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In this paper we investigate the instabilities arising in a flow through a compressor passage using 
BiGlobal stability analysis. The adopted geometry comes from the results of previous experimental and 
numerical investigations on a linear low-pressure (LP) compressor cascade [6,19,20]. Specifically, we 
address the role of laminar separation of the boundary layers at Re = 138,500, where such separation 
effects are enhanced by the strong adverse pressure gradients that the flow experiences, in contrast to the 
more commonly studied low-pressure (LP) turbines. The vortical structures downstream the separation 
bubble on the suction surface were recognised to show a well-defined time periodicity, which could be 
precisely detected. Floquet stability analysis was then used to investigate the response of the flow to 
infinitesimal perturbations. To overcome the difficulty of performing a Floquet stability analysis when the 
periodicity is restricted just to a small region of the domain, a phase-averaged base flow was computed, 
such that only the organised motions are extracted, neglecting all the background unsteadiness. The same 
technique allowed us to confirm the presence of strong energy transient growth phenomena, which are 
directly associated with convective instabilities occurring in the region downstream from the separation 
bubble.

© 2015 Published by Elsevier Masson SAS.
1. Introduction

Studies of flows in turbomachines are fundamental in aero-
nautical engineering and are currently subject to extensive inves-
tigations. These problems are particularly interesting due to the 
presence of relevant transitional phenomena. These phenomena 
are generally associated with high adverse pressure gradients with 
subsequent separation effects of the boundary layers and transition 
to turbulence. Wu and Durbin [17] performed simulations of flows 
in a T106 turbine cascade with periodically incoming wakes. They 
observed that the incoming wakes triggered turbulent spots along 
the suction surface, which prevented further separation effects; 
besides, two sets of streamwise vortices were observed on the 
pressure surface. Zaki and Durbin [18] demonstrate that the onset 
of turbulent spots can be explained by the interaction of free-
stream turbulence with the lifted boundary-layer streaks. Jones et 
al. [9] simulated a flow over a NACA-0012 airfoil at 5◦ incidence 
at Re = 5 × 104. The authors detected the presence of a laminar 
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separation bubble located at about 15% of the axial cord, where 
the breakdown to turbulence was observed; moreover, the flow 
was found to be absolutely unstable to three-dimensional pertur-
bations. Abdessemed et al. [1] studied flow stability of a periodic 
array of a T106/300 low-pressure turbine blades at low Reynolds 
numbers (Re < 5000) using Floquet stability analysis and showed 
that for increasing Reynolds numbers the flow becomes unstable 
at progressively larger wavelengths. Although most studies focus 
on the low-pressure stages of turbines, several experimental and 
numerical investigations have been performed on flows in axial 
compressor geometries. Hughes and Walker [7] experimentally in-
vestigated separation effects of the boundary layer on the suction 
surface of a compressor blade at 1.1 × 105 < Re < 1.3 × 105 and 
simulations of the role of the free-stream turbulence or incoming 
wakes have also been performed [19,20,12,13]. In particular, Zaki 
et al. [19,20] performed DNS of a NACA-0065 geometry, and de-
tected a variety of transitional phenomena on both the pressure 
and suction surfaces. These phenomena were caused by both nat-
ural and by-pass mechanisms. The present study characterises the 
behaviour of a flow through a compressor passage at relatively 
high Reynolds number, Re = 138,500, from a stability perspective. 
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In the configuration adopted in this paper, due to the high ad-
verse pressure gradient along the suction surface of the blade, the 
boundary layer profiles become inflectional and the flow might 
show an instability and high sensitivity to initial disturbances. 
Moreover, perturbations downstream of the separation bubble are 
subject to curvature of the blade and unsteadiness of the flow [20]. 
Therefore, local studies at a fixed streamwise location are not able 
to describe properly the dynamics of the system, which is char-
acterised by distinct vortex shedding along the suction surface. 
Global stability studies by means of a time-averaged mean flows 
were shown to predict the frequency of the vortex shedding [2]. 
However, since a well-defined periodicity of the flow is detected 
on the suction surface, downstream from the separation bubble, 
Floquet analysis is ideal to characterise transition. Unfortunately, 
this is not a feasible approach because this periodicity is just in 
a restricted part of the domain. To overcome this limitation, we 
adopt a phase-averaged base flow [5]. This approach allowed us 
to evaluate the behaviour of transition by computing the leading 
Floquet mode at different spanwise lengths and the presence of 
convective instabilities.

2. Numerical methods and discretisation

The governing equation for an incompressible viscous flow 
are:

∂u

∂t
+ u · ∇u = −∇p + 1

Re
∇2u (1a)

∇ · u = 0 (1b)

where u is the velocity field, t is the time, p the static pressure 
and Re = U∞L/ν is the Reynolds number, defined by means of 
the characteristic length of the domain L, the free-stream flow ve-
locity U∞ and μ is the kinematic viscosity. To study the stability 
of a flow, we decompose the flow field into the sum of a two-
dimensional base state U and three-dimensional perturbations u′ , 
u = U + u′ . Substituting into (1) and neglecting the second order 
terms O (u′ 2), we obtain the linearised Navier–Stokes equations.

∂u′

∂t
+ U · ∇u′ + u′ · ∇U = −∇p′ + 1

Re
∇2u′ (2a)

∇ · u′ = 0 (2b)

Taking the divergence of (2a) and enforcing (2b), we can write 
the problem as (3), where A is a linear operator which encapsu-
lates the time evolution of the perturbations:

∂u′

∂t
= A(U )u′ (3)

We assume the perturbations to be the product of a spatial and 
temporal term u′(x, t) = û(x, y) exp(iβz + λt), where β = 2π/Lz
and λ ∈C; the problem is then shifted to the solution of the eigen-
problem of the associated operator A. In the present work the 
base flows will be computed solving the non-linear Navier–Stokes 
equations (1) and these solutions will then be used to evaluate 
the dominant eigenvalues and eigenvectors of the linearised oper-
ator A. The solution of the eigenproblem is obtained by an Arnoldi 
algorithm based on the earlier work of Barkley et al. [3] and Tuck-
erman and Barkley [15].

3. Geometry and discretisation

The blade geometry is a NACA-65 airfoil at Reynolds number 
Re = 138,500, which is identical to previous studies performed by 
Zaki et al. [19,20]. Although this value is below the normal op-
erating conditions of aeronautical engines, this analysis is aimed 
Fig. 1. Sketch of the geometry of the problem.

at understanding the relevant instability mechanisms involved for 
this geometry. At this Reynolds number transition was seen to 
be rather slow, therefore, in all the simulations performed in this 
paper the flow can be considered laminar. The linear low pres-
sure (LP) compressor cascade is based on the experimental studies 
performed at the University of Armed Forces in Munich (further 
details and discussions about the geometry can be found in [6]). 
Similar to Zaki et al. [19,20], we will consider just one passage 
of the compressor, using periodic boundary conditions on the up-
stream and downstream boundaries of the domain. The use of 
periodic boundary conditions to simulate such flows has already 
been used in the context of turbine passages [17,16] and it gen-
erates synchronous vortex shedding of the trailing-edge vortices. 
The BiGlobal stability analysis performed by Abdessemed et al. [1]
on low-pressure turbine (LPT) blades showed that the adoption of 
two passages affects the dynamics of the shedding, which become 
asynchronous with relevant effects on the stability. However, as 
Zaki et al. [20] noted, this phenomenon is relevant for the geome-
tries where the flow is subject to strong turning effects. In the 
present configuration the velocity at the trailing edge of the blade 
is nearly horizontal and does not interact with the upstream flow, 
therefore no asynchronicity is present. Fig. 1 shows a sketch of the 
geometry used. The vertical length of the domain Lp corresponds 
to one blade pitch Lp � 0.6L, where L is the axial chord of the 
blade. The inflow boundary ∂�I is at a distance LI = −0.4L from 
the leading edge, while the outflow ∂�O is at a distance 4L from 
the trailing edge. As already mentioned, periodic boundary condi-
tions were used on the lower and upper boundaries (∂�P1 and 
∂�P1 respectively), while a velocity (U0 cos(α), U0 sin(α)) was as-
signed at the inflow boundary ∂�I , where α = 42◦ and U0 = 1. 
This configuration corresponds to the angle of attack at design, 
since its actual value in experiments could not be measured reli-
ably. As discussed by Zaki et al. [20], this choice generates some 
differences in the pressure distribution, but does not affect the 
mechanisms related to the boundary layer separation and transi-
tion. To avoid numerical instabilities, an absorbing layer was used 
in the outflow region ∂�O [8], which allows disturbances to pass 
out of the region of interest into a limited small region where they 
are dissipated. This can be achieved by adding a damping momen-
tum forcing to the Navier–Stokes equations, F = −D(u − u|∂�O ), 
where D is the damping coefficient and is different from zero only 
in the damping region, while u|∂�O is the velocity on the bound-
ary. Homogeneous Neumann boundary conditions were used for 
the velocity on the downstream boundary ∂�O . The streamwise 
length of the artificial dumping region is L S = L, while the damp-
ing coefficient was set to D = 50, which was sufficiently large 
to avoid numerical instabilities. No-slip boundary conditions were 
applied on the surface of the blade. In summary, the following 
boundary conditions were adopted:
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Fig. 2. (a) Mesh adopted for the simulations. (b) Detail of the submesh around the 
surface of the blade.

∂�W :=
{

u = 0,

v = 0
(4a)

∂�I :=
{

u = cos(42◦) �= 0.7431
v = sin(42◦) �= 0.6691

(4b)

∂�O :=
{

∂u
∂x = 0
∂v
∂x = 0

(4c)

∂�P1,2 :=
{

u|∂�P1
= u|∂�P2

v|∂�P1
= v|∂�P2

(4d)

We note that the grid topology blade is slightly different from 
the case presented by Zaki et al. [19] and Wu and Durbin [17], 
where the pressure and suction surfaces were incorporated into 
the boundaries of the computational domain. Our choice facilitates 
local refinement of the leading and trailing edges, to guarantee re-
liable results of stability analysis. This geometry was discretised 
using a spectral/hp element method with roughly 6000 elements, 
as shown in Fig. 2a. The mesh is hybrid and composed of both 
triangular and quadrilateral elements. Close to the surfaces of the 
blade, where relevant separation effects are observed, a structured 
sub-mesh of quadrilaterals is adopted (Fig. 2b), while triangles are 
used in the remaining part of the domain. Modal bases were used 
for interpolation using 8th order polynomials [11]. Finally, a stiffly 
stable time splitting scheme [10] was adopted to solve the Navier–
Stokes equations, using a second-order time integration technique 
with a time step 	t = 1 × 10−5. High-order pressure boundary 
conditions [10] were applied on the inflow and wall boundaries, 
whereas a Dirichlet condition was applied on the outflow bound-
ary ∂�O .

4. Description of the base flow

In this section we describe the base flow which provides an 
insight into the physical mechanisms occurring on both the pres-
sure and suction surfaces. Furthermore, it provides a validation of 
our discretisation with respect to the previous results [20]. An im-
portant consideration is the distribution of time-averaged pressure 
coefficient, defined as C P := (P − Pref )/(ρU 2

0/2), where ρ is the 
density of the flow and Pref a reference total pressure, which is 
Fig. 3. Distribution of the pressure coefficient C p along the surface of the blade. 
Solid line represents the result from [20], while hollow circles the present results.

the inflow pressure in the present case. Fig. 3 shows the pro-
file of the pressure coefficient over the surface of the blade. The 
data are compared with the results obtained by Zaki et al. [20]
and provide a validation of the discretisation at the parameters 
summarised in the previous section. The top curve represents the 
pressure surface, where an adverse pressure gradient is established 
up to about x/L � 0.8, followed by a region of favourable pres-
sure gradient. At x/L � 0.55 the curve shows a mild separation of 
the boundary layer. As described by Zaki et al. [20], a more pro-
nounced separation occurs on the suction surface where the flow 
is subject to a strong acceleration until xL � 0.2, followed by a 
strong adverse pressure gradient. This is responsible for an evi-
dent flow separation, and in absence of free-stream perturbations 
(turbulence wakes or free-stream turbulence), a Kelvin–Helmholtz 
instability arises. However, the vortical structures do not break up 
to turbulence and remain in proximity of the surface of the blade. 
A small region of reverse flow can be detected on the suction sur-
face even after the rolls are convected downstream; this region is 
known as secondary bubble and it moves at the same velocity of 
the Kelvin–Helmholtz rolls. A more detailed discussion of the be-
haviour of the pressure coefficients and the physical phenomena 
can be found in [20] and [6].

All these physical mechanisms are apparent in the contours 
of the instantaneous spanwise vorticity ωz around the surface of 
the blade (Fig. 4). To characterise the behaviour of these struc-
tures, we consider the profiles of the velocity along the separation 
region of the suction side. Specifically, we track the time evolu-
tion of the velocity at 4 points, P1 ≡ (x1, y1) = (0.66, 0.65), P2 ≡
(x2, y2) = (0.73, 0.67), P3 ≡ (x3, y3) = (0.82, 0.67), P4 ≡ (x4, y4) =
(0.93, 0.68), which are distributed along the separation region of 
the suction surface where the vortical structures were detected. 
The time evolution of the velocity shows a clear periodic be-
haviour of the structures, confirmed by the presence of a limit 
cycle (Figs. 6–8). A total period T = 0.22 can be clearly identi-
fied, which corresponds to a complete shedding cycle, as shown 
in Fig. 5. In the other parts of the domain, no other straightfor-
ward periodicity could be detected.

5. Phase-averaged base flow and Floquet stability analysis

To characterise the stability of the Kelvin–Helmholtz rolls, we 
need to perform linear stability analysis. Floquet stability analy-
sis requires time-periodicity and is therefore not applicable on the 
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Fig. 4. Profile of the spanwise vorticity ωz .

whole domain. An alternative approach is the computation of a 
phase-averaged mean flow. This technique allows us to sort the 
flow into several groups, each corresponding to a small interval as-
sociated with the phase of the shedding cycle. Following Cantwell 
and Coles [5], we divided the N samples into a specific number 
of subpopulations N P , 50 in the present study, each one associ-
ated with a particular phase interval of the shedding. Within each 
subpopulation, composed by Ni samples, we can define a mean at 
constant phase 〈u〉:

〈u〉 = 1

Ni

Ni∑
j=1

u j i = 1,2, . . . , N P (5)

The adoption of a phase-averaging technique to approximate 
the base-flow can be shown to be more precise than Reynolds-
averaged base-flows, in fact it leads to a minimisation of the 
contributions of the Reynolds stresses, by which the RANS and 
the Navier–Stokes solution differ [5]. This leads to smaller ap-
proximation errors and is important especially in the context of 
linear stability analysis. Figs. 9 and 10 show the profiles of the 
Fig. 5. Vorticity profile for four different phases of the shedding cycle.

Fig. 6. Time evolution of the streamwise velocity u′; (a) P1 ≡ (x1, y1) = (0.66, 0.65), (b) P2 ≡ (x2, y2) = (0.73, 0.67), (c) P3 ≡ (x3, y3) = (0.82, 0.67), (d) P4 ≡ (x4, y4) =
(0.93, 0.68).



120 G. Rocco et al. / Aerospace Science and Technology 44 (2015) 116–124
Fig. 7. Time evolution of the transverse velocity v ′; (a) P1 ≡ (x1, y1) = (0.66, 0.65), (b) P2 ≡ (x2, y2) = (0.73, 0.67), (c) P3 ≡ (x3, y3) = (0.82, 0.67), (d) P4 ≡ (x4, y4) =
(0.93, 0.68).

Fig. 8. Detection of the limit cycle of the transverse component v as a function of the streamwise component u; (a) P1 ≡ (x1, y1) = (0.66, 0.65), (b) P2 ≡ (x2, y2) =
(0.73, 0.67), (c) P3 ≡ (x3, y3) = (0.82, 0.67), (d) P4 ≡ (x4, y4) = (0.93, 0.68).
phase-averaged vorticity at four different phases, where the phase-
averaging was performed over 100 cycles. Almost all the unsteady 
phenomena on the pressure surface have been smeared out by the 
averaging, while the roll-up of the boundary layer due to a Kelvin–
Helmholtz instability is still detectable on the suction surface.

5.1. Floquet stability analysis

The phase-averaged base flow was examined in terms of its 
capacity to amplify three-dimensional disturbances, using the 
BiGlobal approach [14]. Floquet analyses at different spanwise 
wavenumbers β = 2π/Lz were performed to study the stability 
of the periodic states which characterise the region downstream 
from the separation bubble. The solution of the eigenproblem 
was performed using a Krylov subspace m = 12 and the toler-
ance on the eigenvalues was set to 10−5. Tests with m ≥ 12
produced differences in the magnitudes of the leading Floquet 
modes of order 10−4. Fig. 11 shows the eigenspectrum, which re-
ports the value of the Floquet multipliers with respect to eight 
different eight values of the wavenumber β . All the Floquet mul-
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Fig. 9. Contours of the phase-averaged vorticity at four different phases.
Fig. 10. Detail of the phase-averaged base flow at φ = 0, near the trailing edge.

tipliers are real and |μ| < 1 denotes a decaying perturbation, 
while |μ| > 1 a growing one. Therefore, they are related to sta-
ble and unstable modes respectively. An unstable Floquet mode 
was detected just for very small wavenumbers, β < π/10, where 
the magnitude of the leading Floquet multiplier, |μ|, is greater 
than the unit value. This result is similar the findings of [1], 
who suggested that in a low-pressure turbine, the instabilities 
arise at β → 0 when Re → ∞. Since the instability is region is 
present in a very small range of wavenumbers and is expected 
to become less prominent when the Reynolds number is in-
creased.

Since the region where the instability arises is in a very small 
range of wavenumbers, and is expected to disappear for higher 
Re, it is not investigated in this paper. However, the structure 
of the Floquet mode does not appear to be dissimilar from the 
one found in the stable region. The structure of the normalised 
Floquet mode at β = 500 is reported in Fig. 12; the mode is lo-
cated on the suction side, across the separation bubble, where 
the unsteady phenomena of the phase-averaged base flow were 
observed. Its intensity becomes weaker approaching to the trailing-
edge and, despite that the general structure of the mode appears 
to be rather complex, a wake pattern can still be detected. The 
contributions of the velocity components û′, ̂v ′, ŵ ′ is shown in 
Fig. 13.

We can validate the results of the Floquet analysis superposing 
the Floquet mode to the base flow u(x, y, t) +εû′

(x, t) exp(ωt +βz)
and use the result as initial conditions to integrate the non-linear 
Navier–Stokes equations. In the present case, we chose ε = 10−6

and the energy of the system E = 1
2

∫
�

‖u‖2d� as a function of 
the non-dimensional time is reported in Fig. 14. The growth rate 
obtained from the DNS, corresponding to the slope of the curve 
at t � 0, was found to be 0.885, while the stability analysis pre-
Fig. 11. Floquet multipliers |μ| as a function of the wavenumbers β . Unstable mode 
corresponds to β = π/10.

Fig. 12. Magnitude of the dominant Floquet mode at β = 500.

dicted a value μ = 0.891. The difference of these two values is of 
order 10−3 and can be attributed mainly to the adoption of the 
phase-averaged base flow, which includes the additional presence 
of the Reynolds stresses, and the non-linearities of the Navier–
Stokes equations.
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Fig. 13. Velocity components of the Floquet mode.
Fig. 14. Time evolution of the energy of eigenmode associated with β = 500. The 
curve was obtained by a non-linear Navier–Stokes simulation.

6. Transient growth analysis

The Floquet analysis performed in the previous section pointed 
out that the flow is asymptotically stable at almost every wave-
number. However, the interaction of stable modes might gener-
ate large energy transient growth phenomena. This observation is 
consistent with the presence of a region, downstream from the 
separation bubble, characterised by a significant concentration of 
energy. Transient growth analysis was then performed by means 
of the adjoint loop optimisations described in [3]; the base flow 
consists again of 50 time slices, obtained by phase-averaging the 
non-linear Navier–Stokes equations, corresponding to one shedding 
cycle T = 0.22. The computational parameters are unaltered with 
respect to Floquet analysis, except for the Krylov subspace dimen-
sion which was chosen to be m = 5. Two different time horizons 
were investigated, τ = 0.1 and τ = 0.3 respectively. The varia-
tion of the energy growth with the spanwise wavenumber β is 
shown in Fig. 15. Both cases are convectively unstable in a wide 
range of spanwise wavenumbers, hence significant energy transient 
Fig. 15. Variation of the optimal energy growth G with the spanwise wavenumber 
β for two different time horizons: τ = 0.1 and τ = 0.3 respectively.

growth phenomena are present. The most energised wavenumber 
is β � 400π in both cases, which corresponds to a wavelength 
Lz = 1/200.

Transient growth analysis confirms the prominent role of the 
convective instabilities, showing significant energy amplification. 
These values are comparable with results obtained for flows over a 
backward facing step [4]. The profiles of the vorticity of the opti-
mal perturbations are reported in Fig. 16; in both cases the optimal 
perturbations are located near the separation bubble and are con-
vected downstream from the suction surface, exploiting the shear 
region of the base flow. However, two different topologies can be 
detected for these optimal perturbations: the optimal perturbation 
at τ = 0.1 has the shape of a thin shear layers, while the one at 
τ = 0.3 extends over 10% of the axial chord from the primary sep-
aration region and it is composed of an array of alternating vortical 
structures. The profile of the optimal perturbations and the high 
growth rate of the instabilities show that the region downstream 
from the separation bubble, where the periodic phenomena where 
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Fig. 16. Spanwise vorticity of the optimal perturbations.
Fig. 17. Transient responses at β = 400π for two times horizons (τ = 0.1 and 0.3).

observed, is crucial for triggering convective instabilities and non-
linear mechanisms to transition.

The energy evolution of these second optimal disturbances is 
reported in Fig. 17 for the two time horizons. This profile is ob-
tained by time-marching the linearised Navier–Stokes equations 
using the optimal perturbations as initial conditions. For t ≤ 0.05
the two curves are practically overlapped, but for longer times the 
energy growth associated with τ = 0.3 is subject to a larger am-
plification. These behaviours are characteristic of the small time 
horizons we considered; if τ is large enough, the perturbations 
are expected to be convected further downstream and the energy 
amplification would drop. Fig. 18 shows the time evolution of the 
disturbances. For τ = 0.15 the thin shear layer rolls up while be-
ing convected along the suction surface, experiencing a progressive 
increase in its strength. The optimal perturbation corresponding to 
τ = 0.3 is instead subject to an Orr mechanisms which results into 
a Kelvin–Helmholtz instability, confirming the results obtained by 
the DNS.

7. Conclusions

In this paper we performed stability analysis of a flow over 
a NACA-65 airfoil at Re = 138,500. Direct numerical simulations 
were performed to validate the discretisation and the computa-
tional parameters with the previous findings reported by Zaki et al. 
[20]. Besides, DNS allowed us to understand the prominent role of 
the pressure gradients on the pressure and suction surface. Specif-
ically, the adverse pressure gradient on the suction surface gen-
erates an inflection of the boundary layers, which is subject to 
a Kelvin–Helmholtz instability. The vortical structures were veri-
fied to remain coherent with a well-defined periodicity which was 
clearly identified. A phase-averaging technique was adopted to ex-
Fig. 18. Time evolution of the optimal perturbations. (a) τ = 0.1, (b) τ = 0.3.
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tract only the organised vortical structures and it consists of an 
average of a large ensemble of states with the same phase with 
respect to a reference oscillator. Such approach allowed us to sort 
the flow in 50 time slices and the Floquet stability analysis was 
performed for different spanwise wavenumbers β . The leading Flo-
quet multipliers were found to be real and the flow was seen to 
be unstable just for very small wavenumber (β < π/10). The lead-
ing eigenmode showed a concentration of energy in the region of 
the separation bubble, suggesting the presence of relevant energy 
transient growth phenomena. Therefore a transient growth anal-
ysis was performed for two time horizons, τ = 0.1 and τ = 0.3. 
The maximum energy growth was found at β = 400π . Both time 
horizons show a significant energy transient growth phenomena, 
but, but for τ = 0.1 the optimal perturbation is a thin shear layer, 
localised nearby the separation bubble, while a row of alternat-
ing vortices, typical of a Kelvin–Helmholtz instability was found at 
τ = 0.3.
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