Airfoil analysis and design

Hierarchy of flow models with simplifying assumptions
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Airfoil analysis versus design

The aerospace engineer could face an aerodynamical problem in two forms:

1. Analysis: the Direct Problem

What are the aerodynamic characteristics of a given airfoil shape?

2. Design: the Inverse Problem

What is the airfoil shape that leads to given aerodynamic characteristics?

We will look at the tools for both tasks.

The basic presumption of most wing analysis and design is that the flow local to each
section of the wing is approximately 2D. This enables us to focus on 2D profile design
more-or-less independently of finite-wing effects.

Drela (1990):

... resolving wing profile design conflicts is far more effective when done at the 2D level.

Liebeck (1990):
Stated in simple form, the minimum requirements for an airfoil are that it is non-re-entrant,
has a rounded leading edge, and has a pointed trailing edge.



How do we assess airfoil performance?

A broad-brush approach looks at the airfoil performance as a whole, based on the drag polar and
measures derived from this — e.g. (C/Ca)max, (C'2/Cg)max, (CP/2/Cd)max. o
Used to compare/select airfoils.
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Finer-scale measures look more carefully to the underlying causes of specific performance aspects, e.g.:

1. Low drag (Cq) over design lift coefficient range (C));
2. Turbulent transition and drag (for laminar flow airfoils);
3. Mach number sensitivity (transonic drag rise);

4. Reynolds number sensitivity; w
5. Simple flap/aileron effects; design.

6. Surface waviness tolerance (to transition).

Inviscid methods for airfoil analysis and design



Thin airfoil theory
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Lifting solution — direct method — 1

Calculate Cp(x) for a cambered airfoil skeleton with zero thickness, y=yc(x). (Say chord c=1.)

strength to match the flow to the

MAE4409

recall for a discrete vortex

The aerodynamic characteristics are

o (z,0+) = j:%

local vorticity strength () s
y SHeng u 1 e aé

dl' =vydx U’(%O):—% ; 7(§)x_£
:0+ Cp = . recall Cp=1-—
N -0 <
— Ci= gz || e

The strength per unit length y(x) of the distribution of vorticity along the chord line
is now obtained by solving the flow tangency condition

dye .
Uso (a _— ) + () =0; with ~(1)=0
Kutta condition, i.e. u’=0 at TE

The final equation is

dye 1t d .
Uoo<a—d?;>—2ﬂ/0 V(E)x_5£=0; with (1) =0

this has to be solved for y(x) given the shape y..
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Lifting solution — direct method — 2
Solution: (by Betz)

1 [™ ~(0)sindde dye
Apply the mapping = = (1 — cos6) / 7(0) sin —a- Y («)
0

27Us cos —cosO(z) dz

Trailing
edge f—r—7n 7 —7—1— ﬂ edge

Leading

The vorticity distribution at a#0 is singular like 1/x, and is assumed to have a Fourier-type expansion

1+ cosf > .
Use the relationships
. . T -osnf do sin nf(z)

1 —1)0 ¢ 1)0] = sinnfsin / cos T =

5 [cos(n — 1)0 — cos(n 4 1)0] = sinnf sin and | cos0— cos0(a) T Sn0(2)
to obtai A —iA (‘osnﬁzafdyc(:c)
0 obtain 0 2 nC dr
Multiply both sides by cosm®, integrate from 0 to 1, obtain A, as

1 4 dyc 2 T dyc
—a— = A, == 0 0do
Ay=« 7T/0 iz (9)dé 7r/0 dx( ) cosn
So for any camber line we can obtain the full set of coefficients.
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Lifting solution — direct method — 3

Using the Kutta-Joukowski relationship L = pUs I’

1 1
L:/ pUsoy(z) dz: and MLE—/ pUooy(z) x dz
0 0
Lift
o

C, =2mAy +7mA; and
da

=27

Moment

o s A2
CmLE =3 <A0+A1 5 )

now using statics (and a small, C4=0) we had C,,, = C,,, — C, (% — %) so

(Zero for a symmetrical
section. i.e. A1=A>.)

™
Crmepy = 7 (A2 = A1) (independent of a).

These are two fundamental results of thin-airfoil theory.
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Lifting solution — inverse method

Calculate the camber line y=y(x) that produces a given pressure distribution Cp(x).

From
/ _ 1o dg
v(2,0) = — | v(f)x_g
Y
Cp - $K
we have
oy Lo dé
v'(xz) = o7 /. U(X)Cp(é)ri5

and the shape of the camber line is obtained by integration of the flow tangency equation

dye / _
Uso (a dm>+v(x)—0

as yc(x):afﬁ‘i‘/m#d&
0 [e’e]

= MONASH University

~  Engineering

MAE4409

Non-lifting solution — direct method

Calculate Cp(x) for a thin symmetric airfoil with a thickness distribution y=+y#(x)/2.

y,®) Y, (x+dx)

(i) Airfoil surface is a streamline — by -
I

definition no flow crosses a streamline. Uy + u'(x+dx)

.

(ii) Flow internal to the streamline is
created by source-sink distribution,

A % f % A
local strength m.

dy mdx
Conservation of mass: m = 2Uood—t
X

Recall for a discrete source or sink:

The aerodynamic characteristics are:

T r—£
V' (z,04) = :I:%
2u’
C,=—
p Uoo
A
For instance, for an elliptic airfoil: Ur = i%

yr = Tty/x — (¢ — )
dy, t c—2zx

dz 2 V(e —x)
Cp=—-2t
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Non-lifting solution — inverse method

Recall: C), = —IQJ—UI

This amounts to solving the equation: / UO:O ¢ dy, e
2 [ody, . de w@0) === 3O

Cp(x):_; o dz Tx—¢

Calculate thickness distribution y«(x) that gives Cp(x).

which can be done using Fourier series expansions for both y: and Cp or, using a result by Betz, by

direct integration of
dy, 1 (¢ §(c—¢) d¢
e SR Ea:

dx_% 0

Riegels’ correction
The velocity distribution given by the theory,

uo_ g L[ due g d€
Uoo_1+7r/0 d:c(g)x—f

is very inaccurate near rounded LEs, where dyi/dx—e, as then does u.
Riegels proposed a correction for the velocity which works for thicker airfoils

—1/2
u o dy. 1? 1 £ dy: d¢
U —{” {dx} } (1%/0 m%g)

The first term (the correction) = 0 as dyy/dx— .
MAE4409
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Discrete direct methods for thin airfoils — 1

Now consider the discrete equivalent to finding the direct thin-airfoil continuum solution: given a camber

line of arbitrary shape, determine the vorticity distribution, lift, moment,,,

1. Break the chord line up into N line segments. We place a discrete vortex of strength I at the 4-
chord point of each segment and a control point (where we determine velocity) at the 34-chord point.

fe— c >
-.»{ Ax F—
L— |o x|0 x,o x]o xlo y’x’o >(|o xjo " x [
o |
| AT
—T/_;o:.—» \ | |
Vortex H}’ Control
element N pomt_
at J | at g
|
Vortex | Control
| point
' atLCj

element {
I

H . A

|
N tl S
A ﬁ Yig
je——Aax >
|

Resultant velocity
at point

2. The downward velocity induced at the ith control point located at xci by the jth discrete vortex of

strength I located at xv; is o
vl = L (recall ug = I % for potential flow)
B om (e — avy) T T omr s P

NB: vortices and control points are located on the chord line, just as in the continuous case.



Discrete direct methods for thin airfoils — 2

3. The vector sum of the total induced vertical velocity and the oncoming flow has to be tangent to the
camber line at each control point location /, as stated by

N
Each control point i generates Z L — U |- dye.
one equation. = 2mfze; — wvj] * dz

} This is the discrete version of
i the flow tangency condition.

4. This gives N simultaneous linear equations that we can solve for the unknown I’s.

5. From these we can obtain lift and moment coefficients, etc:

N
2
Cl = E Fi, CmLE = _7(]0002 E :L”UZ‘Fi, Cmc/4 = CmLE+Cl/4
! 1=1

6. These converge to the continuous solution as N—c.

0.090 B T T T ‘ T I | T

0.10 Circular arc airfoil —
[ SRt } . In fact for the particular locations of

vortex and control points used, we get
— the exact Cj, regardless of N (including
N=1, i.e. just one vortex), provided the

camber line is continuous at 0.75c.

Numerical solution

Moment coefficient
=]

B Theoretical value < 0.1257

L l‘ 1 1 1 ‘l I
2 4 6 8 10 12 14

Number of segments for numeral solution

Easy example: flat plate

Single discrete vortex element

U,

N * X

0 0.25¢ 0.75¢ o]

Velocity induced at collocation point

r.
v = 4 » v =T/2m(0.5¢)

B 2 (we; — wvy)

Flow tangent to flat plate

vV =Upa — I'=nUyac

Lift coefficient

2
= I' =271«
Usc
This result matches the theoretical result, but this only occurs with this trivial example. A higher number
of vortices and control points is usually required for different cambers.
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2D Panel Method: direct method — 1

Now we consider the problem of directly computing the potential flow without thin-airfoil assumptions.

1. We consider potential flows governed by the Laplace equation with ‘no flow through’ boundary
conditions at surfaces. Q

s
V26 =0 in V-n:g—¢:0 on K Q
U

Qp

(e8]

2. Also we have to satisfy the Kutta condition, so that the flow leaves tangentially at the TE, or, if the TE
angle is finite, at the average tangency.

3. The solution is obtained by linearly superimposing basic solutions, for example vortex flow, which

has (in r-8 polar coordinates):
r r Tr

qﬁ:—%ﬁ, 1/):%11’17", Vg = ——3 'UT’ZO.
4. Assuming a distribution of vortex sheet strength y(s) along the perimeter length s of the airfoil, the
velocity potential at any location corresponding to an incidence a is

¢(x,y) = Uso(zcosa+ysina) — % 5157(3) arctan (yy(s)> ds

x —x(s)

s) (x.y)

Y(s)

2D Panel Method: direct method — 2

5. To calculate the integral approximately, divide the airfoil surface into N discrete panels, with
piecewise-linear distribution of vortex sheet strength

Y(s)

a ‘\S»’
%@* |

The vortex sheet strength on a single panel is

s,
v(s5) =3 + (Vj+1 — %‘)fj_

J

6. We add up all the contributions to velocity potential and then differentiate to obtain velocities.

7. By imposing zero flow normal to the airfoil at a set of N control points we obtain N equations
N
Y Kijy; =Us-ni i=12,...,N
j=1

Here we have N equations and N+1 unknowns (values of y;). The influence coefficients
Kjj are obtained from the integrals above.

8. An additional equation that closes the system is obtained from the Kutta condition by adding an
equation for the TE strengths

71+ YN+ =0

In continuum mechanics, panel methods are called ‘boundary element methods’
— a special kind of finite element method.



2D Panel Method: direct method — 3

Details for linear-strength vortex panel (Katz & Plotkin chapters 10, 11, Kuethe & Chow chapter 5).

1. Start in panel coordinate system, vortex sheet strength y(x).

Z A Z2
Y(@) =0 + 1z —21) 2,72)=— 2 tan~! c dx
Yo +71(z — 1) (@ 2) 27 J,, T — T 0
RER 1 #
o ~ o . xo tan P dxo

2. Integrate to obtain:

\
o) == 2 [l - (2) - - wmptant (2 ) S =02
5

2r T — T T — To (x —x9)%2 4 22
v [zz. (2—21)? + 22 p?—a? -2 z x?—x3-22 z
- 2= = = . S - t

o {2 (@ —22) 1 22 (1 — 22) + 5 an P 5 an P

r1 =/ (v —x1)? + 22, 6; =tan~! ) ) ) )
T 4. Differentiate the velocity potential to

3.Let 1y = \/(z—x2)2 + 22, 0y = tan~! —= obtain panel-induced velocity components

T—T2 (up, wp) at control point location (xc, zc):

Ya = "0, Yo =70 + 11 (22 — 1)

+

_ R <’Yb - 7(1) lnr—Q ’Va(x2 - CL‘1) + <7b — ’Ya)(fl?c _ $1) (02 — 01)7

Up 27 \@e — 24 o] 2m(xg — 1)
wp:%(mz—$1)+(%—%)($c—$1) 2y Fe (=0 T2 201 4 (61— 6y)
2m(xg — x1) r o 27 \ a2 — 21 Ze

2D Panel Method: direct method — 4

5. We need N panels to cover the airfoil. In general, for the jth panel, we can use the substitutions
Ya=Vj, Yo Vj+1, X172 X, X2 Xji1, 016, 622841,

6. The velocity components (up, wp) were derived in the panel coordinate system. We need to transform/
rotate both the given end points (x;, z) , (xj+1, Zi+1) for any panel as well as the collocation point of interest
(xi, zi) from global to local coordinates, then transform the velocity components at any collocation point
location back to global coordinates. Use direction cosine matrices:

__|cos@ —sinf| [z
" |sinf@ cosf z

7. We can break the collocation point velocity (u, w)(x;, z) induced by the distribution of vorticity on
panel j into two parts, each with a triangular shape function:

Vi

(i) (ua, wa)(xi, z)) < part related just to y; Vit
(i) (ub, Wp)(xi, zi) + part related just to yj.1
T; Lj+1
8. Then implement all of the above via a subroutine that takes the jth panel end-coordinates (x;, x;) and
(xj+1, zi+1) and the location of the ith control point (x; zj), and returns the global-coordinate velocity
components (ua, wa)(xi, zi) and (ub, wb)(xi, zi) given unit strengths y; and y;.+1 for the panel-end vorticity
distribution.
procedure vort2dl (real x1l, z1, x2, z2, // -- panel-end coordinates

(real xXc, zc, // -- collocation-point coordinates
(var real ua, wa, ub, wb) // -- output velocity components



2D Panel Method: direct method — 5

9. At the first control point there will be contributions from each of the panels:
(u,w)1 =(ta, wa) 1,171 + [(Up, wp)1,1 + (Uas Wa)1,2)72 + [(Us, wp)1,2 + (Ua, Wa)1,3] 73+
oo+ [(up, wo)1,N -1 + (Ua, Wa)1,N YN + (Wb, W) 1, NYN+1
And for the ith control/collocation point:
(1, w)i =(ta, wa)in Y1 + [(Us, wp)i1 + (Ua, Wa)i 2V + [(Us, wp)i2 + (Ua, Wa)i 373+

o [(ups wy)i N1+ (Ua, Wa)i, N]YN F (Wb, Wo )i NYN 41
N
=(Uq; Wa)inm + Z[(Ub,wb)i,j—l + (tas wa)i,j17j + +(wp, wo )i, NYN+1
j=2
N+1

= Z (u, w); j7v; This is one of a system of equations (a row in a matrix).
j=1

10. We want the not the velocity at the control points but the panel-normal component of the velocity
(which we will set to zero): K, ; = (u, w); ; - n; where n; is the unit outward normal at control point /.

11. For each control point, the sum of the induced normal velocities has to be equal and opposite to the
normal component of the free-stream velocity, Ue=(Uc, We): RHS; = —(too, Weo) * M

12. So far there are N equations but N+1 unknowns. The Kutta condition gives closure: 71 + 7n+1 =0

13. Finally we have: [K;; Ko ... Kinii " —(Uoo; Woo) * M1
Ke1 Kap ... Kanii V2 —(Uoo, Wo) * T2

. . — . which we solve
) for vi, ..., YN+1.

‘Influence coefficient’
matrix :
Kni Ky2 ... Knnt1 YN —(Uoo, Woo) * N
1 0 1 YN+1 0

2D Panel Method: direct method — 6

14. Once all the vorticities are known, the tangential velocity at each control point can be found:

Utj = (oo, Woo) + 5 + (v +7j41)/4  where t is the local panel tangent.

15. From this we can compute the pressure coefficient, contribution to lift, etc:

2

Ui Vi + Y4
Cp,jzl—U;; ALj = pUs 2 2J Ac;

16. The solutions converge as we increase the N, the number of panels:

-4.0(—
NACA 2412 airfoil

a =

@ 12-panel solution
-3.0 O 48-panel solution
— 120-panel solution




2D panel method example — 1

Linear vorticity distribution in diamond airfoil

4 panels — 5x5 coefficient matrix

panel coordinates

(1,0)

(0.3,-0.05)

(0,0)

(0.3,0.05)

% MONASH University
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(uaa wa)l

(1,0)

control point

(0.65,-0.025)
(0.15,-0.025)
(0.15,0.025)
(0.65,0.025)

v

normal vector

(0.0712,-0.9975)
(-0.1644,-0.9864)
(-0.1644,0.9864)
(0.0712,0.9975)

2D panel method example — 2

Create first row of matrix
corresponding to P1

call vort2dl to obtain
velocities in global coordinates

(uba wb)l

(-0.2606, 0.1409)

(0.0015, -0.055)

(-.0038, -0.0444)

(-0.234, -0.112)

-(0.238, -0.1766)

(-0.0004, -0.0448)

(-0.0077, -0.0539)

(-0.2201,0.1413)

Sum to obtain (U, U) 1,5

(-0.26086, 0.1409)

(-0.2365, -0.2316)

(-.00384, -0.0892)

(-0.2347, -0.1659

(-0.2201,0.1413)

Project onto normal vectors Ki,j = (u, ’U)m' 17

Ky -0.1592

0.2141

0.0887

0.1482

-0.1566




2D panel method example — 3

Similarly for the next 3 rows

Assembled influence coefficient matrix

-0.0988 -0.3339 0.3081 -0.1892 -0.0956
0.0956 0.1892 -0.3081 0.3339 0.0988
0.1566 -0.1482 -0.0887 -0.2141 0.1592

Last row of matrix corresponds to Kutta condition y1 + 5 = 0

2D panel method example — 4

Symmetry properties stem from airfoil symmetry.

-0.1592 0.2141 0.0887 0.1482 -0.1566

-0.0988 -0.3339 0.3081 -0.1892 -0.0956

0.0956 0.1892 -0.3081 0.3339 0.0988

0.1566 -0.1482 -0.0887 -0.2141 0.1592
1 0 0 0] 1

Generate RHS vector by projecting free stream velocity onto normals — (U 00 3 Woo) -1,

b 0.016 0.2497 0.0778 -0.1579 0
Solve linear system K~y =b
'}/ -0.8862 -0.9905 0.4848 1.233 0.8862

Compute velocities in panels

Compute pressure coefficients and lift

C; = 0.53884

Cpj=1-

Utj = (Uoo, Woo) =t + (v +7j+1)/4

2

Uz’

o0

U2 .
b . ALj = prMch

2




2D Panel Method: inverse problem

Find the coordinates (x;,y), j=1,...,N of points on the airfoil surface that produce a given distribution
of pressure/velocity (i.e. vorticity)

Say we are given the pressure distribution on all panels, Cp,;. Since the average tangential velocity

perturbation on each panel is half its average vorticity (as for thin airfoil theory), we have, for linear

vorticity distribution ) o/ is the panel
. 2 . . J

Uss cos(a + ;) +0.25(7; + 7j41) j=1,...,N  arelativeto

Uso chord line

Cpj=1-

7+ nv+1 =0 Kutta condition at TE
which could be used to find all the vorticities provided we know the gjs (i.e. the airfoil shape).

However, the influence coefficients Kj; are nonlinear functions of the coordinates (x;y;). The solution
requires an iterative procedure.

Method of Kennedy and Marsden, J Aircraft 15 1978 (fixed point iteration):

The ordinates xj; j=1,...,N are given, and starting from an initial guess (a ‘seed airfoil’) y/(0); j=1,...,N,
the iteration for the y-coordinates is

1
cos o

(n+1)
Y; = U

N
; wo+ZKi(jn)vj + 2 tan o

j=1

This is iterated until the coordinates converge.

Boundary layer (BL) modelling



Key ideas of BLs for wing design

1. We are mostly interested in the time-average BL behaviour because we can’t afford time-varying
computations (DNS and LES) in design.

2. BL PDE equations are simpler than the Navier-Stokes equations from which they derive and are
parabolic rather than elliptic in nature. That opens up cheaper computational methods if we
know the external flow speed/pressure.

3. BL equations are inherently nonlinear, as opposed to potential flow equations for the attached
outer flow, which are much cheaper to solve at required accuracy.

4. BLs both laminar and turbulent have some key self-similarity properties (i.e. dimensionless shape
invariance w.r.t. downstream distance) that we often seek to exploit.

5. BLs usually/typically start out laminar at the LE and make transition to turbulence some distance
downstream, changing the BL equations from laminar to turbulent types. We have to be able to
predict transition and change gears from laminar to turbulent, as we march downstream.

6. Mesh-based (finite difference/volume) methods for solution of BL equations are typically still too
expensive for airfoil and wing design in design-office scenarios. That forces adoption of wall-
normal-integrated BL approaches, which converts BL PDEs to sets of ODEs. These are the basis
for most design-office airfoil BL computations (e.g. in XFOIL).

7. Inthe end we have to couple up the BL solutions to the outer flow solutions, as the BL growth
changes the external flow speed distribution. That coupling is known as viscous—inviscid
interaction (VII), which is where we head to after learning how to compute BLs.

Analysis of boundary layers - time-average

1. Introduction to BLs: laminar and turbulent flows, transition.

2. BL analysis: simplifying assumptions, formulation and solution methods.
i) differential form

ii) integral form

In the flow past an airfoil, viscous effects are mainly confined to a thin layer close to the
surface of the airfoil (the boundarv laver) and its wake.

Far Wake
Transition - V

Stagnation

point Laminar flow Turbulent flow

-

- ? 1}

Transition

Figure 4.1: Boundary layer and wake development on a typical airfoil, shown by the u(n) velocity
profiles. The layer thicknesses are shown exaggerated.

Two important points about BL pressure

1. External to the BL, the flow is effectively inviscid and we can use Bernoulli’s equation.

In streamline (s) coordinates external to airfoil, Poo + %PV; =p(s) + %Pui(s) = const. ds

2. Since airfoil boundary layers are typically very thin in relation to their radius of curvature ~0

l.e. BL pressure is that in the external inviscid flow just outside BL,
related to flow speed gradient, and constant in wall-normal direction.




Boundary layer modelling: PDE form

For 2D steady/time-average incompressible flow, with u ~ Ue, p ~ pUZ, s ~ ¢, n~§
assuming ¢ < ¢, Re > 1, then 9/dn > 0/0s and the N-S equations simplify to ‘BL equations’:

ou  Ov
£+87n:0 du v _Lop
ou ou Op  OTss  OTsp g—‘_%zo pOs
f’(“as“an)“as* os " on = ,0u, 0w_, 00 107
(42 4a20) = 00 O O e
0s on on 0s on 8Z:0

Important: unlike the NSE and potential flows, which generate elliptic PDEs,, the BL equations are ‘parabolic’
PDEs and are integrated/marched forward in s, given an inlet/LE BC. Also, we must be given Ue in advance.

. _Ou 101 _ 0%
Laminar flow T=Hes so that pon Vo2
0 E— _
Turbulent flow 7= ,ua—z — pulv’ and we need a model for the Reynolds stress u/v’

We will revisit this point in a few slides along.

For the laminar case, assuming the two terms on the RHS of the momentum equation scale like (~)

ou, U2 1or  d*u U, - Lo Uz,
U, 5~ and pan Vo3 YV and are of similar magnitude: s V5
weobtain O~ [ e = > or o1

U, v Re, S v Reg

Finite differences (FD) solution of the BL equations

We note that in principle, solutions to both laminar and turbulent mean-flow BL PDEs can be
approximated numerically using grid-based methods (e.g. finite differences). (In practice this is
rarely done owing to expense of calculation.)

Reminder: since the BL PDEs are parabolic in nature, they can be ‘marched’ downstream, starting from initial
upstream data.

Here is a simple method that employs forward differences in x and central differences in y:

PDEs: FDEs: A single streamwise
u@ v@ _ 1dU? u@ Loy Mg UG Uige1 Wiy step consists of:
Ox dy 2 dx Oy? I Az I 2Ay .
9 5 1. March this in x to
Us |i+1 - U; |l Ug o1 — 2Ug 5 + Uj 1 obtain ujs1,; from uij.
2Ax Ay?
Ou 0 - ety T Wiy Uikl Yiljol 2. March this in y to
dx — dy Az Ay obtain Vi1, from vie1,j-1.

S

Marching direction BL edge

y — Y
Ay ] L L]
. S
X
/ = Computational stencil
Stagnation Ax

Aerofoil



FD: difficulties

1. Requires a (good) solution at the inflow to be known (e.g. Hiemenz stagnation flow)

2. Stability: this particular FD approximation is explicit and for stability requires

. 2 2v
M and Ay <
2v |Umax|

Az <

Problem: umin approaches zero near the wall and this imposes severe restrictions
in the size Ax. Reducing Ax increases the cost.
Solution: use an implicit method, more complicated, but stable.

3. The location of the BL edge (largest §) must be known (or guessed) for mesh design

4. Unsuitable for separated flow: recirculation does not allow for a marching direction

In practice, wall-normal integrated forms of the BL equations (which produces ODEs from

PDEs) are typically used for modelling aeronautical BL flows, instead of discretising the BL
PDEs and solving them on a grid of points. The wall-normal integrated forms are what we

use in practice.

But first, we visit the idea of self-similar BL solutions, that seek to exploit the idea that the
dimensionless SHAPE of the BL profile is either invariant, or just slowly varying in the
streamwise direction.

Similarity solutions for laminar BLs— 1

n Self-Similar Flow
! Ue(®) ~ $° 3@ ~ st 1. Consider the laminar zero-pressure
= | = B=H" gradient (ZPG) BL (with Ue = const).
=== e This is described by
‘v‘: n/d o ~— same U(n) profiles ou ou 0 ou ou aQu
EEE % om0 "as e Vo
7 o/ o7 Ulsm) = uluc

2. We know from order of magnitude analysis that the BL thickness 6~(sv/Ue)'2. The BL profile
does not change shape in the streamwise direction when scaled w.r.t. §, i.e. u/Ue = function(n/6).
Instead of (dimensionless) n/d we could use n = n(Ue/2vs)1/2; the 2’ for convenience later.

3. Next we introduce the streamfunction % = [ udn|s—const which should increase with & (i.e. as
more fluid is entrained from the freestream into the BL), or equivalently with s72.  We write

U = (2vUes)/2f(n) which is the dimensionally correct way of describing it in terms of n. Recall that
with u = dy/dn and v = -dy/ds the flow will be incompressible. The velocity components are:

1/2
v= G =t v=-gi= () w0 0=

4. Upon substituting these forms into the
momentum equation Blasius (1908) obtained

flll +ff” — 0

which we note is now an ODE rather than a PDE.

Symbol Re, X 1076, |

+ 0.85
The equation is solved subject to the BCs 5 093
a 0.82
f0)=f(0)=0,  f(o0)=1 S fe b
. m
The (numerical) solution to this equation | L.

agrees well with experimental results.



Similarity solutions for laminar BLs— 2

5. Faulkner and Skan (1931) showed that Blasius’ similarity solution can be generalized if the freestream
velocity Ue is a power-law function of s, i.e. U,(s) = Ks™ in which case the similarity variable 7 = Cns®
with m = 2a + 1. Blasius’ ZPG solution is the special case for m = 0.

Lo . d
The external pressure gradient is required to be d—p = —prT
S S 1/2
oo . . 1
6. The similarity variable n now contains the exponent m: n=y <m;Ue>
Vs

7. The result corresponding to Blasius’ ODE is the Faulkner-Skan equation

2m =
" " 2\ — b
"+ ff"+pB0—-f°)=0, where 0 o
BCs are as before: f'(0) = f(0) =0, f'(c0)=1
8. The equation is solved numerically. Stewartson (1954) o

pointed out that for B < 0 there are a number of solution
branches, some of which provide reversed flow near the Y=y rz_‘i
wall (see e.g. two different solution curves for 8 = -0.16).

50
Incipient flow separation corresponds to 3 = -0.19884,
while Blasius’ solution corresponds to 8 = 0.

A key point is that we have generalised the (Blasius)
similarity solution for the zero-pressure-gradient BL,
giving self-similar/equilibrium BL shapes as a function
of pressure gradient and local skin friction coefficient.
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u
u,

Modelling of turbulent BLs

1. Turbulent flow is chaotic/random, complicated, and varies in both space and time. Unlike some
laminar flows (e.g. Blasius BL), turbulent flows cannot be solved in closed form.

2. Analyzing/modelling turbulent flows for engineering design is based in statistics and turbulence
models that attempt to model fluctuating quantities in terms of their mean values.

3. BL turbulence (i.e. in attached BL flow) is somewhat easier to deal with than the general case.

4. Propose that any quantity can be decomposed into a mean value and a zero-mean fluctuation:

1 [T - —
u=u+u U= T / udt The mean of a product:  wo = (u+ u')(T+v') = w0 +u/v/
0
: . , . ., Ou  Ov
5. Noting that with the incompressibility constraint s + I 0 we have
) ) ) ou ou Ouu Ouv
6. Now we can write the time-mean BL momentum equationas v —+v— = —— + ——
0s on 0s on
auu_l_%f 8Ue+ﬁ@ N ﬂ@-i-@@* 8U€+H@ ou'v’
ds  On  “0s  pOn? ds  On  “0s  pon?  On

7. The quantity pu/v’ is called a Reynolds stress in honour of Osborne Reynolds.

8. Trouble: the equation set is no longer closed because we introduced this new variable. The task of a
turbulence model is to guess a relationship between the Reynolds stresses and the mean velocities,
thus closing the set of equations.

@
on

ou

9. The simplest workable approach is the mixing length model (due to Prandtl): —u/v/ = I« n
n

10. For a turbulent BL, [,,;x = xkn where « ~ 0.4 is the von Karman constant.

u
In this case we have T(s, n) =T+ T = (,u + ,ut(& ”)) "

on



Laminar vs turbulent BL

Laminar Turbulent
H=26 nl H=14
n Drela
. wall layer
u TR u W+ - g

Figure 4.5: Comparison of laminar and turbulent flat-plate velocity, viscosity, and shear profiles.
The shape parameter H is introduced in Section 4.5.

The key feature which makes turbulent boundary layers so different is that y; is large relative to 2 over most
of the turbulent boundary layer, but falls linearly to zero over roughly the bottom 20% portion called the
wall layer. Here the total stress 7 is approximately constant and equal to the wall shear stress 7,. Hence in
the wall layer Gu/dn varies roughly as 1/n, and therefore u(n) ~ In n. The variation of all the quantities in
the wall layer can be summarized as follows.

T(n) &~ Tw ~ const.

du / n = fls), = (assuming ;2 < p1z) Durbin & Pettersen Reif
e t
\ 40
-] R(,: 1,500 'nr
4 Ry=3,200 S
8 Ry=11,000 i .
This is a robust feature of equilibrium turbulent SR p—— PP i
boundary layer profiles: they have logarithmic =20 M
shape over some portion (close to the wall, but .
not at the wall). True for all kinds of external A *
¢
pressure gradients (see e.g. Coles 1956).  [....... .. N e
law of wallioveriap (Iog) % law of wake 7/
0+ ; ; -
10° 10' 102 10°

Y

Self-similar turbulent BLs

Just like laminar BLs with carefully controlled external pressure gradients, turbulent BLs can take
self-similar (a.k.a. equilibrium) shapes for zero, adverse and favourable pressure gradients of
suitable streamwise variation (Clauser 1954).

In this case the appropriate form of the dimensionless velocity profile is the velocity defect
normalised by the “friction velocity’ which is a measure of the wall shear traction tw. We plot

n
At = U1 = Uels)  where ur = /= vs  (s,;n) = (
Ur

Band G are
parameters of the
self-similar shape,
pressure gradient,
skin friction.

B =0 gives the
standard ZPG
turbulent BL.

B > 0 corresponds to
an adverse pressure

gradient while 8 < 0
il j j | ] I ] corresponds to a
B /i U U . % 25 20, 45 0 5 0 favourable gradient.
0 0.2 04 ¢ 06 08 1 Au”= (u-u,)lu,
Drela Au+ (0) _ 3

Cf



Defect integrals and thicknesses

In the following, ui is the inviscid external inviscid flow speed ue carried down to the wall.
And ne is the wall-normal distance to the edge of the BL.

Mass flow comparison  between the true viscous flow and the “equivalent inviscid flow”

Same Captured Area Same Captured Mass Flow

e M= Met——=3

- M.
b uj Defect - Ui
== |
U(n) -

Ne
mass flow rate per unit span m = /dr’n = /pudn
0

Il
S
- ¢
(]
[
(]
o
S
|
3
~~
>
I
[
|
o
]

or 1h=7'ni—m

e
where m = / Pelle AN = pelle Ne
0

Te

m = (Pette — pu) dn = peute 8* mass flow defect
0. o
and & = / (1 - ) dn displacement thickness
0 Pelle

Defect integrals and thicknesses
Momentum and kinetic energy flow (force and power) comparisons

momentum kinetic energy

extractor extractor Same
(barrier)  (turbine array) Captured Mass Flow
Ue § = ) Ue )
nto——s ] E e t=——3 E;
i =
! w
— 3 ré
utn ' e

Figure 4.3: Comparison of actual and EIF’s momentum flow and kinetic energy flow, for the same
mass flow. Momentum flow is equal to the force on a hypothetical barrier which brings the fluid

stream’s s-velocity to zero. Kinetic energy flow is equal to the power from an ideal turbine array
which brings the fluid stream’s velocity to zero reversibly.

MNe Ne e Me
momentum flow F = /‘u dn = / pu’dn = / peu? dn — u._./ (pete—pu)dn — [ (ue —u) pudn
per unit span 9 e 2. 4 g

= Pellg e — Ue(peled”) — peuich

) Tle e TNe e

energy flow per unit E = /%u2 dim = [ jpu’dn = /%peug dn — %ug/(peue—;m) dn —/é(ug—uz)pu dn
span 0 o . & o

= ;peue Ne — %ue(Peuea‘) = %peugo*

E=E -K 4.8)

Drela

Drela



Defect integrals and thicknesses

Integral defects and associated thicknesses

Ne
P = / (ue —u) pudn = peu2d (momentum defect)
0
Ne
K = / L(u2—v?) pudn = Lpeudd®  (kinetic energy defect)
0
MNe
6 = / 1- E) e dn (momentum thickness)
0 Ue ) Pelle
Te u2 pu
6 = / (l - —2) n (kinetic energy thickness)
0 Ug ] Pelle
For incompressible flows, the thickness quantities u
are just functions of BL shape. If pe = p: U = s

6*

/One(1 —U)dn

6 = /”(U—Ul")dn
0

n Typical for a detached
' shear layer.

|

o ~ thickness of
& shear layer
Y

i distance to

Drela shear layer
0 U 1
Figure 4 .4: Interpretation of the integral thicknesses for incompressible flow, in terms of the geom-
etry of the normalized velocity profile U =u/u,, and also U? and U®. Since the horizontal scale is
dimensionless, the areas have the same length unit as the vertical n axis.
Boundary layer equations
Using the thin shear layer TSL approximations v € u
Ou Ou Tas T 0 7
e << o = e 88 sn ~
ds ba leads to T [TM — = 0
?B ~ 0
on
and the boundary layer equations dpu 3 dpv == @ continuity
ds on
D du, ou Ou du, or
2~ —_€ —+po— = Ug—— + — s-component momentum
recall 95 Pelle 1 Puas Pvan Pelle as B p
T = (u+pe) @ (this form for turbulent shear
on stress is an approximation only)
with boundary conditions atwall, n=0: u=0, v=0
atedge, m=n;: w=1;
recall
Laminar Turbulent
H=26 n| H=14 [ 5
| |
n ‘
[ H=—>1
[ 0
[1
|
[
||
[ | wall layer pres
u TR u TR 1 '

Figure 4.5: Comparison of laminar and turbulent flat-plate velocity, viscosity, and shear profiles.



BL response to pressure and shear gradients

Response to streamwise pressure gradients

Favorable pressure gradient
—_— |- -

dp <0

N ds

——- -

U(n)

£ fluid element

Adverse pressure gradient
e = -

dp
e >0

— | -— -l

changed
shear profile
shape

un)

possible flow reversal ="
As -

T(n)

Figure 4.6: Velocity changes Au along streamlines resulting from a favorable or adverse pressure
gradient which applies the same accelerating or decelerating net force per unit volume to all fluid
elements. Slower-moving elements have a larger Au, resulting a distortion of the velocity profile.
A sufficiently strong adverse pressure gradient will cause a flow reversal and boundary layer sepa-
ration.

Response to wall-normal shear gradient

< fluid element

Nec. g 53
nf— ® 5 =0 .
\
= T
W 3 <0—
un) T(n) S \ Drela
- _I:T on .. - T(n)
I As
Figure 4.7: A transverse shear gradient produces a net streamwise force per unit volume which
tends to “flatten” the velocity profile, and results in an overall growth of the boundary layer.
(Wall-normal) Integral BL relations - 1
The integral momentum analysis begins by combining the continuity and s-momentum equations as follows.
d pu dpv
(Ue—u)[ e —0]
u u due or Drela
B [P‘“a T a—n]
0 0 du, ar
Bs [(ue—u)pu] + on [(ue—u)pv] = —(pette—pu a5 hn 4.25)
Integrating [ equation (4.25)|dn term by term then gives the dimensional form of the von Karman
integral momentum equation,
d . due
d_s (peuge) = Twii— Peue5 E (4.26)
: dpP . dp
(recall momentum defect P):  orequivalently il ) o 427
de 0 d H = s shape parameter
Dimensionless form: A [ (H TH M2) Rt where -0 pep o
ds 2 % 5, ds Tu o )
o= ——= skin friction coefficient
2 Pells
U,
M, = a—e edge Mach number
e
Incompressible flow: Lde ¢ 0 du c 0* + 26 du
P T_Y gyl 0 TN
- ds 2 U, ds 2 u, ds

Potentially we could integrate this in s using 6 to get ue or vice-versa, given ct...



(Wall-normal) Integral BL relations - 2

An equation for the kinetic energy is obtained by multiplying the momentum equation by the velocity u.
The mass equation is also incorporated to put the result into divergence form as follows.

9 a
bod-)| T G - o]

- o N
P08 T PR P on
a 7] due or
== [% (uz—uz) pu] - = [%(ug—uz) pv] = —u(pe—p) Ueqs T %3, (4.30)
Integrating fon"[ equation (4.30)] dn term by term gives the dimensional integral kinetic energy equation,
d * b dtle
= (3peud0*) = D — peuls T 4.31)
: dK i ld
(recall kinetic energy defect K):  or equivalently A D + ued d—z 4.32)
MNe p u
™t = / (1 e p_) u—e dn density flux thickness ( = 0 for incompressible flow)
0 e
where e e 2
D = /0 T Z__Z dn = /0 (#+#t) (g:") dn dissipation integral
do* 2H** 6* d « - @ -
Dimensionless form: I T (- S YV ) H =7 kinetic energy shape parameter
ds H* ue ds
H* = 67 density flux shape parameter
| ible f 7 ey — g due i d ff
ncompressible flow: =2cp —3— ' = issipati i
pressi W e D w. ds ¢ T issipation coefficient
Integral defect evolution
Momentum defect Kinetic energy defect
ffdP due 4 / ‘[dK ,
A{Q = 'rw—ma}ds A ds’ = D ds
P = / Tw ds’ + / -m (:;f ds’  (on airfoil surface) K(s) = /0 Dds (on airfoil surface)
0 5 0 s
B = Bl / —m 3% 4¢ (in wake) K@ = K + [ Dds'  (inwake)
STE ds’ STE
D) —— e
Ue (s —— K(S) D
m(s') — i
Tw(s) J —=TF6 Kie Ue (")) K(s)
=4 = P m@) " P(s) Drela
- g T 4 | Au
= 2 '
K(s) S s

P(s)

Figure 4.8: Momentum defect P(s) at any location s, including in the wake, obtained as an integral
over upstream 7y, ™M, Ue(s’) distributions. Kinetic energy defect K (s) is obtained from upstream
D(s") distribution. Far-downstream wake’s P.., K, are related to the airfoil’s profile drag/span D’.



Integral defect evolution, contribution to drag

pV,f X 0.012
- SAW-1 001 |
{ Re = 2.000-10°
‘ ¥ T Ty- m du, /ds,
5 83 0.006 |3} D/ Ve
| 3 owofd [P
IO O (] N .
0
+ e
-0.002
0,004 surface | wake
pVsc x 0.007
! 0.006 &
e T 0005 /_;,t* D
e i K/ Ve
— — 0.004 v
Drag force per unit span D’ 0,003 |- KiVa 7~ Pk
wl || A w1
du 0.002 o friction
) = = p S8 ~
D= P —/'rwds+ mds ds e :
airfoil airfoil+wake n ] surface | wake
0 02 04 06 08 1 12 14 16x¢C
and since Figure 4.10: Distributions of boundary layer parameters for upper surface and wake of GAW-1
K = P V airfoil at a=5°, Re=2 x 10°. Transition occurs at s ~0.2c, where 7, and D increase sharply. P
= 00 and K/V., in the far wake asymptote towards the profile drag/span I)’. The jumps in P and K at

the trailing edge are from the bottom surface’s P and K (not shown) adding to the wake.

Drag power per unit span D'V,

DV, =K, = D ds
airfoil+wake

Simple BL modelling: integral form — 1

1. Integral-type approaches are comparatively simple and were the first successful methods
for general boundary-layer flows. They are based on wall-normal integration of the BL momentum
equations, as originally proposed by von Karman in 1921. (Converts PDE into ODE.)

2. It is helpful to have integral measures of boundary-layer shape. The two most useful ones are
the boundary layer displacement thickness 6 and momentum thickness 6.

&*: thickness of a layer of zero velocity producing the same volume-flow deficit as the BL

O: thickness of a layer of zero velocity producing the same momentum deficit as the BL.

H =259 (Blasius BL)
23 < H <35 Laminar BL
1.3 < H < 2.2 Turbulent BL

Their ratio H = 6*/6 > 1 is a useful dimensionless parameter of BL
shape.

= Ty
0F = 1—— 1] d Shaded = f
/0 ( U@) Y areas: |||||||”||= 6 cf = Tw 2% porteigﬁe
0o %pUg ds gradient
u u
/0 Ue < Ue) Y H = 6— >1
0 4 T r— y 0
0 Coordinate normal to the wall
3. Start with the BL equations
ou + v _ 0 continuity
or Oy
Ou Ou _ U, oU. 107 momentum

“%“’ay % O + p Oy
4. Subtract (u-Ue) x continuity from momentum to get
107 0

ou. 0
o + @(UUe — vu)




Simple BL modelling: integral form — 2

5. Now integrate to « in y direction, note that 1..=0 and allow a transpiration velocity vw: —
This is useful in

Tow d [ dUu, [
wo_ = U, — d U, — dy — Uevy, .
Ty u( u)dy + g /o ( u) dy v later developments

6. Substitute in the measures 6* and 0, rearrange:

Tw Cf do 1 dU. Vo
— =2 = — 4+ (20+0")— - =
pU?2 2 dz +(20+ )Ue dz U,

or, with transpiration velocity vw=0 and some more rearrangement:

Cy do 0 dU. Have converted a PDE to an ODE

o T a +(2+ H)Fe dz by integrating in one direction.

Given Ue(x) and information about BL shapes, we can integrate this to obtain Crx).

7. Two general classes of methods solve this integral BL momentum equation

/): assume a form of BL shape
ii): use empirical correlations between the integral parameters 6 and H

A standard shared assumption is that

u(z,y) = Ue(z)fn, P(z)] where n=y/6 and P(z) is a dimensionless parameter

Unlike similarity solutions the BL shape can evolve in the streamwise direction.

BL integral method of Polhausen

1. Polhausen’s method (1921) is of assumed shape function type, a 4th-order polynomial in n=y/6:

@ _ 2 3 4
— =ap ta1n + an” + asn” + asn

Ue
ou 0%u
BCs for u(x,n): u(z,0) =0; wu(z,1)="U,; 8—y(x, 1) =0; W(:C’ 1)=0
0%u  1dp dU, 0%u 6% dU. 02 dau, 82U’
At the wall, r]=0, V@—;@—— “dr — 87’{]2__7(]6 A and call AZ?E: »

2. The BL velocity profile is then

A
=2n—2n° + 7"+ 5 [n(1 —n)?]

. . 3 A § (37 A A2
W'th5_5<10120)’ 9—63<515144>
3. Substituting into the momentum integral equation gives

d_¢9 _F(A)
de U,

S=

here F(A) 2 (2 A A2 16A | 7T9A? 247
where ~°\315 945~ 9072 945 7560 | 9072

4. This ODE is solved by marching in x given an initial 8, e.g. using Runge-Kutta.

Method is simple but inaccurate.



BL integral method of Thwaites — 1

1. Thwaites’ method (1949) is of empircal correlation type, built on work by Holstein & Bohlen (1940).

C do 0 dU. .
2. Starting with 7f =4 +(2+ H)i W multiply through by (Reynolds number) U.0/v
o0  U0dO 02U’
= — 2+ H
wUe v dzx + 2+ H)
3. It is assumed that the (dimensionless) friction and shape factor H are functions of one new parameter
Twb
02" <9>2 A s2dr. g2 le. shear correlation P S(A)
\ = = (= A= 220 — e g
v Y v dz v and shape correlation H = 7= H())
4. Using 0dd = $d(6?) re-arrange the integral BL equation above to give
d /A
Ue@ (@) =2{SA\) = A2+ HWN)]} =F(N)

5. Thwaites found that essentially all the available attached BL data fit a very simple relationship for F()):

1.0

0.8
8§ 0.6
slI°
> 04 I — F(\) =~ 0.45 — 6.0\

Lﬂ X U= U, (1 - x/c); Howarth (1938)
0.2 -0 schubauer's ellipse; Hartree (1939a)
V U= U, (x/c)"; Hartree (1939b)

0|4 Flat plate with constant suction; Iglisch
(1944)

-0.2 : L |
-0.10 -0.06 -0.02 0 0.02 0.06 0.10

A

BL integral method of Thwaites — 2

6. When F(\)=a-b(\) the closed-form solution of the modified BL equation is

0> e
— =aU® (/ Uttdx + C)
v zo

and if xo is a stagnation point, C=0 is needed to avoid 8—c0 where U.=0.

7. So Thwaites showed that for all types of laminar attached BLs, 6(x) is well modelled by

450 [®
62~ 2 5”/ US da
0

(2
92 / A
8. Then calculate X = L; Tw = /Lg S(A\); 6" =60H(\)
14
using Thwaites’ correlations for S(A\) and H(A). 40
0.6 — o Thwaites, Table 4-4
— Eq. (4-141)
o Thwaites, Table 4-4 —;/D/
04 — Eaq.(4-140) g
' Blasius BL
S
02F 0.62
S(\) & (A + 0.09) “Jtm\ﬂ\{
0010 000 0.10 020 0.30 2816 0.00 0.10 020 080
A = 62 (dU/dx)
separation when A=-0.09 H()\) &~ 2.0 +4.14z — 83.52% + 8542% — 33372% 4 45762°

2 =(0.25— )



Simple BL modelling: integral form — 3

8. Unfortunately Thwaites method cannot deal with separated flow (which is needed e.g. to
integrate through separation bubbles), and Polhausen’s method is not very accurate. Neither of
them can deal with turbulent flow (or transition). However, the assumed shape function methods
(like Polhausen) can be made to work well if more equations are used, and we also use more
general shape functions.

To create methods which can deal with flow separation we need to add one more integral
equation (for the energy defect) to the von Karman equation. However the methods become
rather more involved.

In addition we need models that can deal with the transition from laminar to turbulent flows.
This requires a separate set of equations (for perturbation growth in the streamwise
direction) that are coupled with the solution of the two integral equations.

Integral BL modelling: 2-equation methods — 1

The methods described so far lack generality: they cannot cope with flow separation and also did
not consider turbulent BLs. Now we look at methods which rely on simultaneous solutions of the
(incompressible) momentum and kinetic-energy defect integrals. Our development follows Drela
and Giles (1987), AIAA J 25(10): 1347-1355, and Drela’s MIT OCW notes for Viscous Aerodynamics
16-041, but there is a variety of other related treatments which matured in the 1980s.

do 0 due _ cf - v o= /nefaudn =2
&"‘(Q"'H)ufe ds 92 ¢ %puz P pud Jo on 0

* * Ne Ne 2 Ne 3
07 g0t due 0 5*:/ (1—“>dn, 9:/ <u_ug>dn, 0*:/ (“—“)dn
ds Ue ds 0 Ue 0 Ue  Ug 0 e ul

This is a set of 2 (OD) equations with 5 unknowns. (Though initially there are apparently 6, one other
variable, which is typically either ue or 6*, depending on the approach to be used, is supplied.) To make
progress, correlations (curve fits — i.e. additional equations - based on either numerical or experimental
data) are introduced to provide the same number of equations as variables, thus closing the problem.

First, one more new variable (and correlation) is introduced in order to get the set into the forms required.
This extra variable is H* = 8*/6. After some more manipulation, the two ODEs above become
do 0 due ¢y And correlations (different for laminar and turbulent flows)
P 2+H)——— = o are introduced for
§ H* = H*(H, Rey)
dH* ﬁ due

Ue ds
cy =cr(H, Re
+H*(1 - H) —9cp— H*Y £ = cs(H, Beg)
ds U ds 2 ¢p = cp(H, Rey)
Ul

0

where  Rey =



Integral BL modelling: 2-equation methods — 2

For example, here are (laminar and turbulent) correlations relating dissipation coefficient, H, and Reg :

0.005 r -
Reg= 250 ——

s turbulent Reg=1000 —— Laminar correlations derive

' Reg = 5000 ] from Faulkner-Skan solutions,

flatplate e turbulent ones derive from
9000 ¢ ] experimental data.
CD
0.002 See Drela and Giles (1987) for
equations corresponding to
0.001 r ~—_ . laminar i the curves (also for higher H).
0 1 1 b 4
1 1.5 2 25 3 35 4
H

Figure 4.25: Dissipation coefficient for self-similar flows. Laminar values are listed in Table 4.1.
Turbulent values are given by equation (4.100). Weak pressure gradients which displace H slightly
from the flat plate value have little effect on cp.

As noted above (and will see later), there are two typical cases one wishes to solve, ‘forward’ and ‘inverse’.

either Forward (given ue, want &%). or Inverse (given &%, want ue).
de y de N
a_fl(evfs 7ue) g_fé(eaé ,ue)
do* . due .
ds - f2(0a5 7“’6) ds — f4(076 7U/e>

To proceed, the supplied pair of ODEs must be re-cast into one of these two forms.

Integral BL modelling: 2-equation methods — 3

In the forward (or direct) case, the two ODEs for 8 and H* are rearranged as a set of three equations

1 0 2+ H] [ Be 4

g dE*  H 4H* s 2dn? e _sdd s do* s du,
% g 1-H||Bs | =13 (}?fdue L) | where By = i1 B« = e Bu, = s

This we can solve with matrix inversion, numerical integration in s, and correlations already alluded to,
in order to obtain 8 and 6 as functions of s, given ue(s).

In the inverse case, first defining By = Bs« — By , we likewise solve

1 H%H* 24+ H] [ By . 20571" .,
— D

0 =57 1-H||Bu|= §(H*_*7)

1 0 0 Bu. 5

in order to obtain 8 and ue as functions of s, given &*(s).

Both the above methods are able to integrate downstream through flow separations since the boundary
layer shape factor H is calculated directly as part of the solution, and separation is accommodated by the
correlations employed. One-equation methods fail when flow separation occurs, essentially because
they have to assume H is a unique function of external pressure gradient (ue), whereas in reality it is not.

A remaining issue is to predict where in s transition between laminar and turbulent BL occurs.



Transition prediction — 1

Surface Transition
Imperfection™\__ Y, Z
Forced Transition M’
Urbuylgpy Flow N
Laminar Flow Instabilities Tran'sition Prediction methods
Natural Transition oW - ‘ ) ; typically concentrate
Lamina Turbyjgny Flowy—x on modelling this case.
Freestream - Transition
Turbulence, -
- Noise —
Bypass Transition P —— Elow = / 2
Urbuleng Flow

We start from a laminar state (at forward stagnation point) and attempt to predict the s-location at
which 2D disturbances (Tollmien-Schlichting waves) will grow sufficiently in amplitude that they in
turn become unstable to 3D disturbances and transition to turbulence ensues.

The basic methodology is to assume small flow disturbances (u, v) around an initially steady solution in
the Navier-Stokes equations (the ‘base flow’ U(n)), which is taken as locally invariant in the s-direction.

It turns out that 2D (and 2-component) disturbances are the least stable in the case that the base flow
is parallel (by Squire’s Theorem). The 2D incompressible disturbance equations, linearised for
infinitesimal disturbances are

ou u ,  Op C1wog
E—FUg—HJU— 88+R6 Vou . UL . 90 (n) t
O g% O gy T T T T T
o Tas T om VY
87,” + @ =0
ds  on
Transition prediction — 2
Taking the divergence of the momentum equations and exploiting incompressibility, V?p = —2U’%
0 0 7 _
and using this with the n-momentum equation gives [(c’)t + Uas> v — U”% —Re7 'V v=0

Assuming wave-like disturbances v = 4(n)el®* =Y or equivalently v = ©(n)e'**~" where w = ac gives

e o Ao 2an 4oy ¢ = (real) wave speed
(U =)(@" = a0) = U"0 +i(aRe)” (2 20707+ a70) =0 «a = (complex) wave number

which is the Orr—Sommerfeld equation, a 4th-order eigenvalue problem to be solved for the (eigen-)mode shape
0(n) and eigenvalues R(a), S(a),w = ar, a4, w for supplied Reynolds number and base flow Re, U(n).

Note that w is real and that the disturbance grows in space (in the s-direction), with growth rate —«;.

The total growth in disturbance amplitude is then given by | STIE P S

Str 12
A ”
— = €Xp (—Ozi) ds Transition
AO Si 10 - [Schubauer and
o Skramstad  ~__
(1947)] =

"

Transition

[Wells (1967)]
For a number of different values of w, this amplitude ratio is <|< 8-
found by solving the O-S eigensystem at each streamwise
location, typically using Faulkner-Skan BL shapes for local
pressure gradient, then integrating the above. When A/Ao al-
reaches some ‘large’ value eNcrit, transition is deemed to occur.

Typical Neic =4; noisy wind tunnel §
values N, =9; quiet wind tunnel, XFOIL default  ©
Nt = 11;  sailplane in flight




Transition prediction — 3

To use this method, one needs to have available or be able to compute the growth rate -a; as a function
of position in s (BL thickness) and oscillation frequency w. Shown below are examples of such data
from Jaffe, Okamura and Smith, AIAA J 8(2): 301-308, (1970).

W
’ v
[ |
'(—ai/n)no’

‘ i
o |
i

w t

{ 10z
|
1 7 — 0
|
[ |
| | 1
[ Brio | i
‘ | o """;;z S 4.\..45._.._. wesdy
t | 1 Rg
| i |
|o'|— ey g pugeiips l_ D= P l Fig. 3 Stability chart—separating flow.
0* w0t 10°
“6‘ ‘?5'
Fig. 1 Stability chart—stagnation point flow. Fig. 2 Stability chart—flat plate flow.

XFOIL precomputes a look-up table of growth rates for Faulkner-Skan profiles to obtain local growth rates.

Viscous-inviscid interaction (Vi)



Vil

The basis of the approach is to solve separately the inviscid and viscous portions of the flowfield
and the to match the two solutions to obtain a valid solution everywhere.

Topics
1. Boundary conditions and the choice of matching surface.
2. BL separation and the failure of classical matching.

3. Alternative matching strategies: inverse and semi-inverse.

Recap

1. Inviscid flow: panel method (Laplace’s equation)
a. Prescribed stream function BC: y=o.
b. No flow-through BC: u.n=0®/9n=0.

2. Viscous flow: integral BL analysis e.g.:

do 6 dU., C H=H(,U.
+ (24 H) = 1. ( )
dz U, dx 2 Cy=0Cy(0,U,)
We note that this ODE can be a. Direct method: giVen Ue, get 0.
solved either for 6 or Uk. b

. Inverse method: given 6, get Ue.

Position of the matching surface

Far-field flow is effectively
inviscid, calculated using
Laplace’s equation via panel

methods. / y= O

BL flow solved typically via
integral method, displaces
fluid away from surface.

Goal: match the two solutions in a consistent method
that allows both far-field and BL flows to be correct.

Alternative matching strategies/locations:

1. Displacement surface: y=06*.
2. Entrainment velocity at edge of BL: y=6.

3. Transpiration velocity: blowing at y=0.



Match at y=06*: displacement surface

The idea is to increase the body thickness by 6*.

Ue Ue

Y

o
|
Y

o7

Procedure:
1. For a given airfoil shape y(x) calculate inviscid solution Ue;

2. Given Ue, calculate viscous BL solution = 6%

3. Displace the airfoil surface to get new airfoil shape yn(x)=y(x) + &;

4. If 6*=0 stop, else y(x)=yn(x) and repeat.

Problems:

1. The panelling and influence coefficients have to be remade at each iteration.

2. Method fails when separation is present.

Match at y=06: entrainment velocity

s
Let us denote the velocity normal to the edge of the BL by Veand f = / udy
0

BL edge

Streamline

s
By continuity, Ve ds = df, and assuming ds=dx we have Vi = di udy
T Jo

o[ f ()}

A BL solution gives us 6 and &*. As boundary condition for the inviscid solver we prescribe,
at y=6, the normal velocity

d
dx

d *
VE: a[Ue((S—(S )]

Again: the panelling and influence coefficients have to be recomputed at each iteration.



Match at y=0: transpiration velocity

The idea is to derive a transpiration velocity at the airfoil surface that displaces fluid by a
correct amount, then use this result as a BC for inviscid flow analysis.

Advantage: airfoil shape remains invariant.

INVISCID . ) )
Matching aa“l %“Z =0; Inviscid 5 5
VISCOUS S gu 8%) Then %(uZ —u)+ a—(vi —v)=0
— 4+ — = 0; Viscous 4
or Oy
ﬁV ) s
n Integrate across BL 8—(% —u)dy +[v; —v]p =0
0 X

Impose appropriate BCs to obtain the value of the transpiration velocity V;, as follows

° =0:v=0,v;, =V,
o y=0:v=u (matching condition)
. %9
This gives: V,, = /0 %(ui —u)dy
d /[
Assuming 96/dx=0 Va (u; —u)dy

dx 0
u

d /3
Finally, using ui=Ue we get Vi U. (1 G

~2 ) dy = Vo n 2 [U(2)6* ()]

dx

To obtain an ‘equivalent inviscid flow’ we must prescribe V,, as a BC to the inviscid solver.

Failure of classical matching with flow separation

Prescribing Ue is equivalent to prescribing the pressure gradient, which is incorrect in the
presence of interaction since:

1. This leads to Goldstein’s singularity, i.e. solutions that behave as

0
T X v (zs —x)'/?
dy
where xs is the position of the separation point. Using continuity, it is found
that v becomes infinite at x=xs (breaking the BL assumptions).

2. Significant curvature of the boundary layer streamlines forces an adjustment of pressure
in the streamline direction, and, at separation, in the normal direction.

In practice, VIl overcomes these problems once the BL and inviscid flow solutions are fully
coupled, as the singularity is removed once Ue is computed as part of the solution
(Catherall & Mangler JFM 26, 1966).

We will take a closer look at the the observed physics of flow separation and in particular
separation bubbles.



Boundary layer separation bubbles — 1
Transition,
minimum pressure point

1. Boundary layer separation does Laminar ] Tirbolent bounday
not always occur — there may be ‘ kil
a direct transition to turbulence
and typically the resulting BL can ‘ —
stay attached up to stall. maximum prossuro | L

Transition,
minimum pressure point

Main stream forced to separate

2. Typically, if the separating BL is but re-attaches
laminar, the separated shear layer transition P aieivivheforciioendd
undergoes transition and will likely mpor==rESmeecm=cmcmeo

reattach. Recirculating laminar
flow within bubble is slow.

layer bubble

3. Details of the separation bubble,
and whether the resulting turbulent
BL may subsequently separate (i.e.
incipient TE stall) depends on Re

and a, and of course the airfoil B
shape. gl ey sobore

Length of the separation bubble E =
scales roughly with Re: at quite low
Re, reattachment may not occur.

Figure 3.8 Small model wing at high angle of attack.

Boundary layer separation bubbles — 2

4. Flow separation and separation
bubbles can be detected using flow
visualisation, typically using dye in a
light mineral oil.

¥

%
K
|
|2

3

Here is the top view of an airfoil
treated in this way in a wind tunnel
test (Re=3.5x10°5, a=2°). Attached BL
flow is laminar upstream of separation
line, turbulent downstream of
reattachment line.

BL edge
A

Displacement effect of bubble

B increases external flow speed
above inviscid value — lower
5. The signature of a separation _ pressure. N
bubble is readily recognlseq in ¢ _c X Viscous
measurements or computations of P
surface pressure and skin friction. /
inviscid

A B

small, negative Cr A

B




Boundary layer separation bubbles — 3

6. Effect of airfoil separation bubble on BL parameters.

NACA 23012

XFOIL
V6.2
RE

Inviscid
Viscous

cL

= 0.100x108
ALFA = 3.0000
= 0.5407
-0.0228

[:7 oo %
[«
o004 f 0 3
0008 Rise in 6
0008 through
\ bubble =
\ 0008 0004 increased
001 form drag.
\ T 0.004
x/lcl . xlc | x/c

VIl solution strategies

e.g. Lock & Williams (Prog Aerosp Sci 1987)

Classical: & is (or helps provide) BC for inviscid solver and Ue is BC for viscous BL solver.

See preceeding notes on > nviscid Given 6* determine U.
integral BL modelling for * U o
forward and inverse means o e P
of treating the BL Viscous [ Given U. determine &* (= transpiration).
equations.
Example coupling between solutions: V,, = % [Ue(z)d* ()]

Inverse: U. is BC for inviscid solver and 6* is BC for viscous BL solver. Both of these are

solved in inverse mode.

Inviscid
U, ® o*

Viscous

Semi-inverse: Combine the two above approaches, with relaxation.
1. Use 6 to calculate Ue! (direct) and UeV (inverse).
2. Use a velocity correction to obtain the new 6*
v

* * Ue
)

where B=~0.2 is a relaxation parameter.

Given Ue determine transpiration (= &%).

Given &* determine Uk.

»| Inviscid
(direct)
* I
0 U
e
Relaxation |
v
0]
%
5 e
»| Viscous
(inverse)




XFOIL VIl code

‘:‘:.'.h

Subsonic Airfoil Developrment Systern

http://web.mit.edu/drela/Public/web/xfoil/

See also http://cobweb.ecn.purdue.edu/~aae333/XFOIL/Tutorial/Tutorial %20for % 20XFoil.htm

Background & capabilities

XFOIL uses a combination of linear vorticity strength distribution with constant source strength on each
panel and in the wake (to provide transpiration velocities).

3  trailing edge panel

Capabilites: 3. Airfoil redesign by interactive specification of
new geometric parameters such as
new max thickness and/or camber
new LE radius
new TE thickness
new camber line via geometry specification
new camber line via loading change specification
flap deflection
+ explicit contour geometry (via screen cursor)
2. Airfoil design and redesign by interactive 4. Blending of airfoils.
specification of a surface speed distribution in
two methods:
Full-Inverse, based on a complex-mapping
formulation 6. Writing and reading of airfoil geometry and
Mixed-Inverse, an extension of XFOIL's basic polar save files.
panel method

1. Viscous (or inviscid) analysis of an existing
alrf0|l allowing
forced or free transition
transitional separation bubble(s)
limited trailing edge separation
lift and drag predictions just beyond Crmax
Karman-Tsien compressibility correction

5. Drag polar calculation with fixed or varying
Reynolds and/or Mach numbers.

7. Plotting of geometry, pressure distributions,
and polars.



Usage & examples — 1

1/0: Q [ Output Graphics ] l Interactive Graphics )
=7 t ' t 1.5 . SAILPLANE RIRFOIL
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Usage & examples — 2

XFOIL 6.96 Data Fow [ —

| Disk file |
Airfoil x.,y

coordinate file Stored

Data .
)@

Buffer - ‘ Current L

Airfoil ————CEXEC)>———| Airfoil

Polar save file




Usage & examples — 3 (‘Type 2’ polar analysis)

V L Lift
=
T & D Lift = weight in trimmed level flight
Thrust L% Drag %pV2SCL =L=nW=W
W ﬂWelgm

: _ . _ . b b

Mean wing chord ¢ Wing area S = be Aspectratio A= =3

C

Mean chord Reynolds number Re = pTVC = ?

Rearrange 3pV2SCp =W toobtain V./C, = 22/

2W /2p / EQ /2p 2W
Re/Cp = —W = =—
cviL= \/; pA
For an aircraft at fixed W, Re+/Cp is a (dimensionless) constant in trimmed level flight.

This the quantity held fixed in an XFOIL Type 2 polar analysis: as C; increases, Re decreases.

(Holding only Re alone fixed — a Type 1 analysis — is not directly relevant to varying C; in level flight)

Key features of interpretation for XFOIL results

Ci < 0 implies flow reversal: either separation bubble or just separation

Often a separation bubble is accompanied by a plateau in Cp
Xfoil reports predicted transition locations - use this in interpretation
Examine H = 6*/8, consider values typical of laminar/turbulent/reversed flow

Interpretation of BL features (e.g. dissipation and its integral) w.r.t. drag production

o o~ 0 N =

When and how to use a Type 2 analysis

NB: Though we described solving VIl using forward, inverse and mixed methods, in fact XFOIL solves
the entire VIl problem iteratively using a coupled Newton-Raphson type method. It is typically helpful
to increase the maximum number of iterations taken above the XFOIL default value of 20 (to
something more like 100), especially for sequenced solves required in drag polar accumulation.

Sometimes, as is typical of N-R methods, the iteration fails to converge even with a large number of
iterations. Try clearing the BL variables and restarting, or try restarting from a lower C,.

NB: in ANY analysis involving a
meshed/discrete approximation of a
continuous problem, you should
CHECK the effect of mesh
refinement on your calculated
oufcomes.




Airfoil design for Cmax contains a few topical areas, linked by the fact that maximum lift is limited

Airfoil design for Cimax

Background

by flow separation/stall.

1.

In order to fly slowly/avoid stalling, we just want C; to be as high as possible, with low drag
generally a secondary consideration — sometimes, high drag may not be so bad. This is
often achieved with variable section geometry/multi-element airfoils, or other high-lift
devices — the aircraft’s "high-lift system’.

a. Conventional airfoils: Cimax~1.3-1.7, depending on Re, t/c, surface roughness, camber.

b. For a single-element airfoil the maximum achievable is Cimax<3.05.

21
P S (CL)max

Vistal =

When manoeuvring, rate of turn w is maximum when flying at the ‘corner speed’,
determined by Cimax in a clean configuration. Sometimes this is pushed above the
undeformed airfoil’s value by using manoeuvre flaps/slats.

2W (n)iimit

Ve=4/=
P S C’L)max

—~

For minimum sink speed Vs when gliding, or to maximize duration in (propeller)-powered
flight, we want the airfoil ‘power factor’ (C2/C,) to be as large as possible. Typically

RPIA]

ng

XTEN
w| 3



Clrmax

20

08

0.4

(Plain) airfoil Cimax

. The high-lift problem is to develop maximum lift in the presence of a BL, i.e. how to avoid

separation.

. This can be achieved if required through geometry changes or in extreme cases (e.g. when

wing loading is very high) with augmentation by airfoil BL suction or blowing.

. The methods for predicting Cimax are a blend of theory and empirical relations since Cimax is

determined by flow separation which is very difficult to reliably compute for curved
surfaces.

. CFD does not provide reliable answers as yet.

. Correlations exist for some families of airfoils. E.g. at Re=8x108, Cimax for NACA 4-digit

airfoils can be estimated from

(0.123 + 0.22p — 0.5z — t)?
$3/2

C ~ 1.67+ 7.8pz — 2.6

max

where p, t and z are respectively the dimensionless (i.e. normalized by c) values for
position of maximum camber, maximum thickness, and maximum camber.

. More general/extensive methods based largely on correlations of experimental results are

published e.g. by ESDU.

. We will first examine the gross effects of thickness, LE radius etc on Cimax.

Influence of geometric features on Cimax

1. Nose radius/LE shape.

Larger radius tends to reduce adverse
pressure gradient peak value.

2. t/c ratio (and Re).
Increasing thickness increases peak suction
but also makes recovery pressure gradient

increasingly adverse — there is a "happy

T T medium’.
6% C from L.E. —
0.15% C from L.E
1.8
R = 8x 108
o) 16 |- 5x 10°
Q o 3x 108
2x 108
14
ocog3 G 1% 108
.D max 12 0.5 x 108
O
& 1o |-
o* 80
08
(o]
08 o 0.6 — ) )
o NACA 24xx airfoils
o o @® 63 series airfoils 0.4 —
L ]
o [ 64 series airfoils
< 0006 and 0009 0.2 —
AK‘)“"’,"”""“? 0 K RN [/ (OO OO LU IS ENUON [ TN
O Y ctcutated 0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22
:
T
1 2 3 4 5

AY Airfoil upper surface ordinate
at 6% chord from the leading edge
minus ordinate at 0.15% chord,
percent chord



Influence of Re and surface roughness on Cimax

1. Increasing Re makes BL &/c lower and generally reduces risk of separation.

2. Roughening the airfoil surface increases skin friction, increases 6/c, increases risk of separation™.

NASA GA(W)-1 airfoil
o Roughness off o Roughness on

o NACA airfoil, roughness off

[ ———65,-415 ——=4418  , —=—==2412
2.2 [~ ———65,-418 —---23018

(o l .
sl A " Caveat: these statements presume Re is
20 /p , high enough that BL transition occurs.
// |
1.8 ;{ * Paradoxically, at low Re, increasing
/| e roughness may promote transition and then
<J/ _L-1" enhance BL resistance to separation in an
1.6 /';"’;.f-' g adverse PG, thereby increasing Cimax. This
7 2 == is called BL turbulation.
7| A4 ]
1.4 7
¢ v i
/
7
/

1.2
1.0

0 2 4 6 8 10 12 14x 108

Reynolds number, R

Airfoil design for high lift — 1

While values of Cimax for individual airfoils are largely obtained experimentally, methods have
been developed for design of airfoils for Cimax, based on quasi-empirical separation criteria.

The idea is to achieve a maximum C; without BL separation and also a realistic airfoil shape.
Vv(S)

/;AGNAT'/ON POINT ///////////////////II/

Vo v(s) s
\

Typical velocity distribution around an
airfoil.

UPPER SURFACE .
Note that one is not completely free to

specify this distribution arbitrarily, as the
Ve velocities must match at the LE and TE
= (Kutta condition), and the farfield velocity
must approach a uniform value (ellipticity of
A potential flow connects this back to the
Y Con AT values on the airfoil). In practice the
Vo o methods are semi-iterative and can cope

with these requirements, regardless of ICs.

3

LOWER SURFACE

To obtain high lift, we want
(@) the upper surface pressure to be as low as possible, and
(b) the lower surface pressure as high as possible, i.e. as close to stagnation as possible.

Most of the difficulty comes in achieving the first of these without flow separation.



Airfoil design for high lift — 2

Objectives

1. Achieve the highest integrated C, differential between pressure and suction surfaces.

2. Retain laminar flow as close as practicable to the TE to reduce drag.

3. “Trip’ BL to make it turbulent and so more able to sustain an adverse pressure gradient.

4. Avoid separation of resulting turbulent BL.

The optimal distribution is obtained using a semi-empirical relationship that predicts turbulent
BL separation in an adverse PG. The turbulent BL is then always about to separate from the

upper pressure recovery surface. (Stratford,1959. Liebeck 1970s).

FLAT ROOFTOP

OPTIMUM
ACCORDING TO
v VARIATIONAL

v ANALYSIS

NECESSARY
TO OBTAIN

[
|
|
— — — MODIFICATION ll
|
AIRFOIL |
|
|
|

BOUNDARY-LAYER
TRANSITION RAMP

Sharp adverse gradient
triggers transition.

STRATFORD
DISTRIBUTION

0
STAGNATION S

——

Airfoil design for high lift — 3

Family of optimised upper-surface pressure distributions designed according to Stratford’s criterion.

=8 =
1.463
e LAMINAR ROOFTOPS
RN = 5 x 10°
-6
1.561
-39 1.605
-4 - l C/“ = 1645 MAXIMUM
1 1
Cf, C’u:j;"’s - j;\/l - C g
-3
\1_627
\ \ \ L 1577
o \ \ \ \ \ \
1.443
-1
0 T T T
0.2 0.4 06 08 Cp = 02
s

Of a set of recovery curves that
satisfy Stratford’s imminent
separation criterion, the one that
provides the greatest area is
optimal.



Case study — Liebeck airfoils

Examples

Liebeck’s maximum lift airfoil.

TRANSITION

20 4 LAMINAR ROOFTOP
RN =5 x 10°
C, =308

v C, = 00051

08
s McCormick

A more realistic compromise.

DESIGN CONDITIONS:
¢ TURBULENT ROOFTOP
® RN =3 x 10°
C, =135
a = 92DEGREES
-2 tic = 125 PERCENT
-1
0 —t——
} —K

Case study — Liebeck airfoils

Performance

AS We“ as h|gh Clmax, Cl/Cdmax,
CrR/2/Camax are very good too.

L/Dmax ~ 180

~~o
o o
-~ O,
16— S~ ;-
4 Airfoil L1004
Turbulent rooftop
La— \4 R, = 3.0 x 108
\\

12— |
1
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at the leading edge.

Experimental vs. computed results.
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However! L/D performance at low C; (i.e. high speed) is
poor — and these airfoils have not been widely applied.

Airfoil L1004
Turbulent rooftop

Potential flow
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Airfoil design to influence separation bubbles

Design to influence separation bubble behaviour

Separation bubbles are very common and at moderate to low Reynolds numbers, may contribute
substantially to profile drag. Skin friction is typically very low within such bubbles.

Eppler 387

1 3.4811

. i

Figure 4.34: XFOIL [5] pressure distributions on Eppler 387 airfoil at Re = 100000 reveal a
transitional separation bubble on the upper surface. Experimental data is from McGhee at al [42].

du,
Drag per unit width: D’ = Py, = / Ty ds + / —pueé*a ds  where P is momentum defect.
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Design to influence separation bubble behaviour

1 d
Now in a separation bubble, skin friction is small, so m g(puﬁe) ~

Or, considering losses through separation bubble

So, the larger the change in ue and
the larger the average value of H
through the bubble, the larger the
total momentum defect and ‘bubble
drag’ contribution to total drag.

The ideal is to arrange transition to
occur as close as possible
downstream of onset of separation.

This may be achieved by careful
airfoil shape tuning with minimal
upstream increase in H (to promote
instability and transition early in the
bubble).

This is known as ‘transition ramp’
tailoring.

H du,
u, ds
Apu20 I Aue
(ou20). T trave N
(puzf)ave (te)ave
'\ pressure
\\c plateau
Ue . e o Ue,
without bubble g = Uep
-5
A H,,
6 . Drela
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2 B e =
transition without bubble
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4 P | APoubble
B I
) = B without bubble
é = P=P/
)
recirculation
zone (bubble)
displacement
laminar ] surface

Figure 4.35: Transitional separation bubble is produced when laminar separation is followed by
transition and subsequent reattachment. The excess momentum defect increase AR, pble due to a
large Hax is a bubble drag penalty.

Case study 1: E387 vs SD7037

Re =100,000; C;=0.78.
Drela

— transition ramp -]

separation bubble

Figure 4.36: XFOIL [5] pressure distributions on SD7037 airfoil at Re = 100000, which features a 0.002 -
long transition ramp (weak adverse pressure gradient) starting at z /¢ =~ 0.05 to reduce bubble loss. :
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cooil SD7037

For the same Re and C,, fairly subtle shape Uepey'4 ooy —Eppler 367
changes to intentionally affect separation bubble Voo 12 =
behaviour have increased L/D from 35 for the :
E387 to over 50 for the SD7037.
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Figure 4.37: Upper surface inviscid edge velocity distributions and resulting shape parameter and
TS-wave envelope distributions for SD7037 and Eppler387 airfoils. Long and shallow transition
ramp in the u.(z) distribution of the SD7037 airfoil produces a smaller maximum H value and a
smaller u, decrease over the bubble. The result is a much ller rise in the mc defect P
past transition at z/c ~ 0.7 for the SD7037 compared to the Eppler387. The SD7037 has 32% less
drag as a consequence.




Daedalus flew 115 km from Crete to Santorini in
1988, taking just under 4 hours (ferry takes 3 hours).

Case study 2: human-powered aircraft

Re approx 0.5M.

A great deal of effort was put into
airfoil design and into affecting
separation bubble behaviour (see
Drela J Aircraft 25: 724, 1988.)

Ue

optimum
transition
location

¥

Fig. 3 Effect of transition location on bubble size and loss.

Case study 2: human-powered aircraft

Empty weight 92 Ib
Gross weight 242 b.
Span 114 ft. brela
Wing area 330 ft2
Cruise speed 14-18 mph ﬁf
Pilot power ~0.30 hp ——
~—— N | 0 5 10 20 ft.
T — =
Fig. 1 The Light Eagle human-powered aircraft.
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Fig. 6 Effect of transition ramp slope and length on performance:
design C; =1.2, Re=250,000.
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Fig. 7 Effect of transition ramp arch (design C; =1.2) and bottom
loading (upper C, =const) on performance: Re = 250,000.

Table 1 Effects of acrodynamic design parameters

Increasing Increases Decreases
Ramp length Cy Bubble loss, friction drag, Cy nax
Ramp slope Poor surface degradation C)y, bubble loss, Cp oy
Ramp arch Bubble loss, Cypay, « range Poor surface degradation
Bottom loading Crtr Crmax Thickness, « range
Recovery concavity C max» bubble loss Aft thickness, drag creep

These kinds of changes can be examined using ‘mixed inverse’ capabilities of XFOIL.



Case study 3: pitfalls of (machine-based) airfoil optimisation
Drela in Frontiers of Computational Fluid Dynamics, AIAA 1998.

Optimised. But impractical (re-entrant shape).
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Figure 2: One-point optimized airfoil geometry and objective function versus
number of design DOFs. 0.0

100 200 -4 2 0 2 4 6 8 10
. . . 10*-C
Optimised. But off-design performance is worsened. ’ <
Figure 3: Polars for original DAE-11 airfoil and 1-point optimized airfoils.

Case study 3: pitfalls of (machine-based) airfoil optimisation
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Figure 7: Geometries of optimized airfoils, showing surface bumps.

Figure 10: Velocity profiles for 6-point optimized airfoil at Cp = 1.5, showing
second bump “catching” reattaching shear layer.



Airfoil design for transonic flight

Design of airfoils for transonic flow — 1

p———

Shock wave is born near / [{ SONIC BOUNDARY

point of minimum Cp, moves / 4 / i3
downstream and strengthens 4 i
with increasing M. : Y
A 7
When A7w>1, abow shock (o) ‘/(‘/' il g wipd
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Topics: oistriution Y

The need for transonic flight.
Flow phenomena and design problems.
Design requirements for transonic flow; supercritical airfoils.

Potential problems and off-design performance.

o > 0N~

Criteria for defining the shape of transonic airfoils.

(b) SURFACE MACH NUMBERS

LE X/c T.E.



The need

For steady cruise of jet aircraft (fuel consumption rate proportional to thrust),
the range parameter ML/D reaches a maximum at transonic speed.

C
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Cp e < Drag divergence
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1. Range requirements may promote the need to postpone transonic drag divergence.
2. Local transonic flow is possible even at low Mach number if C, is low (e.g. LE slats at landing).
3. Common for helicopter blades, propellers and in turbomachinery.
4. Military aircraft often must negotiate transonic speeds or fly manouevres that produce them.
Transonic flow phenomena
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Shock wave/BL interaction

M<i M<i

Typically for transonic flows,
Reynolds numbers are high
enough that BL transition turbutent wake
occurs upstream of where any taminar

shock wave is encountered.  boundary Layers
/ T
Me (<1) T = transition
M>| M<|
—_—
M=M, (<1.3) M=M, (71.3)
Mi>1.3

T3 Ml M<i

sonic
m7/l///////l/ e o P

Flow is sonic within BL. —_— wal
Subsonic region near wall ———— outer
allows shock wave effects edge
to reach upstream.
-] p
b " S 2 L
S R

i) (]
Rule of thumb: to avoid separation, the local Mach number should not exceed M=1.3.

Onset of separation boundary
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Dashed lines show distributions when
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Airfoil design for transonic cruise — 1

Purpose: obtain high lift with small wave drag penalty.

Possible objectives:
1. Thick airfoils to reduce minimum Cp near LE. Also to provide fuel volume and structural strength
and stiffness.

2. Aim for shockless flow or flow with weak shock waves.
Load the lower surface near nose (reduce y/c) to provide lift and positive pitching moment.

Forward shocks tend to produce less drag than aft shocks. “Peaky” airfoils are designed with
forward shocks.

5. Ensure that sufficient lift is carried forward on the upper surface as the peak suction near the
nose decreases as Mach number increases.

6. If lift is reduced near the nose by flattening the upper surface profile to weaken shock wave, it
can be recovered by increasing rear camber. This is the basis of “supercritical” airfoil design.

Comparison of geometry of supercritical airfoils and conventional airfoils

Flatter suction surface
Adverse pressure

Higer nose radius >
gradient control

\ |

Similar t/c

W

Increased rear loading

Airfoil design for transonic cruise — 2

NPL 9283 -0 0.02
Conventional Gerofoil ===

NPL 9282 —_— ',‘
Conventionct cerefoil ===—-= 3

Historical progression

1. ‘Peaky’ airfoils: bring upper surface flow to
supersonic peak near LE, achieve isentropic
recompression to subsonic without shock.

Circa late 1950s =2 G b s
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used to help improve lifting capacity.

3. ‘Supercritical’ airfoils: bring upper surface (@)21m =072, w=1206deg () 27m =072,  a=0015deg
flow to supersonic near LE and maintain that | ¢,=0636, c,=-0.082 ¢,=0500, c,=-0.078
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Airfoil design for transonic cruise — 3

Potential problems:

1. The adverse pressure gradient on the aft lower surface can produce separation.

2. Rear loading/camber may cause substantial negative pitching moment, ultimately increasing trim

drag and structural weight penalty.
3. Thin trailing edges may be difficult to manufacture.

Beware of performance sensitivity to off-design conditions.

-Cp

_——0Original

z/c

cdzy

cx2 Undesirable

l x/c

Modified (exaggerated)
-

Original
// g

Design guidelines — 1

1. Governing equations are nonlinear - analysis requires CFD (e.g. ESDU VGK).

2. Typically the upper and lower surface shapes are considered separately at the design point.

Lower surface typically
maximizes thickness and
compensates for loss of lift
at this point by increasing
load carried towards TE.

Lower surface

Upper surface designed to
achieve maximum suction

. ’ with weak shock.
Rear-loaded section —__

gradient chosen

Upper surface to avoid separation

Basic section

Rear loading



Design guidelines — 2

1. Surface curvatures are used to control flows approximately independently on upper and lower surfaces

2. Curvature k=xd(sinB)/dx where sin8 is local airfoil surface slope. k=xd2z/dx2 away from LE.

3. Best to keep surface curvature distribution continuous.
K

4. Typical curvature distribution
attempts to:

a. accelerate to supersonic

around LE;

b. hold supersonic as far as
possible (large suction)
terminate by compressing
isentropically or via weak shock
to sonic conditions
d. continue recompression

subsonically to small positive

Cp at TE

Supersonic expansion

Curvature distributions
Discontinuous

- = - - Continuous

Isentropic recompression

)

\

\
\

1. Effect of curvature near LE

Upper
surface

Lower
b surface

Design guidelines — 3
2. Effect of LE radius blend point.

N

T C

e

A

—B

Insufficient decrease - small region of M>1.

B Good - sustained supersonic, M<1.3.

— A Rapid/sustained decrease - M large (strong shock).

Local
M=14 Mach

number

sin 6 \\

Making the transition from constant

nose radius too early will increase

1.0 4 airfoil thickness. Typical blend
points lie in the range 30°-50°.

Slope = =K

Slope =, 2/,

x



3. Effect of curvature near TE

Design guidelines — 4

K

Move curvature forward, then reduce to get
weak shock recompression and thin TE.

Increasing curvature reaccelerates
B flow, increases shock strength/
/ losses but makes TE thin.
C /
\. ’('
\/ A

Constant small curvature
continues supercritical flow,
\ gives blunt TE, shock losses.
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Design guidelines — 5

Example camber lines for conventional and supercritical airfoils
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