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Turbulent pipe flow of shear-thinning fluids
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Abstract

Direct numerical simulation of the weakly turbulent flow of non-Newtonian fluids is undertaken for two different generalised Newtonian
rheology models using a spectral element-Fourier method. Results for a power law (shear-thinning) rheology agree well with experimentally
determined logarithmic layer correlations and with other previously published experimental work. As the flow index becomes smaller for the
same Reynolds number, the flow deviates further from the Newtonian profile and the results suggest that transition is delayed. Predicted friction
factors fall above those in the literature, but below the Newtonian values when a comparison is undertaken on the basis of the Metzner–Reed
Reynolds number. Results for a Herschel–Bulkley model (yield stress+ shear-thinning) are compared to corresponding experimental mea-
surements and are found to be in very good agreement. Use of direct numerical simulation shows great promise in understanding transition
and turbulence in non-Newtonian fluids.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The flow of non-Newtonian fluids and slurries in pipes
occurs in a wide range of practical applications in the pro-
cess industries. If the fluid has a significant yield stress, or if
its effective viscosity is high, industrially relevant flow rates
may occur in the laminar flow regime (e.g. for thickened
slurry discharge in the minerals industry). However, in some
cases the flow can be turbulent and there are advantages in
operating pipe flows in a transitional flow regime because
the specific energy consumption is lowest there. In the case
of solids transport, the flow structures associated with inter-
mittency may be used to keep particles in suspension with-
out the much higher pressure losses of the fully turbulent
regime. Although some experimental work has appeared on
the transitional and turbulent flow of non-Newtonian fluids,
[1–3], little fundamental understanding exists. General theo-
ries of turbulence are lacking for non-Newtonian fluids, and
the development of mathematical and computational models
is not well advanced.

Computational modelling of non-Newtonian flows, es-
pecially using direct numerical simulation (DNS), shows
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promise in helping to understand transition and turbulence
in these fluids. The main benefit of using a DNS technique
is that once validated, it can be reliably used to model the
flow behaviour and provide a detailed picture of turbulent
structure. Such a picture is difficult to obtain experimen-
tally in optically clear laboratory fluids, and almost impos-
sible to obtain in opaque, fine particle suspensions. DNS
has the added benefit that other rheological effects such
visco-elasticity that can arise in laboratory fluids (but not
real suspensions) do not have to be considered in the model.
The effects of modifying individual rheological parameters
can also be easily isolated in a simulation, whereas they are
often coupled in real fluids. In addition, the technique also
allows the validity of rheological models to be assessed in
different flow scenarios.

There have been some DNS of the turbulent flow of
polymer solutions with the aim of understanding the causes
of drag reduction (e.g.[4–7]). In those studies, dilute poly-
mer solutions were considered in which shear-thinning
behaviour was negligible and elongational (visco-elastic)
effects were taken into account using various methods for
the extra elastic stresses. However, for a wide range of
important materials, the non-Newtonian rheology is pri-
marily of a shear-thinning nature and visco-elastic effects
are negligible. Malin[8] considered turbulent pipe flow of
power law fluids using a Reynolds-averaged approach and a
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modified k–ε model. Reasonable agreement with experi-
mental data was obtained after modifying the wall damping
functions, however, this approach is at least in part empiri-
cal, and does not shed light on the fundamental flow effects
arising from shear-thinning behaviour. Apart from some
recent work[9,10] there have been few published compu-
tational investigations of turbulent flows of shear-thinning
non-Newtonian fluids without visco-elasticity.

Experimental results show that, compared to Newto-
nian fluids, the transition to turbulence may be delayed in
shear-thinning fluids (i.e. it occurs at a higher generalised
Reynolds number)[1,10]. There is also evidence that the
radial and azimuthal turbulence intensities are lower by
20–40% for a power law fluid compared to a Newtonian
fluid, whereas the axial intensities may be marginally higher
[1–3]. The aim of the present study is to investigate the effect
of rheological parameters and to consider the modification
to the flow that arises in the presence of a fluid yield stress.

1.1. Rheology models

The fluids modelled in this study are shear-thinning
non-Newtonian fluids whose rheology is described by a
generalised Newtonian model, i.e. one in which an isotropic
viscosity dependent on flow properties is applicable. In the
present work, particular fluids are considered in which the
viscosity η can be described using either the power law
(Ostwald–de Waele) model:

η = Kγ̇n−1, (1)

or the Herschel–Bulkley model

η = τy

γ̇
+Kγ̇n−1, (2)

where γ̇ is the shear rate,K the consistency,n the flow
index, and (in the case of the Herschel–Bulkley model)τy
the yield stress. In the case of the power law model,n < 1
for shear-thinning,n = 1 for Newtonian, andn > 1 for
shear-thickening fluids. The shear rate is computed from the
rate-of-strain tensor�S as

γ̇ = (2�S : �S)1/2. (3)

1.2. Generalised Reynolds number

When the viscosity varies in space and time, the appropri-
ate viscosity scale to use in order to define a Reynolds num-
ber is not obvious. There are a number of possible choices:

(1) The zero shear viscosity. This is used in[5,6] for DNS of
visco-elastic flows, however, it is not appropriate for the
power law and Herschel–Bulkley models as it is infinite.

(2) The average viscosity. This value on first inspection ap-
pears reasonable, however, it is not known a priori and
requires an iterative procedure of running simulations,
modifying parameters, etc. More importantly, based on

results discussed below, the consequences of using such
a viscosity scale are:

• The near-wall scaling is no longerU+ = y+;
• The value of the Reynolds number for flows that are

transitional and weakly turbulent falls below the New-
tonian transitional Reynolds number of 2100 for some
fluids;

• The turbulence statistics do not collapse as neatly.

These points suggest that this viscosity scale is not ap-
propriate.

(3) The mean centreline viscosity is not applicable for the
same reasons as the average viscosity.

(4) The mean wall viscosity.

The choice made here is to use a mean wall viscosity,ηw.
The mean wall viscosity can be determined a priori. It is
calculated from the mean wall shear stress,τw, that in turn is
determined directly from the applied axial pressure gradient:

τw = D

4

∂p

∂z
. (4)

Assuming a Herschel–Bulkley rheology, it is straightforward
to show that

ηw = K1/n τw

(τw − τy)1/n
. (5)

For the power law model,τy is set to zero inEq. (5). The
resulting generalised Reynolds number used here is then
based on the pipe diameterD, superficial (or bulk) velocity
(Ū), the fluid density (�), andηw

Reg = �ŪD

ηw
. (6)

It should be noted that this Reynolds number has been used
by others[1,11,12]and has been shown to suitably collapse
data for the flow of non-Newtonian fluids. However, because
the mean viscosity varies in the flow, so will local estimates
of Reynolds number. Consequently,Reg will not completely
specify the governing dynamics of the flow.

The generalised Reynolds number used here (Eq. (6)) is
different to the more traditional Metzner–Reed Reynolds
number that, for a power law fluid, can be written in closed
form as

ReMR = 8�Ū2−nDn

K(6 + 2/n)n
. (7)

(For fluids other than power law fluids, Metzner–Reed
Reynolds number can also be calculated, see for example
[13].) The generalised Reynolds number,Reg, reflects flow
behaviour in the near-wall region that plays a fundamental
role in transition and the development of turbulence in wall
bounded flows of Newtonian fluids. As such, it is believed
that this is a more suitable basis on which to compare and
order simulation results.
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1.3. Law of the wall scaling

Wall units are introduced in a similar manner to the New-
tonian analysis with the wall viscosity (ηw) taking the place
of the Newtonian viscosity. Hence the friction velocity is
defined asuτ = √

τw/�, the non-dimensional velocity is
U+ = U/uτ and the non-dimensional distance from the wall
is written asy+ = (�uτ/ηw)(r − R), whereR is the pipe
radius.

2. Numerical method

The spatial discretisation employs a spectral element-
Fourier formulation, which allows arbitrary geometry in
the (x, y) plane, but assumes periodicity in thez (axial, or
out-of-plane) direction[14]. A second-order-in-time mixed
explicit–implicit technique[15] is employed for time inte-
gration of the incompressible momentum equations, which
for a spatially variable viscosityη read as

∂t �u+ �N(�u) = −1

�
∇p+ 1

�
∇ · [η{∇�u+ (∇�u)T }],

∇ · �u = 0. (8)

The non-linear terms�N(�u) are implemented in skew-
symmetric form, i.e.�N(�u) = (1/2)(�u · ∇�u+ ∇ · �uu) as this
has been found to reduce aliasing errors.

To allow a semi-implicit treatment of the viscous terms,
the non-Newtonian viscosity is decomposed into a spatially
constant component,ηr, and a spatially varying component
η − ηr. The spatially varying component is treated with a
second-order explicit formulation and the constant compo-
nent is treated implicitly, thus enhancing the overall numer-
ical stability of the scheme[16]. The basic concept is to
ensure that the reference viscosity is larger than the local
(varying) viscosity throughout most of the domain, most of
the time. This results in the explicitly treated terms utilising
a negative viscosity most of the time. An initial estimate of
the reference viscosityηr is chosen to be the viscosity at a
shear rate equal to the superficial flow velocity divided by
the pipe radius. This value is not known exactly a priori, but
can be estimated. If the value ofηr leads to numerical insta-
bility, it can be adjusted during the computation without ad-
verse effects. Too small a value ofηr will lead to most of the
viscosity being treated explicitly with either stability prob-
lems or very small time steps. Choosing too large a value
also leads to instability for reasons that are not clearly un-
derstood. In practice it is found thatηr should be decreased
asn decreases, and (for example) the initial estimate was
halved for then = 0.5 simulation. It should be noted that
the reference viscosityηr is a numerical construction and is
not explicitly related to the physics of the flow. In particular,
it should not be confused with the wall viscosity.

Because both the power law and Herschel–Bulkley rhe-
ology models have a singular viscosity at zero shear rate,

a ‘cut-off’ value is used, below which the shear rate is as-
sumed to be constant when computing the viscosity. The
cut-off value is chosen to be 10−5 times the mean shear rate
and its use is not observed to cause any stability problems
or significant errors. Although no statistics have been gath-
ered, instantaneous field dumps for both the power law and
Herschel–Bulkley fluids have never been observed to con-
tain shear rates below the cut-off. The smallest value is of-
ten several orders of magnitude higher than this, even in the
less active core regions of the flow, hence it is believed that
the cut-off is almost never invoked in practice.

In order to drive the flow in the axial (z) direction, a
body force per unit mass equivalent to the pressure gradient
measured in the experiments is applied to thez-momentum
equation. This approach allows the pressure to be periodic
in the axial direction.

The planar/Fourier representation of three spatial dimen-
sions leads naturally to parallel implementations in which
for most of the time step each process carries a subset
of two-dimensional complex modes. The non-linear terms
�N(�u) are formed pseudospectrally with the aid of interpro-
cess memory exchanges. These exchanges are implemented
using the message-passing kernel (MPI), and the com-
putations reported here were carried out using 16, 24 or
32 processors on the Australian Partnership for Advanced
Computing (APAC) National Facility cluster. Run times
were typically in the order of 2000 CPU hours to reach a
statistically steady state, with an additional 500–1000 CPU
hours used to obtain statistics. These latter times corre-
sponded to 30–60 fluid transit times over the length of the
computational domain.

2.1. Computational parameters

The simulations here were originally designed to allow
comparison to experiments undertaken in a 105 mm pipe test
loop (see[10]) and the parameters were chosen to match
with these experiments. The computational domain consists

Fig. 1. Upper part of the two-dimensional mesh cross-section showing
spectral element boundaries and node points (the nodal mesh is shown
on the right side only). Fourier expansions with 80–128 modes (160–256
planes) were used in the axial direction.
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Table 1
Parameters for simulations reported here: ‘length’ is the axial periodic length of the domain, while ‘modes’ is the number of Fourier modes employed
in the pipe-axis direction, and∂p/∂z is the axial pressure gradient (Pa/m) used to drive the flow

Model n K τy (Pa) ∂p/∂z Reg ReMR Length Modes

Power law 0.5 1.527 – 1441 5339 2975 4πD 128
Power law 0.5 1.527 – 1441 5252 2936 8πD 256
Power law 0.69 0.483 – 1695 5501 3636 5πD 108
Power law 0.75 0.320 – 1745 5514 3935 4πD 108

Herschel–Bulkley 0.52 1.203 1.35 1420 5800 3025 4πD 80
Herschel–Bulkley 0.52 1.203 1.35 1725 8130 3840 4πD 80

of 105 eighth-order elements in the pipe cross-section (see
Fig. 1) and (with the exception of one simulation) 80–128
Fourier modes (i.e. 160–256 data planes) in the axial direc-
tion, with domain lengths of 4–5πD depending on Reynolds
number and flow index. A summary of the simulation pa-
rameters is provided inTable 1. One simulation was re-run
on a domain length of 8πD with 256 Fourier modes to con-
sider domain length effects.

In terms of wall units, the near-wall mesh spacing is
y+ ≈ 0.5, Rθ+ ≈ 8 andz+ ≈ 35. This resolution is per-
haps marginal in the streamwise direction, although a grid
convergence study discussed later suggests that significantly
increasing the streamwise resolution had little effect on the
turbulence statistics, and is therefore sufficient for this initial
investigation.

In order to maintain a uniform generalised Reynolds
number in the power law simulations, asnwas changed both
the consistency,K, and the driving pressure gradient were
altered to maintain the same wall viscosity and superficial
velocity. A similar process was used in the Herschel–Bulkley
simulations where the yield stress was also kept constant.
This variation of parameters was achieved using the corre-
lations between pressure gradient and superficial velocity
for power law and Herschel–Bulkley fluids due to Wilson
and Thomas[17].

2.2. Validation

The underlying numerical code has been validated for
both DNS and LES of pipe and channel flow[18–20]. The
implementation of the power-law non-Newtonian viscosity
was validated against laminar pipe flow and axisymmetric
Taylor–Couette flow of power-law fluids, both of which have
analytic solutions. For the Herschel–Bulkley model, valida-
tion was against laminar pipe flow only. In all cases, numer-
ical and theoretical velocity profiles agreed to within 0.01%
and the code is believed to accurately predict the flow of
non-Newtonian fluids with generalised Newtonian rheolo-
gies.

To check the grid independence of the turbulent flow so-
lutions, the simulation atn = 0.69 was run at three different
resolutions. A coarse resolution given by 80 Fourier modes
(i.e. 160z-planes) and 105 6×6 elements, a medium resolu-
tion (at which the simulations reported here are undertaken)
of 108 Fourier modes and 105 8× 8 elements and a fine

mesh with 192 Fourier modes and 189 8× 8 elements. The
mean velocity profiles were almost indistinguishable from
each other. The turbulence intensities and Reynolds stresses
are shown inFig. 2. Clearly, the results for the coarse mesh
lie approximately 5% below the other results for the tur-
bulence intensities, although they agree well for Reynolds
stress. The difference between the medium and fine mesh
results are insignificant, justifying the use of the medium
size mesh for the simulations reported here.

2.2.1. Discussion of earlier validation results
In [9,10], DNS simulations of a 0.6 wt.% carboxymethyl-

cellulose (CMC) solution were undertaken using a power
law rheology model withn = 0.69. The simulation results
were compared to turbulent flow experimental data for this
fluid in an attempt to validate the predictions of the model.
Those results are presented again here inFig. 3 and are for
a (nominal) value ofReg = 4680.

It is seen that a significant disagreement between sim-
ulation and measurement exists. Not only is the predicted

Fig. 2. Dependence of turbulence statistics on grid resolution. Axial, radial
and azimuthal turbulence intensities and Reynolds stresses for power
law simulations undertaken at fine, medium and coarse resolutions for
n = 0.69, Reg = 5500. See text for further description.
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Fig. 3. Mean axial velocity profiles and turbulence intensities for the turbulent flow of a 0.6 wt.% CMC solution discussed in[9,10]. (×) experiment,
(�) simulation, solid line is Newtonian profile atRe= 5500.

superficial velocity approximately 25% lower than experi-
ment, but the (non-dimensionalised) velocity profile has a
significantly different shape to the experimental profiles. The
simulation is suggestive of a turbulent profile, whereas the
experiment appears to be transitional.

This experimental result for CMC is consistent with
previously reported observations. In[13] experimental
results for a 0.3 wt.% CMC solution were observed to
exhibit anomalous behaviour when compared to other
shear-thinning fluids, and were not included in the subse-
quent analysis—visco-elasticity was cited as the most likely
reason. Rheology measurements and turbulent pipe flow
measurements of 0.25–0.4 wt.% CMC solutions in[3] sug-
gest that first normal stress differences become significant at
concentrations higher than approximately 0.2 wt.% and will
result in drag reduction as a result of visco-elastic effects.
The observed drag reduction in[3] is consistent with the
discrepancy between experiment and DNS seen inFig. 3.

In contrast to results in[3], independent rheological tests
undertaken on a 0.6 wt.% CMC solution showed no firm
evidence of first normal stress differences over a range of
shear rates applicable to the experiments. Although attribu-
tion of the discrepancy above to visco-elastic effects in CMC
is tempting, this cannot be done with any certainty and its
cause remains unknown. Given that anomalous behaviour
has been previously observed in CMC solutions (compared
to other nominally power law fluids), the discrepancy is not
surprising, however, strict validation of the turbulent power
law simulations remains elusive. Althoughunvalidated, the
results are not believed to beinvalidatedby this discrepancy
for the reasons outlined above.

The discrepancy between simulation and experiment high-
lights the difficulty in modelling polymer solutions using
simple rheological models such as a power law model. Al-
though the power law model may be valid over limited
ranges of shear rates and can give quite accurate results
when used to simulate laminar flows, its usefulness in turbu-
lent flow where shear rates may span many decades is less
easily determined. Regardless of this difficulty, the effect
of modifying shear-thinning parameters is of fundamental
interest and is considered below. Instead of comparing to
experimental results for CMC, the numerical results will be

compared to available experimental correlations from the
literature.

3. Results

The results from six simulations are presented here—four
simulations for power law fluids at a generalised Reynolds
number of approximately 5500 and two simulation of a
Herschel–Bulkley fluid at generalised Reynolds numbers of
5800 and 8130. For the power law simulations, three differ-
ent power law indices were considered (seeTable 1) and the
pressure gradient in each case was modified to keepReg as
close to 5500 as possible. The case ofn = 0.5 was run at
two different domain lengths. For the Herschel–Bulkley sim-
ulations, parameters were chosen to give results that were
comparable to unpublished experimental measurements.

Although simulations are undertaken in a Cartesian coor-
dinate system, all results are presented in a cylindrical coor-
dinate system in which the axial velocity is denoted byU,
the radial velocity byV and the azimuthal velocity byW .

3.1. Power law fluids

3.1.1. Mean flow profiles for power law fluids
The mean axial velocity for the three simulations at

Reg ≈ 5500 for n = 0.5, 0.69 and 0.75 are shown in
Fig. 4. They are plotted with conventional ‘Law of the wall’
non-dimensionalisation and are compared to a Newtonian
velocity profile for pipe flow atRe= 5500 calculated using
the same DNS code. As the indexn increases, the profiles
for the power law fluids approach the Newtonian profile,
as expected. The results forn = 0.5 fall sufficiently above
the Newtonian profile to suggest that this flow might be
transitional—this point will be discussed in more detail
below.

In [21], Clapp reports the results of experimental mea-
surements of the turbulent pipe flow of power law fluids
with flow indices in the range 0.698–0.813. Based on these
measurements, dimensional arguments, and other measure-
ments of turbulent Newtonian pipe flow reported in[22],
Clapp determines that the logarithmic velocity profile for
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Fig. 4. Mean axial velocity profiles for the turbulent flow of three different
power law fluids atReg ≈ 5500 (n = 0.5, 0.69 and 0.75). The profiles have
been non-dimensionalised using the conventional non-dimensionalisation
with the mean wall viscosity taking the place of the Newtonian viscosity.
Shown for comparison is a correlation for low Reynolds number turbulent
pipe flow (dashed line) and DNS results atRe= 5500 (solid line), both
for a Newtonian fluid.

the turbulent flow of power law fluids is a function of the
flow index,n, and satisfies

Û = A

n
+ B

n
ln ŷ, (9)

where

ŷ =
[
(�nτ2−n

w )1/2

K

]
yn (10)

andÛ is the same asU+ introduced inSection 2.1. The val-
ues of the parameters inEq. (9)given by Clapp areA = 3.8
andB = 2.78, and were chosen to give collapse to the exper-
imental measurements of a Newtonian fluid (n = 1) reported
in [22]. The values of these coefficients for well-developed
turbulent flow of Newtonian fluids are now generally ac-
cepted to beA = 5.0, B = 2.5 (while for low Reynolds
number flow,A = 5.5 gives a closer fit to the data[24]).
Thus it may be expected thatA = 5.5,B = 2.5 should now
replace the values used by Clapp in[21].

In Fig. 5the mean axial velocity (multiplied byn) is com-
pared to Clapp’s correlation[21]. The dotted line is the log-
arithmic profile using the coefficientsA = 3.8, B = 2.78
while the dashed line usesA = 5.5, B = 2.5. Clearly seen
in this figure is that the DNS results for all three flow indices
collapse to a similar profile and agree quite well with the
general form of Clapp’s correlation—they fall between the
dotted and dashed lines forŷ > 10. Clapp’s correlation has
drawbacks, in particular the velocity gradient predicted at
the pipe centre is non-zero, and other correlations exist that
include better approximations for the turbulent core[23].
However,Eq. (9)has the benefit that it is easy to calculate.
The results here suggest that it is applicable, and perhaps for
a wider range of flow indices than Clapp’s experiments, al-
though the original coefficients should probably be modified
in light of more recent turbulence measurements in Newto-
nian fluids.

Fig. 5. Mean axial velocity profiles for three different power law fluids for
Reg ≈ 5500, plotted using Clapp’s non-dimensionalisation, and compared
to the Newtonian profile atRe = 5500. The dotted line is Clapp’s
correlation using his coefficients (A = 3.8, B = 2.78) and the dashed
line is using the generally accepted values for low Reynolds number
Newtonian flow (A = 5.5, B = 2.5).

3.1.2. Turbulence statistics
Turbulence intensities, turbulence production, Reynolds

shear stresses and rms streamwise vorticity fluctuations are
plotted inFig. 6in physical coordinates and inFig. 7in wall
units.

For both the axial turbulence intensities and the Reynolds
stresses, the results for the power law fluids are close to the
Newtonian results (DNS atRe= 5500). However, for both
radial and azimuthal velocity fluctuations, the values for the
power law fluids are significantly lower than the Newto-
nian case, and decrease with decreasingn. This behaviour
has been observed experimentally[1,3] in turbulent flow of
non-Newtonian fluids, although there is no clear understand-
ing of why the relative magnitudes of the axial and in-plane
velocity fluctuations are different.

Similar behaviour is also found in measurements of
low Reynolds number Newtonian turbulence. Low and
high Reynolds number flows produce almost identical
(non-dimensionalised) axial velocity fluctuations, whereas
the transverse components are weaker for low Reynolds
number and have their peak somewhat closer to the pipe
wall [24]. Thus these phenomena in the shear-thinning
results are possibly features of flows that are not fully de-
veloped and in which a self-similar velocity profile is not
yet established in the pipe. Because the viscosity is higher
in the core region (in the shear-thinning case), the turbu-
lence is not as fully developed there, especially for the
fairly low generalised Reynolds number of 5500 used in
the simulations here. Consequently, lower transverse fluc-
tuations might be expected in shear-thinning fluids in the
core region simply because of this under-development.

The results in[10] suggest that asReg increases, the
transverse velocity fluctuations do increase, although it is
not clear if the gap between them and the Newtonian results
will be bridged or not. It appears possible that the increased
viscosity in the core regions of the flow in shear-thinning
fluids may always result in lower fluctuations than in a
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Fig. 6. Turbulence intensities: (a) axial, (b) radial and (c) azimuthal, (d) Reynolds shear stress, (e) turbulence production, and (f) rms axial vorticity
fluctuation plotted as a function ofr/D. (Solid line for Newtonian DNS, power law fluids aren = 0.5 (�), n = 0.69 (�) andn = 0.75 (�).

Newtonian fluid, although conclusive evidence must await
further work at higherReg. As n → 1 in Fig. 6, the
non-Newtonian results approach the Newtonian correla-
tions, as expected.

The distance from the wall of the peak velocity fluctu-
ations and Reynolds stress generally decreases as the flow
index decreases (although the peak of the radial fluctuation

Fig. 7. As for Fig. 6 plotted in wall coordinates.

increases somewhat in non-dimensional units,Fig. 7b). This
is a reflection of the increased viscosity away from the wall
that damps out turbulent fluctuations. The production of tur-
bulence is given by

Pzr = U ′V ′ ∂Ū
∂r

(11)
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Fig. 8. Azimuthal two-point correlation of the fluctuation velocity
Ruu = 〈U ′(θ)U ′(θ + δθ)〉 at y+ = 20. The mean streak spacing is esti-
mated as twice the value of separation at the minimum value ofRuu.

and is plotted inFigs. 6e and 7e. As seen, the maximum
production occurs at a value ofy+ ≈ 10 for the Newto-
nian fluid. For the power law fluids this distance increases
slightly for n = 0.75 and 0.69, decreasing slightly forn =
0.5, although the differences are small. The rms fluctuation
of the streamwise vorticity is plotted inFigs. 6f and 7f. They
show slightly lower peak values asn decreases, with the
location of the peak slightly closer to the wall than in the
Newtonian case, consistent with the velocity fluctuation re-
sults. The mean wall streak spacing for the simulations was
determined from the azimuthal two-point correlation of the
fluctuating axial velocity (Ruu = 〈U ′(θ)U ′(θ+ δθ)〉), shown
in Fig. 8. The streak spacing for the Newtonian simulation
is approximately 125 wall units, forn = 0.75 it is 155 wall
units and forn = 0.69 it is 180 wall units, suggesting larger
streamwise vortices asn decreases, although their intensity
becomes weaker with decreasingn. It was not possible to
estimate a reliable streak spacing from then = 0.5 results.

3.1.3. Comparison to visco-elastic DNS results
It is interesting to compare the shear-thinning results here

to those for visco-elastic fluids presented in[5–7]. In those
studies, the conclusion was drawn that polymer additives
modify the turbulent structure in the buffer layer (10<
y+ < 30) to increase the streamwise vortex size, lessen the
streamwise vortex strength, and consequently supply less
energy to the log layer. The reduction in advective transport
of high-momentum fluid from the core toward the wall ulti-
mately leads to the prediction of drag reduction. Correlated
to the weaker vortices were reduced wall normal and span-
wise velocity fluctuations compared to the Newtonian case
(these correspond to radial and azimuthal fluctuations here).
It was also observed that streamwise (axial) velocity fluctu-
ations were slightly higher than the Newtonian case. As the
degree of visco-elasticity increased, these trends increased
and it was seen that the mean velocity log-layer slope in-
creased also.

The description of the majority of these phenomena are
similar in character to those observed here when ‘degree of

Fig. 9. Fanning friction factors determined for the DNS simulations as a
function of the Metzner–Reed Reynolds number. The Herschel–Bulkley re-
sults are denoted by∗ and DNS results of a Newtonian fluid atRe= 5500
denoted by×.

visco-elasticity’ is replaced by ‘degree of shear-thinning’.
Recall that results presented here are for a fluid that is
purely shear-thinning. The major differences between the
shear-thinning results and the visco-elastic results are that
the axial velocity fluctuations decrease with shear-thinning
(they increase with visco-elasticity) and the peak values
of the velocity fluctuations occur closer to the wall in the
shear-thinning case, not further away. Both of these predic-
tions are consistent with an increase in viscosity away from
the wall (and hence enhanced viscous damping) that occurs
in shear-thinning fluids. A final comment regardingFig. 7
is that the similarity in shape of the profiles and the loca-
tion of maxima between the shear-thinning fluids and the
Newtonian case suggest that non-dimensionalisation based
on the mean wall viscosityηw is appropriate, and hence use
of Reg as a basis for comparison is justified.

3.1.4. Friction factors
The Fanning friction factor,f , is defined as the

non-dimensional wall shear stress and is defined as

f = τw

(1/2)ρŪ2
. (12)

For shear-thinning fluids, the friction factor is tradition-
ally plotted against the Metzner–Reed Reynolds number
(Eq. (7)). The results obtained numerically here are com-
pared inFig. 9 to the friction factors determined by Dodge
and Metzner[13].

The numerical results predict friction factors that are
lower than the corresponding values for a Newtonian fluid.
Qualitatively they agree with experimental observations
[13] in which shear-thinning behaviour was seen to lead to
a reduction in friction factor for a fixedReMR. Quantita-
tively, it is clear that the predicted values from simulation
are higher than those measured in[13] by approximately
10–15%—the reason for this difference is unclear, although
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it is likely that the fluids used in[13] were not well rep-
resented as power law fluids over the range of shear rates
applicable to their turbulent flow. The possibility of numer-
ical inadequacies remains, although validation work, grid
convergence studies and a domain length study (reported
below, in which doubling the domain length modified the
friction factor by less than 2%) all suggest that this is not
likely to be a major factor.

3.1.5. Intermittency and transition for power law fluids
Time traces of velocity and pressure signals forn = 0.5

and 0.75 are shown inFig. 10. Traces at the centreline
(dashed line) and near-wall (solid line) are shown, although
are difficult to distinguish except for the case of the axial
velocity component,U. There is a clear distinction between
the results for the two different flow indices. The signals
for n = 0.75 (lower three graphs) appear as a fairly random
perturbation around a mean value, whereas the signals for
n = 0.5 (upper three graphs) are clearly showing large-scale
coherent excursions with a random signal superimposed.

Fig. 10. Time traces of axial velocity, radial velocity, and pressure near the wall (solid line) and near the pipe centre (dashed line) forn = 0.5 (top three
graphs) andn = 0.75 (bottom three graphs). All units are non-dimensionalised.

The period of these large deviations is found to be ap-
proximately equal to the length of the computational domain
(4πD) divided by the centreline velocity—hence these re-
sults are a computational artefact and cannot be relied on
as an accurate representation of the real flow for the case of
n = 0.5. The axial extent of these structures is significantly
less than the domain length (approximately half, see con-
tours of the axial velocity near the pipe wall inFig. 11) yet
they are self-sustaining over many transit times of the do-
main. This result suggests that the flow is likely to be tran-
sitional and in reality will contain intermittent phenomena.

Fig. 11 shows that for the case ofn = 0.5 (top panel),
a large region of turbulent activity exists toward the left of
the domain whereas the region near the centre of the flow is
fairly devoid of unsteady structure. This type of flow shows
typical transitional behaviour and is similar to the turbulent
puffs observed in Newtonian fluids in the transitional regime,
although it occurs here at a generalised Reynolds number
that is quite high compared to Newtonian transition. In the
simulation, the active region of the flow continually moves
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along the pipe and appears to preferentially occur at one
azimuthal location for extended times, so that the average
velocity profile over approximately 10 domain transit times
(100 pipe diameters) shows some asymmetry. This suggests
that permanent asymmetry might be able to be sustained in
the transitional regime for power law fluids if a preferential
mechanism exists for triggering the puffs (for example, an
upstream pipe bend), and may explain the asymmetry ob-
served in experiments in[3]. Because of the short domain,
this possibility is purely speculative although it warrants a
more detailed study. Then = 0.5 case has been re-run with
a domain length that is twice as long (results are discussed
in a subsequent section).

As the flow index increases, the distribution of wall streaks
becomes more homogeneous inFig. 11, although there are
still local structures for bothn = 0.69 and 0.75. In each
case, the wall streaks are quite long, further suggesting that
the flow is not fully developed for any of the three power law
fluids at thisReg. However, the time series forn = 0.69 and
0.75 do not show large-scale time coherence, indicating that
these flows are of a fundamentally different character to the
case ofn = 0.5 which can be categorised as transitional. For
the case ofn = 1 (a Newtonian fluid) the structure is more
random and the streaks shorter, indicative of more developed
turbulence. These results taken together are evidence that

Fig. 11. Contours of instantaneous axial velocity close to the pipe wall for power law fluids,Reg ≈ 5500,n = 0.5 (top), 0.69, 0.75 and Newtonian fluid
(Re= 5500) (bottom). (The data extraction surface has been rolled flat and the flow is from left to right. White represents high velocity and black low.)

transition is delayed for more shear-thinning fluids under the
assumption thatReg is a valid basis for comparing them.

Instantaneous snapshots of axial velocity, cross-sectional
velocity, and contours of viscosity forReg ≈ 5500 are shown
in Fig. 12. These cross-sections are taken at an axial location
that is inside the intense turbulent structure seen inn = 0.5
in Fig. 11 and highlight the most unsteady regions in the
pipe. The contour scales are identical for each flow index
and the magnitude of the cross-sectional velocity scales are
also equal. They show the degree of unsteadiness in the flow
as well as the degree to which the major unsteady structures
are confined to regions close to the pipe wall for the power
law fluids, whereas there is a significantly increased degree
of structure in the core region of the Newtonian fluid.

Clearly seen are lower viscosities (indicative of higher
shear rates) in the wall regions of the power law viscosity
contour plots. A plot of the mean viscosity as a function
of radius for the three power law simulations is given in
Fig. 13. Of note is the range of viscosities, with a relatively
small difference in mean viscosity between wall and centre-
line for n = 0.75 (a factor of approximately 2), whereas a
factor of approximately 4.6 applies forn = 0.5. This dif-
ference is also seen in the instantaneous viscosity plots in
Fig. 12where the higher viscosities (seen as dark contours)
are quite prominent. This behaviour is expected because for
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Fig. 12. Contours of instantaneous axial velocity, in-plane velocity vectors, and viscosity for power law fluids, all forReg ≈ 5500 andn = 0.5 (left),
0.69, 0.75 and Newtonian fluid(Re= 5500) (right). (For axial velocity, white contours are high and black low. For viscosity, white is low viscosity and
black high.)

more shear-thinning fluids, with the same value of mean wall
viscosity, higher core viscosities are inevitable. The mean
viscosity averaged over the domain for the three power law
cases is 3.35, 1.86 and 1.49 times the wall viscosity forn =
0.5, 0.69 and 0.75, respectively.

3.1.6. Results for extended domain withn = 0.5
As discussed above, the simulation forn = 0.5 was

in a transitional regime and the observation of a puff-type

Fig. 13. Mean normalised viscosity as a function of radius for power law
fluids at Reg ≈ 5500.

structure that persisted for many domain transit times was
possibly a numerical artefact. Consequently, this simulation
was run on a domain with length 8πD (twice as long) with
twice the number of axial mesh points (i.e. at the same axial
resolution). To initialise this simulation, one half of the do-
main was set equal to the 4πD solution at a given time and
the remaining half set to the solution at one axial location
in an inactive part of the pipe (so that the solution varied
smoothly along the entire domain length). The importance
of this initial condition is that it contained only one large
turbulent structure, whose evolution could be compared to
the shorter domain results. This simulation was run for ap-
proximately 12 domain transit times (over 300 pipe diame-
ters), with average statistics being collected over the last six
domain transit times.

A comparison of the average flow results for the two dif-
ferent domain lengths is presented inFig. 14. As can be
seen, the results are very similar, the major difference being
in the axial turbulence intensity that is slightly higher for
the longer domain length.

The character of the near-wall structure is shown inFig. 15
(cf. Fig. 11a for the shorter domain). There is some differ-
ence in structure in that the single large puff that fills the
cross-section (and which lasts for many transit times of the
short domain) breaks down in the longer domain to form a
number of smaller structures. These structures continually
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Fig. 14. Turbulence intensities: (a) axial, (b) radial and (c) azimuthal, (d) Reynolds shear stress, (e) turbulence production, and (f) mean wall velocity
profile for the casen = 0.5. (Solid line for Newtonian DNS, domain length 4πD (�), 8πD (�).)

break and merge, although it is clear that they do not fill
the domain even after travelling the equivalent of 300 pipe
diameters. The assessment of this flow as transitional con-
tinues to be supported by the extended domain results. The
friction factor determined from these results differs from the
shorter domain calculation by less than 2%.

3.2. Results for the Herschel–Bulkley fluid

Results for the Herschel–Bulkley fluid are preliminary and
two simulations have been run for one fluid rheology and two
values ofReg (for parameters seeTable 1). Rheology values
were chosen to match experimental results for a 0.05 wt.%
Ultrez 10 solution and were estimated from a curve fit to
a rheogram obtained in a Bohlin rheometer. The fit gave
a yield stress ofτy = 1.35 Pa, a consistencyK = 1.203
and a flow indexn = 0.52. The experimental measurements

Fig. 15. Contours of instantaneous axial velocity close to the pipe wall forn = 0.5 at three times. Each image is separated by approximately two domain
transit times (equivalent to 50 pipe diameters between consecutive images).

indicated that a pressure gradient of 1.42 kPa/m resulted in
a superficial velocity of 3.36 m/s in the line (ID of 105 mm)
and a generalised Reynolds number ofReg = 7027.

When the same values as the experiment are used in the
simulation, the superficial velocity predicted by the simula-
tion is 11% lower than the measured value and the predicted
Reg is 5800 (the discrepancy is larger than 11% because
both the superficial velocity and the mean wall viscosity are
different). A second simulation was run at a higher pressure
gradient (1.75 kPa/m) and resulted in a superficial velocity
of 3.5 m/s andReg = 8130. TheReg of the two simula-
tions bracketed theReg of the experimental measurements.
The computationally predicted profiles (in conventional wall
units based on the mean wall viscosity) are presented in
Fig. 16.

The simulation results show good general agreement
in terms of shape and magnitude when compared to the
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Fig. 16. Mean axial velocity profile in conventional (Newtonian) wall units
for a Herschel–Bulkley fluid: comparison of DNS results atReg = 5800
(�), Reg = 8130 (�) and experimental results atReg = 7027 (×).

experimentally measured profile. The velocity profiles for
both simulations lie slightly above the low Reynolds num-
ber Newtonian profile, indicating that either the flow is less
well developed than that of a Newtonian fluid at similar
Reynolds numbers or that there is a fundamentally differ-
ent turbulent structure in the case of a yield stress fluid.
Note that the DNS profiles do not bracket the experimen-
tal profile, despite the simulationReg bracketing theReg
of the experiment. Both DNS profiles lie slightly above
the experimental one, suggesting that there is a difference
between the flow of a ‘pure’ Herschel–Bulkley fluid (as
approximated in the simulations) and the flow of the model

Fig. 17. Turbulence intensities: (a) axial, (b) radial and (c) azimuthal, (d) Reynolds shear stress, (e) turbulence production, and (f) rms axial vorticity
fluctuation plotted as a function ofy+ (solid line is Newtonian DNS atRe= 5500). Herschel–Bulkley simulations areReg = 5800 (�) andReg = 8130
(�). Experimental results (where available) are (×).

fluid used in the experiments. This is not surprising given
that the rheology is a curve fit obtained over a limited range
of shear rates. However, the discrepancy between DNS and
measurement is significantly less than that observed for the
power law experiments discussed inSection 2.2.1(and re-
ported in[9,10]) and suggests that elastic and elongational
viscosity effects are not important for the real fluid and fur-
thermore that the Herschel–Bulkley model is a reasonable
approximation for the experimental fluid over the range of
shear rates present in the flow.

Turbulence statistics are shown inFig. 17. Good agree-
ment between the simulated and measured axial and
azimuthal turbulence intensities is seen inFig. 17a and
c. Turbulence intensities and Reynolds stresses follow the
same trend as the results for the power law fluids (seeFig. 7),
and the results for theReg = 5800 Herschel–Bulkley simu-
lation have very similar shapes and magnitudes to those for
the power law simulation forn = 0.5. This suggests that a
small yield stress (as simulated here) has very little effect
on the second-order turbulence statistics. The major differ-
ence between the Herschel–Bulkley and power law results
is in the location of maximum turbulence production that is
shifted toy+ ≈ 16 for the lowerReg flow of the yield stress
material. The results inFigs. 16 and 17are encouraging
and suggest that DNS is able to provide reliable predictions
of the turbulent flow of shear-thinning fluids provided an
appropriate choice of rheological model is made.

Near-wall structures are shown inFig. 18 and cross-
sections of velocity and viscosity are presented inFig. 19.
The DNS results predict that this flow is also transitional
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Fig. 18. Contours of instantaneous axial velocity close to the pipe wall for the Herschel–Bulkley fluid atReg = 5800 (top) andReg = 8130 (bottom).
The data extraction surface has been rolled flat and the flow is from left to right. White represents high velocity and black low.

at the lowerReg, with slug/puff type behaviour predicted
(seeFig. 18). As in the case of then = 0.5 power law
simulation, it was not possible to determine a reliable es-
timate of the near-wall streak spacing from these results.
The structures and general appearance of these images is
similar to then = 0.5 power law results, and for the com-
paratively low yield stress utilised in the simulations there
are no significant differences between the two fluid types.
Additional simulations for different flow indices and for a

Fig. 19. Contours of instantaneous axial velocity, in-plane velocity vectors, and viscosity for power law fluids. The two columns on the left are different
axial locations forReg = 5800 and the two columns on the right are forReg = 8130. (For axial velocity, white contours are high and black low. For
viscosity, white is low viscosity and black high.)

wider range of yield stresses need to be undertaken to more
fully explore the effect of yield stress.

The mean viscosity as a function of radius (normalised
by the wall viscosity) is shown inFig. 20. The difference
between the mean wall and centreline viscosity forReg =
5800 is approximately 7, and forReg = 8130 it is 8, showing
that the presence of a yield stress has had a measurable
influence on the viscosity profile (compare to the centreline
to wall viscosity ratio of approximately 5.4 for the power



M. Rudman et al. / J. Non-Newtonian Fluid Mech. 118 (2004) 33–48 47

Fig. 20. Mean normalised viscosity as a function of radius for Herschel–
Bulkley fluids at two differentReg.

simulation at a similarReg). Interesting to note is that the
higher Reg case has a greater ratio of centreline to wall
viscosity, although the actual magnitudes of viscosity are
smaller for the higherReg case.

4. Summary of results

The applicability of Clapp’s scaling and log law for power
law fluids is backed up by the present DNS results for power
law fluids, although the Reynolds numbers used here are
lower than those used to derive the experimental correlation.
The parameters used by Clapp (A = 3.8, B = 2.78) should
probably be modified so that they collapse to the generally
accepted values for Newtonian turbulence. The results also
suggest that as the power law index (n) is decreased, and the
deviation from Newtonian rheology increases, the value of
Reg at which transition occurs will also increase. The results
shown here (in particular, inFigs. 6–8) suggest that use of the
wall viscosity (Eq. (5)) and the generalised Reynolds number
(Eq. (6)) are a suitable basis on which to non-dimensionalise
and compare the flows of generalised Newtonian fluids.

The friction factors predicted by the simulations are
10–15% higher than the Dodge and Metzner correlations ob-
tained from experiment and presented in[13]. This is most
likely related to the imperfect fit of the experimental fluids
with power law rheology. However, the simulation results
here show that a reduction in the friction factor results for
shear-thinning (non-visco-elastic), power law fluids, and is
consistent with experimental results. The reduction in fric-
tion factor is due to the higher core viscosities that reduce
the strength of the near-wall eddies, and hence momentum
transfer from the core to the wall. Direct comparison of
friction factors for differentn is complicated because a con-
sistent reference state is not introduced given the different
viscosity levels in the core of the flow for different cases.

The results are supportive of a transition mechanism for
shear-thinning fluids that is similar to Newtonian fluids and

which occurs via intermittency and turbulent events like the
slugs and puffs. Although there was some difference in the
extent of these structures when the domain length of the
simulation was increased, isolated structures persisted in the
simulation for many domain transit times. These unsteady
structures may potentially be able to resuspend small settling
particles in particle-laden flows, allowing the transitional
regime to be possible for suspension transport in power-law
carrier fluids. Because the specific energy consumption of
hydraulic conveying is lowest at transition, transport in this
regime has the additional benefit of being the most energy
efficient, and design based on flow rates and rheology could
be undertaken to choose the transitional regime.

Simulations of a Herschel–Bulkley fluid were in quite
good agreement compared to Ultrez 10 experimental results.
They also showed similar behaviour to the power law simu-
lation results, with log-law profiles that lay above the New-
tonian profile (suggesting undeveloped flow) and velocity
fluctuations with similar behaviour. Like the power law re-
sults, the flow had some of the character of a transitional
flow.

Difficulties encountered in experimentation as a result of
using polymer solutions to approximate idealised rheologies
can lead to problems of interpretation and understanding.
The application of DNS to flows of non-Newtonian fluids
with certainty of the rheology being studied has the potential
to enable the effect of different rheological parameters to
be correctly quantified and understood. This is possibly the
greatest contribution that DNS can bring to the study of flows
of non-Newtonian fluids. However, given the difficulty in
approximating a measured rheology over a very wide range
of shear rates using any of the simple generalised Newtonian
rheology models, it appears likely that obtaining accurate
results of turbulent flow of real non-Newtonian fluids using
DNS will remain a difficult task.
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