refer the reader to that work for full details.

The flow in the wall layer driven by the transpiration velocity leads to velocity
components in the axial and radial directions of respective sizes δRe1/3 and δ, respectively.
That flow then drives a flow in the core region where 1 − r = O(1) with radial and
azimuthal velocities of size δ. However, we assume that the leading-order flow in the core
is a steady roll–streak flow perturbed at higher order by the effect of wall transpiration. It
is well known for streamwise vortex structures that the roll velocity field is smaller by a
factor Re than the streak. Thus, we take the velocity in the core to be

û = (Re−1u(r, θ), Re−1v(r, θ), w(r, θ)) + small wave, (2.2)

with corresponding perturbation pressure p(r, θ)Re−2, where the flow is 2π/N-periodic
in the azimuthal direction θ and the magnitude of the small wave is O(δ), where the
relationship between δ and Re will be fixed in what follows by the requirement that
the roll–streak flow is sustained by the wave’s Reynolds stresses in the wall layer.
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Inserting (2.2) into (2.1) one finds that within the core the leading-order approximation
to the steady roll–streak flow for Re � 1 is

∂2u
∂r2 + 1

r2
∂2u
∂θ2 + 1

r
∂u
∂r

− 2
r2

∂v

∂θ
− u

r2 = −∂p
∂r

+ u
∂u
∂r

+ v

r

(
∂u
∂θ

− v

)
, (2.3a)

∂2v

∂r2 + 1
r2

∂2v

∂θ2 + 1
r

∂v

∂r
+ 2

r2
∂u
∂θ

− v

r2 = −1
r

∂p
∂θ

+ u
∂v

∂r
+ v

r

(
∂v

∂θ
+ u

)
, (2.3b)

∂2w
∂r2 + 1

r2
∂2w
∂θ2 + 1

r
∂w
∂r

= 4 + u
∂w
∂r

+ v

r
∂w
∂θ

, (2.3c)

∂u
∂r

+ u
r

+ 1
r

∂v

∂θ
= 0. (2.3d)

Note that the Reynolds number no longer appears directly owing to the scaling introduced
in (2.2). In the absence of any coupling between the roll–streak flow and the wave, the
solution of (2.3) reduces to Hagen–Poiseuille flow since that is stable to streamwise vortex
perturbations. The coupling takes place in the viscous wall layer where the size of the
transpiration velocity is increased until Reynolds stresses associated with that wave field
produce an azimuthal velocity at the edge of the wall layer comparable in size to that of the
roll–streak flow in the core. Within the viscous wall layer we introduce the critical-layer
scaling variable ζ = Re1/3(1 − r) and represent the wall shear by λ(θ) = −wr(1, θ).
Additionally defining E = eiβz to express axial waviness, we disturb the flow driven by
the wave to an axially periodic disturbance of size δ so the velocity and pressure in the
wall layer may be written as

û = um(ζ, θ)

Re4/3 + · · · + δ(U(ζ, θ)E + c.c.) + · · · , (2.4a)

v̂ = vm(ζ, θ)

Re
+ · · · + δRe1/3(V(ζ, θ)E + c.c.) + · · · , (2.4b)

ŵ = ζλ(θ)

Re1/3 + · · · + δRe1/3(W(ζ, θ)E + c.c.) + · · · , (2.4c)

p̂ = − 4z
Re

+ pm(ζ, θ)

Re2 + · · · + δ(P(θ)E + c.c.) + · · · , (2.4d)

where um, vm and pm represent two-dimensional streamwise averages. Here we have
assumed that the wave component of the pressure is independent of ζ (reasonable, because
the wall layer is thin) so that substituting the above expansions into the equations of motion
we find that the (θ, z) momentum equations and continuity reduce to

−Uζ + Vθ + iβW = 0, (2.5a)

iβλζV = −P′ + Vζ ζ , (2.5b)

iβλζW − λU + Vζλ′ = −iβP + Wζ ζ . (2.5c)

The above equations are to be solved subject to

(U, V, W) = (1, 0, 0) at ζ = 0, (2.6a)

(Uζ , V, W) → 0 as ζ → ∞, (2.6b)
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where (2.6a) represents the wall transpiration. Following Hall (2022) we find that

U = 1 − λ
′(θ)P′(θ)

2λ(θ)γ
[L′′(ξ) − 1], (2.7a)

V = γ −2/3P′(θ)L(ξ), (2.7b)

where γ = iβλ(θ), ξ = γ 1/3ζ , a dash denotes an ordinary derivative with respect to
argument, and L satisfies

L′′ − ξL = 1, L = 0 at ξ = 0 and ∞. (2.8)

The wave component of pressure is then given by

P′′ − 3λ′

2λ
P′ − β2P = −iβλ. (2.9)

In the absence of forcing from the wall the right-hand side of the above equation is zero
and the equation reduces to that given in Hall & Smith (1991).

Now consider the z-independent part of the velocity field in the wall layer. In particular
taking the mean in z of the azimuthal momentum equation there we find that vm satisfies

∂2vm

∂ζ 2 = δ2Re2[−(UV∗)ζ + 2VV∗
θ ] + c.c., (2.10)

where ∗ denotes complex conjugation. For large ζ , the term in the square brackets is
proportional to ζ−2 so that vm ∼ log ζ for ζ � 1. Noting that ζ = Re1/3(1 − r) we see
that the z-independent azimuthal flow driven by the Reynolds stress terms in the wall
layer reinforces the azimuthal velocity component of the roll–streak flow in the core if
δ2Re2 log Re = O(1). Thus, we introduce a scaled transpiration parameter Λ by writing

δ = ΛRe−1[log Re]−1/2 (2.11)

and using the large-ζ form of the right-hand side of (2.10), we find that the matching
condition with the core flow then becomes

(u, v, w) =
[

0, − Λ2

3λ(θ)2 (|P(θ)|2 + β−2|P′(θ)|2)′, 0
]

. (2.12)

The right-hand side of (2.9) is due to the transpiration forcing and setting it equal to zero
gives the free-interaction problem VWIb. On the other hand, if we drop the θ -dependence,
the pressure equation gives the pressure field driven entirely by the transpiration. But then,
the roll–streak flow is no longer driven by the wave and no interaction occurs. Thus, the
roll–streak equations coupled with the boundary conditions and pressure allow for an
exact coherent structure in pipe flow in the presence of transpiration. However, there is
a significant difference between the VWIa and transpiration-augmented VWIb interaction
problems. The difference is that in the latter problem nonlinear structures bifurcate from
the transpiration-modified basic Hagen–Poiseuille flow whereas in VWIa nonlinear states
arise from a saddle-node bifurcation.

The linear stability of transpiration-modified basic Hagen–Poiseuille flow is obtained
from the interaction equations (2.3), (2.9), (2.12) by perturbing the flow to a small
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amplitude roll–streak flow in the manner given in Hall (2022). In the core region we write

u = (0, 0, 1 − r2) + A(u1(r) cos Nθ, v1(r) sin Nθ, w1(r) cos Nθ) + · · · , (2.13)

p = Ap1(r) cos Nθ + · · · , (2.14)

where N is an integer and A is small. Linearizing (2.3) we obtain a set of linear equations
for u1, p1 which we solve subject to regularity at r = 0 and u1, w1 vanishing at r = 1. We
obtain

u1(r) =
(

N[rN−1 − rN+1], [N + 2]rN+1 − NrN−1,

NrN(r2 − 1)

4

[
r2 + 1
N + 2

− 2
N + 1

])
, (2.15)

which gives
v1(1)

w′
1(1)

= −2
(N + 1)(N + 2)

N
. (2.16)

Next we find the small amplitude solution of the pressure equation (2.9) by first writing

P = P0 + AP1 cos Nθ + · · · , (2.17)

and then equating terms O(1), O(A) in turn we obtain

P0 = −2i
β

, P1 = iβw′
1(1)

β2 + N2 . (2.18a,b)

We then substitute the above pressure expansion into (2.12) and equate terms O(A) to give

v1(1)

w′
1(1)

= − Λ2N
3[β2 + N2]

, (2.19)

so comparing the above two expressions for v1(1)/w′
1(1) we obtain

Λ2 = 6(1 + β2/N2)(N + 1)(N + 2). (2.20)

Figure 1 shows the neutral curves for various wavenumbers β where Λ is shown as a
function of N in figure 1(a). For a given value of β, the value of N that minimises Λ

satisfies β2 = N3(3 + 2N)/(4 + 3N). Since N must be an integer, the most dangerous
mode will correspond to N = 1 when β < 21/2 and to an integer value number N ≈
[(3/2)β2]1/3 for large N. Figure 1(b) displays Λc = minN Λ as a function of β. Numbers
above solid/dashed curves indicate the value of N that minimizes Λ for a given β which
corresponds to the most dangerous mode.

Figure 1(c) displays independent calculations of wall transpiration amplitudes that lead
to neutral stability of the base flow as a function of Re. These calculations were performed
at β = 10 for disturbances with N = 3 and N = 4 via full linearized Navier–Stokes
calculations; see Blackburn (2002) and Barkley, Blackburn & Sherwin (2008). We see
that the asymptotic and numerical solutions are in progressively better agreement as Re
increases but it is interesting to note that the agreement is not as good as found in the
planar case by Hall (2022). We expect that agreement would be improved by continuing
the expansion to higher order but our emphasis here is on the nonlinear problem and so we
do not do so.
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Figure 1. (a) Plot of Λ vs N for given β values. Black markers show the minimum Λ values to indicate the
most dangerous modes N = 1, 5, 15 for β = 1, 10, 50, respectively. (b) Plot of Λc vs β where numbers over
solid/dashed curves indicate the most dangerous mode. (c) Critical δ value as a function of Re for N = 3 (red)
and N = 4 (blue) in comparison to the expected asymptotic scaling given by (2.11) and (2.20) (for N = 3,
β = 10) shown by dashed line.

3. The numerical solution of the full interaction equations

Our computational approach is based on the numerical formulation described in Ozcakir
et al. (2016), which uses a Galerkin truncation of Fourier modes in θ and a Chebyshev
representation in r with appropriately chosen velocity functions Φj, Ψj satisfying no-slip
boundary conditions. Here, we give a brief discussion of the key elements that are added to
the existing solver for the present problem. Within the core, the nonlinear equations (2.3)
describing the roll–streak flow are solved numerically. It is convenient to decompose the
velocity field (u, v, w) as

(u, v, w) = vB + V (r, θ), (3.1)

where vB(r, θ) is a solenoidal base velocity field satisfying the boundary conditions (2.12)
which includes Hagen–Poiseuille flow, V (r, θ) is the perturbation velocity with no-slip
boundary conditions. Using (3.1) in equations (2.3), one obtains

V · ∇V + vB · ∇V + V · ∇vB + ∇p − ∇2V = ∇2vB − vB · ∇vB, (3.2)
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O. Ozcakir, P. Hall and H.M. Blackburn

where p(r, θ) is the perturbation pressure. This formulation allows us to find N-fold
rotationally symmetric (RN) solutions V (r, θ) using the truncated basis representations

V ≈
∑

[ujkΦj(r; kN) cos kNθ, vjkΦj(r; kN) sin kNθ, wjkΨj(r; kN) cos kNθ ] (3.3)

for the radial, azimuthal and axial perturbation velocity components, where Φj, Ψj are
given in terms of Chebyshev polynomials Tj as

Φj(r; k) =
{

T2j+2(r) − T2j(r) if k is odd,

T2j+3(r) − T2j+1(r) if k is even,
(3.4a)

and

Ψj(r; k) =
{

T2j+3(r) − T2j+1(r) if k is odd,

T2j+2(r) − T2j(r) if k is even.
(3.4b)

It should be noted that this representation of Φj and Ψj forms a complete radial basis for
the boundary value problem. The sums are taken over j ∈ [0, J] and k ∈ [0, M] for large
enough integer values of J and M to obtain three-digit relative accuracy for each velocity
component in the solution. The cos/sin basis functions are chosen to fix the azimuthal
phase of the flow structure. Note that the relative phase in θ between the radial and
azimuthal velocity components is fixed by continuity. The relative phase of the streamwise
velocity component is then determined through the ‘lift-up’ effect term u∂w/∂r in (2.3c).
Inserting this basis with given N, β and Λ into (3.2) produces a nonlinear algebraic system
for {ujk, vjk, wjk}, which is solved via Newton’s method and the generalized minimal
residual method.

For given N, β, we determine Λ0 at which the flow becomes unstable using the linear
stability results of § 2. A small amplitude neutral eigenfunction is then used as an initial
guess in the Newton iteration procedure near this neutrally stable point Λ = Λ0. At
each Newton step, the linear ordinary differential equation (2.9) is solved using spectral
methods for coefficients {pk, 1 < k < M}, where P(θ) = ∑

pk sin kNθ . The resulting P(θ)

is then used to generate boundary conditions (2.12) which in turn are used to construct
the base flow vB(r, θ). Once a converged solution is found, an arc-length continuation
procedure with continuation parameter Λ is used to determine other solutions. The
corresponding eigenvalue problems were solved numerically using an Arnoldi method.

4. Results

In order to describe the results over a range of wavenumbers of physical interest we
consider the wavenumbers β = 1, 10, 50. Results at smaller values of β than these are
perhaps less physically relevant since the implementation of transpiration over long lengths
of pipe would be difficult. We restrict attention to solutions that possess shift-reflect
symmetry calculated in an RN-symmetric subspace.

We first examine the bifurcation structure near the value of Λ where instability first
occurs for a given β. Therefore, we consider the modes N = 1, 5, 15 which are the most
unstable modes for β = 1, 10, 50, respectively; see figure 1(a,b).

In figure 2 we display the evolution of the streak component of the solutions. For a given
N-fold solution, the streak associated with the flow is defined as the axial component of
the solution excluding the Hagen–Poiseuille solution (1 − r2)ẑ and it can be written as∑M

k=0 wk(r) cos kNθ . Therefore, the streak amplitude of the kNth mode is measured by
Ak = maxrj |wk(rj)|, where {rj} is the set of radial collocation points. For each solution,
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Exact coherent structures in pipes with wall transpiration
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Figure 2. (a–c) Streak modal amplitudes Ak vs Λ for solutions to (2.3) arising at their neutral Λ value
(diamond markers) for (a) β = 1 and N = 1, 2, (b) β = 10 and N = 5, 10, (c) β = 50 and N = 15, 30. Here Aks
values are shown for the first four k-modes. Solid/dashed lines indicate where the solution is stable/unstable.
Figure 3 presents flow profiles corresponding to the solutions where the fundamental modes are labelled here.
(d–f ) Darcy friction factors corresponding to the two leading modes of (a–c), respectively; the dashed line
represents the Hagen–Poiseuille value f = 64.
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we plot Ak as a function of Λ for the first four or five harmonics. Such amplitude plots are
useful when we wish to understand how different modes contribute to the total energy of
the streak as the transpiration amplitude Λ is varied. Also, these provide a convenient way
to highlight how symmetry-breaking bifurcations occur as the values of Ak vanish at the
bifurcation points for some values of k.

Figure 2(a) displays the solution branches for the N = 1 and N = 2 solutions bifurcating
from the neutral Λ values on the abscissa for the case β = 1. The solid/dashed
curves indicate the regions where the solution is stable/unstable. The N = 1, 2 solutions
originate as supercritical bifurcations at the linear instability points at Λ ≈ 8.485, 9.487,
respectively. Initially, the highest amplitudes are in the fundamental modes A1 and A2 for
the N = 1 and N = 2 solutions, respectively. As Λ increases, the mean flow as represented
by A0 grows rapidly and becomes the dominant part of the streak. The N = 1 solution
bifurcates supercritically into a stable solution which subsequently loses stability at a
saddle-node point and then continues as an unstable solution with Λ decreasing. That
branch then joins the N = 2 solution as a symmetry-breaking secondary bifurcation from
that solution. At that point, the A0 and A2 modes join the A0 and A2 curves of the
N = 2 solution branch, while all the Ak modes with odd k decrease to zero. After the
latter bifurcation, the pure N = 2 mode becomes stable. Thus, the most unstable mode to
bifurcate does so supercritically but then loses stability at a saddle-node point with the
lower branch then joining the second mode to bifurcate. At that point the second mode
to bifurcate is stabilized. If the control parameter is slowly increased in an experiment by
say increasing Re, then the finite amplitude solution which initially bifurcates would be
followed to the saddle-node point where it would then jump down to the stable part of the
branch corresponding to the second mode. However, starting with a stable mode on the
second mode stable branch and decreasing Λ, hysteresis would be observed.

The behaviour described above was found to be typical of the bifurcation structure found
for other values of β immediately after the first onset of instability. Thus, the first mode
to become unstable bifurcates supercritically but then reaches a saddle-node point before
continuing back to lower values of Λ and terminating as a secondary bifurcation of the
second mode to become unstable. Therefore, the behaviour shown in figure 2(b,c) for
β = 10, 15 is similar to that described above for β = 1.

Figure 2(d–f ) displays the Darcy friction factor

f = 64
(2w̄)2 , (4.1)

where w̄ = π−1 ∫∫
w(r, θ)r dr dθ is the bulk velocity associated with the solutions shown

in figure 2(a–c), respectively. The corresponding value for Hagen–Poiseuille flow, f = 64,
is shown as a dashed line. We observe that if f > 64, transpiration reduces the bulk
velocity below the value w̄ = 0.5 appropriate to Hagen–Poiseuille flow. These plots exhibit
similar bifurcation structures for all values of β, similar to the behaviour observed for
the corresponding A0 vs Λ plots. From the onset of first instability, the friction factor
of the first mode increases until it reaches a saddle-node value at which point the locus
changes direction and subsequently f decreases with decreasing Λ until it reaches the
Hagen–Poiseuille value at the secondary bifurcation point. For the second mode solution
branch, the friction then continues to increase indefinitely within our calculation range.
As these results indicate higher friction factors with transpiration in comparison to
Hagen–Poiseuille flow, they suggest significant drag increase due to transpiration. The drag
decreases with increasing β with the largest drag observed for the N = 2 solution branch
when β = 1. We note that since Hagen–Poiseuille flow satisfies the Stokes equations,
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Exact coherent structures in pipes with wall transpiration
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Figure 3. The cross-sectional velocity field vB(r, θ) + V (r, θ) at points labelled in figure 2. Contours indicate
axial/streak velocity component intensity as indicated by the colourbars and lines show sectional streamlines
of the roll flow when β = 1 on (a–c), β = 10 on (d–f ) and β = 50 on (g–i).

it also provides the minimum viscous dissipation for a given streamwise mean pressure
gradient and viscosity. Hence, any finite amplitude disturbance to it necessarily results in
greater drag.

The cross-sectional velocity profiles of the solutions at points labelled as (a–i) on
figure 2 are shown in figure 3(a–i). Solutions are constructed using all Fourier modes
but the labels (a–i) are marked only on the fundamental modes for visual clarity. In all
plots the contours represent the streak part of the flow and black curves indicate sectional
streamlines of the roll flow. Figure 3(a) shows the solution labelled (a) on figure 2(a) where
the solution is almost linear and the streak field resembles the eigenmode obtained by the
linear stability analysis. As nonlinearity grows, solutions take the form shown in figure 3(b)
at the largest value of Λ for the N = 1 solution which is labelled (b) on figure 2(a).
Following the continuation locus as Λ decreases, the N = 1 solution disappears and joins
the N = 2 solution branch. Figure 3(c) displays the flow beyond this bifurcation point on
the N = 2 solution branch (labelled c on figure 2a). The same flow behaviour is shown
in figure 3(d–f ) for β = 10, and in figure 3(g–i) for β = 50. For all the calculations, far
from the bifurcation point, the flow is characterised by N localised fast streaks (red) near
the wall with each of them trapped between two slow streaks (blue). As β becomes larger,
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Figure 4. Streak amplitude Ak vs Λ for (a) β = 50 and N = 4, 40 and (b) for β = 10 and N = 4, 8. Diamond
markers on the abscissae indicate neutral Λ values at which new solutions arise. Solid/dashed lines indicate
where the solution is stable/unstable. Figure 3 shows flow profiles corresponding to the solutions where the
fundamental modes are labelled here.

these fast/slow streaks move away from the centre of the pipe towards the wall as solutions
become more nonlinear with higher modes becoming more active.

For a given value of β as Λ increases, successively more modes become unstable
and the bifurcation structure involving all possible modes is prohibitively expensive to
compute. Thus, for example, when β = 50, the modes N = 4, 5, . . . , 44 are all linearly
unstable when Λ = 169. For a given value of N, it would be necessary to carry the first
64 harmonics to resolve the solution and so a resolution of the bifurcation structure in the
latter scenario would require at least 64 × 44 azimuthal modes.

Now we present results of relevance to travelling wave solutions which are known to
exist in the absence of transpiration; see Ozcakir et al. (2016). In particular, we focus
on N = 4 solutions known to exist without transpiration; those earlier computations
showed that, for N = 4, complex interactions occur for large β values. We here examine
some specimen calculations with transpiration when β = 10 and β = 50 for which the
bifurcation diagrams are shown in figure 4.

The markers on the abscissae of figures 4(a) and 4(b) indicate neutral values of Λ at
which new N-fold solutions arise. The numbers above each marker give the value of N.
In figure 4(a) black markers indicate bifurcation points for the solutions N = 40–44 while
the red marker shows the neutral value for N = 4 trapped between N = 43 and N = 44
for β = 50. Following the continuation locus for N = 40, it may be seen that soon after
the unstable N = 40 solution arises at the neutral value, Λ ≈ 162.7, the N = 4 solution
branches from it as a secondary bifurcation at Λ ≈ 163.3. After this value, both solutions
are stable in the R4 subspace and exist together until Λ < 168.5. The N = 4 solution does
not continue to exist beyond Λ = 168.5. In order to illustrate how the N = 4 solution
evolves, the cross-sectional velocity profiles for the points labelled (a–c) in figure 4(a) are
shown in figure 5(a–c). Near onset, the N = 4 solution resembles the linear eigenmode
(figure 5a); during continuation, higher modes develop near the wall (figure 5b) and the
N = 40 solution is approached (figure 5c).

Figures 4(b) and 5(d–f ) describe the analogous behaviour for β = 10 where N = 4
and N = 8 solutions arise as instabilities of the modified base flow at about Λ ≈ 36.12
and Λ ≈ 37.2, respectively. As indicated by solid/dashed lines, the N = 4 solution is
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Exact coherent structures in pipes with wall transpiration
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Figure 5. The cross-sectional velocity field vB(r, θ) + V (r, θ) at points labelled in figure 4. Contours indicate
axial/streak velocity component intensity as indicated by the colourbars and lines show sectional streamlines
of the roll flow for β = 50 on (a–c), and for β = 10 on (d–f ).

always stable whereas the N = 8 solution has one unstable mode in the R4 subspace
initially. At Λ ≈ 37.34, the growth rate of the unstable mode changes sign at which
point N = 4-symmetric solutions are born out of symmetry-breaking bifurcations from the
eight-fold solutions. Beyond this point, the N = 8 solutions are stable. The results shown
in figure 4(a) show then that when linearly unstable modes with low and high values of
N coexist then, unlike the tendency observed in figure 2, the mode with the higher N
can suffer a secondary bifurcation to a stable lower N mode. By comparison, figure 4(b)
shows that, as in figure 2, the tendency is for the first mode to bifurcate supercritically but
remaining stable only for a finite range of Λ. However, the first harmonic of the latter mode
bifurcates supercritically into an unstable mode at a higher Λ before becoming stable after
a secondary bifurcation.

5. Discussion and conclusions

In this work Hagen–Poiseuille flow modified by transpiration applied at the wall is
considered and solutions of the full nonlinear interaction equations have been computed
numerically for a number of cases. The interaction equations are derived on the assumption
that the Reynolds number is large and the transpiration velocity at the wall is small
compared with the centreline flow. The solution of the linearized interaction equations
gives predictions of the neutral configuration in strong agreement with solutions of
the linearized Navier–Stokes equations and this suggests the asymptotically reduced
problem applies to situations of practical importance. The neutral configuration and
the corresponding eigenfunctions depend strongly on the streamwise wavenumber β of
the transpiration. Thus, as the transpiration wavelength decreases, the most dangerous
azimuthal mode number N increases so that the disturbance varies on an increasingly
short length scale.
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The strongly nonlinear states we have calculated differ in significant ways from the exact
coherent states which occur in the absence of transpiration. Firstly, the states discussed
here are driven by a stationary wave system. The Reynolds stresses driving the roll–streak
flow are therefore concentrated near the wall rather than in the viscous critical layer of
the moving waves of exact coherent structures in the absence of transpiration. Thus, the
roll–streak field here is driven by an azimuthal velocity jump across the viscous wall
layer rather than a viscous critical layer. We note however that if the transpiration wave
is travelling with a speed of size Re−1/3 then the interaction problem is identical to that
considered here.

In the nonlinear regime it is found that the first mode to bifurcate does so supercritically
but then becomes unstable to a higher mode. A complete picture of the bifurcation
structure for even moderately large values of β is difficult because of the high number of
azimuthal modes needed to resolve the disturbance. However, we can make some quite
general conclusions based on the limited calculations carried out. Firstly consider the
results of figures 2 and 4(b). These cases correspond to situations when the most unstable
mode at the given β does not correspond to an almost equally unstable mode at a much
smaller N value. In that case the tendency is for the available stable states to be associated
with progressively higher N values as Λ increases. In contrast, for a situation like that in
figure 4(a) with the most unstable mode N = 40 only slightly more unstable than the mode
N = 4, then it is possible for the lower modes to become stable as Λ increases.

The fundamental building block of exact coherent structures, the roll–streak field, is
identical with or without transpiration and is driven by a vortex-wave interaction in both
cases. The close relationship of the sustaining mechanisms for exact coherent structures
with and without transpiration suggests that transpiration might well have a significant
effect on fully turbulent flows. This points to the possible importance of transpiration
to control turbulence by preferentially exciting less dissipative underlying flow patterns.
Certainly it is now well established that suction is a viable means to control boundary
layer transition but the engineering difficulties associated with producing a wavelike
transpiration distribution velocity field are challenging.

Figures 3 and 5 show that the mean departure from Hagen–Poiseuille flow, i.e. the axial
flow perturbation averaged over (r, θ), is in most cases negative, so that the drag on the
pipe will be increased by transpiration, as is also evident in figure 2(d–f ). That is also
the case with known exact coherent structures in the absence of transpiration so it is of
interest to determine if that drag can be modified by transpiration. In order to address that
issue the interaction equations must be augmented by the jump condition associated with
VWIa, solutions of the augmented system will show whether transpiration can be used to
preferentially excite transpiration-free known exact coherent structure states.

Finally we comment on what implications the present work may hold for the related
problem where the basic instability is caused by radial wall undulations rather than
transpiration. For channel flows, Hall (2022) showed that the linear stability problems
are quite similar, but beyond noting wall undulations of size O(Re1/3) larger than the
transpiration amplitude are needed to promote instability, a direct link between the
problems is not possible. That follows from the fact that, for the undulation problem, the
forcing term in the pressure equation differs from that for the transpiration case. Thus, in
the equivalent of (2.9) for the undulating wall case the forcing term on the right-hand side
is proportional to λ5/3 rather than λ.
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