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Chapter 1

Introduction

Semtex is a family of spectral element simulation codes, most prominently a code for direct numer-
ical simulation of incompressible flow. The spectral element method is a high-order finite element
technique that combines the geometric flexibility of finite elements with the high accuracy of spectral
methods. The method was pioneered in the mid 1980’s by Anthony Patera at MIT (Patera; 1984;
Korczak and Patera; 1986). Semtex uses isoparametrically mapped two-dimensional quadrilateral
elements, the classic Gauss–Lobatto–Legendre ‘nodal’ shape function basis, and continuous Galerkin
projection. Extension to three-dimensional capability is achieved using Fourier expansions in an or-
thogonal direction. Algorithmically the code is similar to Ron Henderson’s Prism (Henderson and
Karniadakis; 1995; Karniadakis and Henderson; 1998; Henderson; 1999), but with some differences in
design, and lacks mortar element capability. A notable extension is that Semtex can solve problems
in cylindrical as well as Cartesian coordinate systems (Blackburn and Sherwin; 2004; Blackburn et al.;
2019).

1.1 Numerical method

Some central features of the spectral element method are

Orthogonal polynomial-based shape functions Spectral accuracy is achieved by using tensor-
product Lagrange interpolants within each element, where the nodes of these shape func-
tions are placed at the zeros of Legendre polynomials mapped from the canonical domain
[−1,+1]× [−1,+1] to each element. In one spatial dimension, the resulting Gauss–Lobatto–
Legendre interpolant which is unity at one of the N + 1 Gauss–Lobatto points xj in [−1,+1]
and zero at the others is

ψj(x) =
1

N(N + 1)LN (xj)

(1− x2)L′
N (x)

xj − x
. (1.1)

For example, the family of sixth-order GLL Lagrange interpolants is shown in figure 1.1. In
smooth function spaces it can be shown that the resulting interpolants converge exponentially
fast (faster than any negative integer power of N) as the order of the interpolant is increased.
See Canuto et al. (1988), §§ 2.3.2 and 9.4.3 or Canuto et al. (2006) § 5.4.

Standard finite element isoparametric mapping Two-dimensional element shape functions are
constructed as tensor products of one-dimensional shape functions. Non-rectangular element
shapes, if required, are developed using isoparametric mappings between physical (x, y) space
and master element (r, s) space on the domain [−1,+1]× [−1,+1], as illustrated in figure 1.2.

Gauss–Lobatto quadrature Gauss–Lobatto quadrature is used for approximating elemental inte-
grals: the quadrature points reside at the nodal points, which enables fast tensor-product
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Figure 1.1: The family of sixth-order one-dimensional GLL Lagrange shape functions on the master
domain [−1,+1].
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r(x)
<latexit sha1_base64="Nmp9ywowBkGKxSuYn5wtum7CKaI="></latexit><latexit sha1_base64="Nmp9ywowBkGKxSuYn5wtum7CKaI="></latexit><latexit sha1_base64="Nmp9ywowBkGKxSuYn5wtum7CKaI="></latexit><latexit sha1_base64="Nmp9ywowBkGKxSuYn5wtum7CKaI="></latexit>

Figure 1.2: Shape functions on two-dimensional elements are constructed using tensor products
of one-dimensional shape functions, incorporating an isoparametric mapping from (x, y) to master
element (r, s) space.

techniques to be used for iterative matrix solution methods. Gauss–Lobatto quadrature on the
nodal points conveniently produces diagonal mass matrices when Lagrange interpolants are
used as basis functions.

Static condensation Direct matrix solutions are sped up by using static condensation coupled with
bandwidth reduction algorithms to reduce storage requirements for assembled system matrices.

While the numerical method is very accurate and efficient, it also has the advantage that complex
geometries can be accommodated by employing unstructured conforming meshes. The vertices of
spectral elements meshes can be produced using finite-element mesh generation procedures, or any
other method (for Semtex, only meshes with quadrilateral elements are accepted).

Time integration employs a backwards-time differencing scheme described by Karniadakis et al.
(1991), more recently classified as a velocity-correction method by Guermond and Shen (2003). One
can select first, second, or third-order time integration, but second order is usually a reasonable
compromise, and is the default scheme. Equal-order interpolation is used for velocity and pressure
(see Guermond et al.; 2006).

As of Semtex V8, the ‘alternating skew symmetric’ form (Zang; 1991) is the default for con-
struction of nonlinear terms in the Navier–Stokes equations (faster and just as robust as full skew
symmetric, which is still an option), and no dealiasing of product terms is carried out for either serial
or parallel operations. As an aid to robust operation at high Reynolds numbers, ‘spectral vanishing
viscosity’ (Xu and Pasquetti; 2004) can easily be enabled by setting appropriate control tokens. A
significant additional novelty of Semtex V9.3 is the option of robust energy-stable open boundary
conditions (Dong; 2015), which alleviate much of the numerical stability problem associated with
inflows that occur at the outflow boundary. These also allow ingestion of flow without causing blow-
ups. As of Semtex V9, DNS variables may optionally contain a scalar variable in addition to velocity
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PeriodicPeriodic

Spectral element

Figure 1.3: Semtex can solve either elliptic or incompressible Navier–Stokes problems in domains
which are either two-dimensional or made three-dimensional by extrusion of a two-dimensional domain
in a periodic direction. Either Cartesian (left) or cylindrical (right) coordinate systems can be used.

components and pressure. If requested (by running dns -f), evolution of the scalar can be obtained
in a frozen, pre-supplied velocity field, i.e. as solution of an advection–diffusion problem.

As suggested in figure 1.3, Semtex can solve problems in two-dimensional domains or in three-
dimensional domains that can be obtained from arbitrary two-dimensional domains by extrusion in
an orthogonal direction in which the solution fields are periodic; often such problems are referred to
as 2 1/2-dimensional. Quite a large number of fundamental problems in mechanics can be tackled
using this level of geometric complexity, but if you need genuinely three-dimensional geometries
then look elsewhere. While parallel execution is supported, the method is only parallel across the
homogeneous/extrustion/Fourier direction, so each process has to be able to accommodate at least
two two-dimensional data planes and associated overheads. Sometimes this design restriction is
significant. Code performance is typically quite efficient (and fast) up to some hundreds or perhaps
thousands of processors, but this is problem-dependent.

1.2 Implementation

The top level of the code is written in C++, with calls to C and Fortran library routines, e.g. BLAS
and LAPACK. The original implementation for two-dimensional Cartesian geometries was extended
to three dimensions using Fourier expansion functions for spatially-periodic directions in Cartesian
and cylindrical spaces. Concurrent execution is supported, using MPI as the basis for interprocess
communications, and the code has been run on a wide variety of conventional multiprocessor ma-
chines. Basically it ought to work with little trouble on any contemporary Unix system. GPUs are
not supported, nor is OpenMP. The code is unlikely to benefit much, if at all, from multi-threaded
execution, and we generally suggest that multi-threaded execution be disabled.

There have been various code extensions that are not part of the base distribution. These in-
clude dynamic and non-dynamic LES (Blackburn and Schmidt; 2003), simple power-law type non-
Newtonian rheologies (Rudman and Blackburn; 2006), accelerating frame of reference coupling for
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aeroelasticity (Blackburn and Henderson; 1996, 1999; Blackburn et al.; 2000; Blackburn; 2003),
solution of steady-state flows via Newton–Raphson iteration (Blackburn; 2002)

However, linear stability analysis (Blackburn; 2002; Blackburn and Lopez; 2003a,b; Blackburn
et al.; 2005; Sherwin and Blackburn; 2005; Elston et al.; 2006; Blackburn and Sherwin; 2007) and
optimal transient growth analysis (Blackburn et al.; 2008) are released as an additional open-source
code base (called Dog), with a separate user guide called ‘Working Dog ’.

1.3 Further reading

The numerical techniques used by Semtex are summarised in Blackburn et al. (2019). A good
introduction to (low-order) finite element methods is provided by Hughes (1987). The most com-
prehensive references on spectral methods in general are Gottlieb and Orszag (1977), Canuto et al.
(1988, 2006). The first papers by Patera (1984) and Korczak and Patera (1986) provide a good
introduction to spectral elements, although some implementation details changed with time and
Maday and Patera (1989) is more reflective of the methods used in Semtex. The adoption of Fourier
expansions to extend the method to three spatial dimensions is discussed by Amon and Patera (1989),
Karniadakis (1989) and Karniadakis (1990). The use of spectral element techniques in cylindrical
coordinates is dealt with in Blackburn and Sherwin (2004). The book by Funaro (1997) provides
useful information and further references. Overviews and some applications appear in Karniadakis
and Henderson (1998); Henderson (1999). The definitive reference is now the book by Karniadakis
and Sherwin (2005), but you will also find the text by Deville, Fischer and Mund (2002) useful for
alternative explanations and views. More recently, the book by Canuto et al. (2007) provides both
theory and applications of spectral as well as spectral element methods in fluid dynamics.
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Chapter 2

Starting out

2.1 Computational environment

It is assumed you are using some version of Unix (which includes Mac OS X), with a development
system that includes C, C++ and Fortran compilers, bison (or yacc), make, and optionally cmake.
For post-processing, SuperMongo and Tecplot would be nice to have but are not essential to get up
and running, and VTK-based visualisation tools such as VisIt or ParaView can alternatively be used
in place of Tecplot.

Instructions for building and testing the codes are given in the accompanying StartHere.txt and
README.md files in the top-level directory. The rest of the present document assumes that you are
able to build a working set of executables and place them in your PATH.

2.2 Equations to be solved

The central solvers provided by the Semtex package are

elliptic for elliptic (Laplace, Poisson, Helmholtz) problems,
dns for time-varying incompressible Navier–Stokes problems, with an optional scalar,

and (if MPI is present) their equivalent multi-process versions elliptic mp and dns mp, which can
speed up solution of three-dimensional problems (see § 3.9.2). There are also a number of associated
pre- and post-processing utilities.

Elliptic equations dealt with by Semtex are in general of Helmholtz type;

∇2c− λ2c = f, (2.1)

where λ is a real constant and f is in general a function of space; if λ = 0 we have Poisson’s equation
while if also f = 0 we have Laplace’s equation. These equations are solved via a Petrov–Galerkin
method using standard finite-element techniques. While elliptic equations may be of less interest
to many readers than the Navier–Stokes equations, it is simple to provide an elliptic solver since it
underlies the time-splitting approach adopted for tackling the Navier–Stokes equations, i.e. basically
as a sequence of solutions to elliptic scalar equations in each timestep.

The incompressible Navier–Stokes equations are

∂tu+N(u) = −∇P + ν∇2u+ f with ∇ · u = 0; (2.2)

P = p/ρ is sometimes called the modified pressure and ν = µ/ρ is the kinematic viscosity, while
f represents body force per unit mass; see § 4.13 for a description of the forms of f implemented
in the code. The nonlinear terms N(u) can be represented in two (or more) ways which are
equivalent in the continuous setting but have somewhat different behaviour in the discrete setting:

8



either in the ‘non-conservative’ form u · ∇u or the ‘skew-symmetric’ form [u · ∇u + ∇ · uu]/2.
While both forms are provided, generally we use the skew-symmetric form since compared to the
non-conservative form it tends to be more robust (has better energy conservation properties), or
a simplified/cheaper form called the ‘alternating skew-symmetric’ which alternates between using
u ·∇u and ∇·uu on successive timesteps; this proves to be almost as robust as full skew-symmetric
but has a computational cost equivalent to the non-conservative form. We can optionally demand
that N(u) = 0 in which case we have the (unsteady) Stokes equations. If an advected scalar c is
present, the Navier–Stokes equations are augmented by the advection–diffusion equation

∂tc+C(c) = α∇2c, (2.3)

where α = ν/Pr (Pr being the Prandtl number). In this case again, C(c) can take non-conservative
form u ·∇c, skew-symmetric form [u ·∇c+∇·uc]/2, the alternating equivalent or indeed C(c) = 0
according to what is requested for the momentum equations. It is possible to run dns in a mode
which uses a ‘frozen’ velocity field u, in which case just the advection–diffusion equation for c is
integrated forward in time.

Numbers of velocity components and spatial dimensions: for Navier–Stokes type problems, Semtex
can solve problems which are (a) two-dimensional and two-component, (b) two-dimensional and
three-component, or three-dimensional and three-component (a.k.a. 2D2C, 2D3C, 3D3C).

As with many codes used to solve the unsteady Navier–Stokes equations, diffusion-type terms
(those involving ∇2) are dealt with implicitly in time, while the nonlinear-type terms N and C are
dealt with explicitly, so that stable time integration generally requires a time-step restriction of CFL
type.

2.3 Mesh resolution—and design

This is such a large area of discourse that we can’t hope to adequately cover it here; the following
brief remarks are intended as an introduction only.

Since it employs high-order finite element methods in the (x, y) plane, Semtex offers the choice
of element-size-based refinement (so-called h-refinement) or polynomial-order-based refinement (so-
called p-refinement) in attempting to converge a solution (it is an hp-type method). The basis
polynomials share convergence properties with (orthogonal) Legendre polynomials and the underlying
goal of mesh refinement is to achieve exponential (‘spectral’) convergence of solutions with respect
to polynomial order; this typically commences when there are of order π polynomials per ’wavelength’
of solution variation (Gottlieb and Orszag; 1977).

We should point out that p-refinement is very straightforward in Semtex ; different polynomial
orders can be selected simply by varying the token N_P, the number of mesh points along the edge
of every element in the problem session file (see e.g. § 2.5.5): the one-dimensional polynomial order
p = N P − 1. On the other hand, carrying out h-refinement will require a completely new session
file to be produced, which may imply quite a bit more work. We also note that computational work
per timestep, typically dominated by forming the nonlinear terms of the Navier–Stokes equations,
tends to scale like N P2 (and, of course, the number of elements). Finally, Semtex tends to be most
efficient at moderate polynomial orders (e.g. 4 to 13); it is generally not a good idea to choose either
very low, or very high, values of p.

A rule-of-thumb for mesh design based on the remarks above is to aim to have any ‘significant’
rapid variation in solution behaviour covered by one or two elements (the goal of h-refinement), and
then carry out whatever p-refinement is desired to get well-converged results. The path of least
resistance for two-dimensional mesh design is generally to produce a session file which one guesses is
quite well resolved as far as element sizes go, then rely on converging the solution by starting on the
low end of the p range and then increasing p to higher, yet moderate, values in order to commence
exponential convergence. A few iterations of mesh design may be required when tackling a new
problem.
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In the z-direction, Semtex assumes the solution is periodic and uses Fourier expansions (with a
2–3–5-prime-factor FFT from Temperton; 1992). Choice of spanwise length scale Lz is controlled by
the token BETA, where β = 2π/Lz, while resolution is controlled by token N_Z, the number of planes
of real data in the z direction (the number of complex Fourier modes is then N Z/2). Convergence
follows standard rules for Fourier-spectral methods. See § 3.3.3 for discussion regarding possible
values for N_Z.

2.4 Files

Semtex uses a text input file which describes the mesh, boundary conditions and other problem
parameters. We call this a session file and typically it has no root extension. It is written in a format
loosely patterned on HTML, which we have called FEML (for Finite Element Markup Language)
— alternatively you could consider FEML as a cut-down version of XML. FEML is ‘just enough’
to compactly describe spectral element problems to the solvers. There are a number of example
session files provided in the mesh subdirectory; some of these are used in regression testing (and/or
described in the following document). Files other than session file have standard extensions:

session.fld Solution/field file. Binary format by default, but with a 10-line ASCII header.
session.rst Restart file, same format as field file. Read in to initialise solution if present.
session.chk Intermediate solution checkpoint/restart files.
session.avg Averaged results. Read back in for continuation (over-written).
session.his History point data.
session.flx Time series of pressure and viscous forces integrated over the wall boundary group.
session.mdl Time series of kinetic energies in solution Fourier modes.
session.par Used to define initial particle locations.
session.trk Integrated particle locations.

When writing a new session file it is prudent to run meshpr (and/or meshpr -c) on it before trying
to use it for simulations, since meshpr will catch most of the easier-to-make geometric anomalies.
You can also plot up the results using SuperMongo or other utility (such as meshplot) as a visual
check.

NB: the 10-line ASCII header of any field-type file can quickly be viewed using the Unix head

utility, regardless of the format of following field data.

2.5 Structure of a session file

More details and examples for such files are provided below and in the next chapter, but a brief
outline is that a session file is an ASCII text file with a number of sections that should each appear
once, but which can be supplied in arbitrary order. Any line whose first character is # is taken as
a comment line; these can appear in arbitrary locations within a session file. It is generally safe to
use spaces, tabs, or new lines as white space in a session file, where such space is permitted; within
function strings to be interpreted by the internal function parser, it is not. In a session file, integer
indices that number specific entities such as NODES and ELEMENTS are indexed starting from 1: this is
also true of related warning or error messages that Semtex codes may issue, though within the code
itself, such indices are if necessary adjusted to follow the standard C convention of being indexed
starting from 0. Much of the structure of a session file is actually free-format, but it is generally
safest to assume that collections of data which are usually shown on a single line in the examples
should not extend over multiple lines.

As in HTML, sections are demarcated using paired opening (<name>) and closing (</name>)
tags. The opening tag will sometimes require a numeric attribute, e.g. <NODES NUMBER=10>. The
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minimal set of sections required for a session file to validly describe a domain in which a solution can be
obtained is: NODES, ELEMENTS and SURFACES: NODES describe the corner vertices of ELEMENTS, while
SURFACES describe what happens on the outer boundaries of the domain. Sides of all ELEMENTS—
which run between NODES—must either mate with the side of another ELEMENT or be dealt with in
the SURFACES section.

2.5.1 NODES

This section describes the location of the NODES which position ELEMENT corner vertices in (x, y)
space. The attribute NUMBER is required in the opening tag; this should match the number of NODES
which follow. This can exceed the number of unique NODES which are actually required for all the
element vertices, i.e. spare/unused NODES are allowed, but they have to be included in the NUMBER
count. The minimum required NUMBER of NODES is four, i.e. for a single ELEMENT. Each line of the
NODES section has four entries: an integer numeric index—mostly used by human readers of the file,
since it is ignored by the code— followed by three numbers which give the location of each NODE
in (x, y, z) space (despite the fact that only the (x, y) coordinates are currently used by Semtex).
Different NODES can take the same position in (x, y) space, and in fact, if you want to make a zero-
width slit boundary within a mesh, differently-indexed NODES at identical locations will be required.
Example, with just enough NODES for a single ELEMENT:

<NODES NUMBER=4>

1 0.0 0.0 0.0

2 1.0 0.0 0.0

3 0.0 1.0 0.0

4 1.0 1.0 0.0

</NODES>

It is often convenient to move and rescale the nodal locations declared in this section. This
may be achieved simply by setting TOKENS called X_SCALE, X_SHIFT, Y_SCALE and Y_SHIFT. The
convention is that the locations are first shifted and then scaled.

2.5.2 ELEMENTS

The ELEMENTS section also requires a NUMBER attribute, which gives the number of ELEMENTS that
follow. The minimum required NUMBER of ELEMENTS is one. Semtex only presently allows quadrilat-
eral elements, though these may have curved edges; despite this restriction, each element is listed
with an opening <Q> tag and a closing </Q> tag. The data that describe and element are: a unique
integer identifier, followed by the opening tag <Q>, four integer NODE identifiers, terminated by the
closing tag </Q>. The ordering of these NODES must be such that their locations traverse a patch of
(x, y) space in a counter-clockwise sense, but is otherwise arbitrary.

The sides of an ELEMENT are taken as running between the vertex nodes with a 1-based indexing:
the side between the first and second NODES is number 1, the side between the second and third
NODES is number 2, and so on. This information is relevant in the following SURFACES section. Sides
of distinct elements should of course not cross one another, though this is not actually enforced in
the code. What is checked is that for all elements, each side either matches the side of another
element, as determined using the NODE indices of all ELEMENTS, or has valid SURFACE information
supplied. This ensures that the (x, y) region of a two-dimensional solution domain, though possibly
multiply-connected, is completely covered by the spectral element mesh and has appropriate boundary
condition information. A one-ELEMENT example based on the previous set of NODES follows:

<ELEMENTS NUMBER=1>

1 <Q> 4 3 1 2 </Q>

</ELEMENTS>
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2.5.3 SURFACES

Any ELEMENT side that does not mate to the side of another ELEMENT based on its NODES requires
a link to boundary condition information elsewhere in the session file or be paired up with another
element side (to provide a periodic connection). The SURFACES section deals with these requirements.
Again the opening tag must include a numeric attribute that matches the following number of surface
specifications.

Each surface is described by: a single integer index (again, mostly for convenience of human
readers), followed by a pair of integers that give element and side numbers for this SURFACE (these
relate back to information given in the ELEMENTS section), and then a tag-delimited list which
provides either a single-character boundary condition GROUP (delimited by <B> and </B>) or a pair
of integers that are the element and side of a periodic connection (delimited by <P> and </P>. Note
that a periodic connection effectively deals with a pair of sides, and the reverse connection should not
also appear. Here is an example for a single ELEMENT with two boundary conditions and a periodic
self-connection:

<SURFACES NUMBER=3>

1 1 1 <B> w </B>

2 1 3 <B> t </B>

3 1 2 <P> 1 4 </P>

</ELEMENTS>

2.5.4 FIELDS

This brief section nominates the list of solution variables (i.e. those which satisfy a partial differential
equation and for which we must provide boundary conditions). The FIELDS are given standard
single-character name-tags: u, v, w and p for (x, y, z) velocity components and pressure, and c for
scalar. If we are solving an elliptic equation, only c is required; if solving the Navier–Stokes equations,
at least u, v and p must be present (for a 2D2C solution), and c can also appear (as a transported
scalar field). Generally, velocity components and (optional) scalar should appear in the list before
the pressure. Example for a 2D2C flow with scalar:

<FIELDS>

u v c p

</FIELDS>

2.5.5 TOKENS

In this section, TOKENS that have significance either directly to the solver or for use elsewhere in the
session file may be defined. This section is not free-form: each TOKEN must be defined on a separate
line in the form

TOKEN = string_evaluating_to_value

The string following the equals sign should not contain white space and may be a maximum of 2048
characters in length. It can either directly supply a numeric value, or be a string that may be parsed
to deliver a numeric value. The function parser is patterned on the hoc3 program in Kernighan
and Pike (1984) which uses yacc, and has many standard math functions such as exp, cos and
tan−1 as well as standard arithmetic operations +, −, ∗ and /. TOKENS can be defined in terms of
standard/inbuilt TOKENS or ones which have been defined earlier in the list. To see all the predefined
TOKENS and functions, check the Semtex utility "calc -h"— calc uses the same parser to evaluate
expressions given on the command line.

Below is a simple example in which (in order) cylindrical coordinates are selected, the time step,
D_T, is set, as is the time-stepping order N_TIME, the number of points along the edge of every
element, N_P, following which a value for a new TOKEN, Re, is obtained by parsing a string and used
to set the kinematic viscosity KINVIS as used by the dns solver. (On its own, Re is not directly
significant to the solver.) All such TOKENS may be used subsequently in the BCS or FORCE sections.
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<TOKENS>

CYLINDRICAL = 1

D_T = 0.001

N_TIME = 1

N_P = 7

Re = (30/exp(1.6))^3.

KINVIS = 1/Re

</TOKENS>

This would result in the token KINVIS taking the value 0.0450039 (to 6 sf.). Note that TOKENS
is evaluated before any other section of a session file, so that its definitions have global scope.

2.5.6 GROUPS

This is another brief section but one that requires a numeric parameter and which is used in defining
boundary conditions. A GROUP associates a single-character name and a string. The string can
potentially be used by more than a single GROUP, thus linking them together. The name is also used
both in the BCS section and the SURFACES section, so provides a short-hand way of linking BCS to
SURFACES. At first this seems a redundant indirection; why not just have SURFACES and BCS?, but
it is useful because of the ability to join up GROUPS of BCS via a common string, which may have
significance to the solver: e.g. all BCS in the wall group will have normal and tangential tractions
evaluated, integrated and printed to file session.flx, even though the BCS involved may differ.

<GROUPS NUMBER=4>

1 h wall

2 c wall

3 a axis

4 v speed

</GROUPS>

As will be elaborated in chapter 3, the string axis is also significant to the solver if cylindrical
coordinates are chosen by setting CYLINDRICAL = 1 in TOKENS, while the string open is required
for a GROUP associated with a set of boundary conditions of energy-stable open type (Dong; 2015).

2.5.7 BCS

Data in this section links a GROUP character with a brief description of the set of boundary conditions
to be applied for solution of each FIELD. Again, a NUMBER attribute is required in the opening tag.
For each set of BCS, we must supply: an integer index, a GROUP character, and another integer
for the number of BC descriptors that follow (which should match the number of solution FIELDS).
Subsequent to that are the actual descriptors of the BCS which are to be applied to each FIELD in
the relevant GROUP. While at first it may seem that there are apparently a variety of BC types which
may be selected, in practice the solver is only capable of applying either Dirichlet, Neumann or mixed
(Robin) boundary conditions for any FIELD, but sometimes these are set automatically within the
code. Here is an introductory example:

<BCS NUMBER=1>

1 v 4

<D> u = 1-exp(LAMBDA*x)*cos(2*PI*y) </D>

<D> v = LAMBDA/(2*PI)*exp(LAMBDA*x)*sin(2*PI*y) </D>

<D> w = 0.0 </D>

<H> p </H>

</BCS>

We see that for each FIELD variable a boundary condition is set. For Dirichlet (value) boundary
conditions the tag used is <D>; for Neumann (gradient) boundary conditions the tag is <N>; for mixed
boundary conditions the tag is <M>. In the example, Dirichlet conditions are supplied for FIELDS u, v
and w; these can either be set by parsing a string (which should contain no white space), or directly
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with a numeric value. In the case of parsing a string, we can use TOKENS and/or space/time variables
x, y, z and t; the string supplied is re-parsed every timestep as the code runs and t updates. We
see that for the pressure, p, we have given the special tag <H> to denote a “high-order” boundary
condition, which is actually an internally-computed Neumann type (see Karniadakis et al.; 1991).

For more details regarding boundary condition types, see § 3.7 below.

2.5.8 CURVES

Element edges do not have to be straight; the user can alternatively select circular arcs or a spline
fitted through data supplied in external files. The information is supplied to the solver in the CURVES
section.

<CURVES NUMBER=2>

1 4 3 <ARC> 1.0 </ARC>

2 1 1 <SPLINE> splinepoints.dat </SPLINE>

</CURVES>

The first number on each line is just a numeric label for convenience of human readers. For each
numbered CURVE we also provide the element and side number to which it applies (in the first of the
above, these numbers are 4 and 3 respectively) followed by a tagged section which nominates the
kind of curve.

For a circular ARC, we must give the radius as a signed number: positive values denote convex
arcs (relative to the element centroid) while negative values denote concave arcs. Such curves do
not have to be on the external boundary of a mesh, but could be internal: in this case the user must
also supply corresponding information for the mating element edge. The code does not check that
such curves conform (e.g. with matching ± radii); that is up to the user.

For a SPLINE, the supplied parameter is the name of an ASCII text file that supplies (x, y) locations
of points (one pair per line) through which a cubic spline with natural end conditions is fit. Spectral
element knot points are interpolated along this splined curve. (A mesh NODE which might not lie
exactly on the spline is moved slightly by projection along its other edge, until it lies on the spline to
within a tolerance of 1E-6.) If no path is supplied as part of the name, the file is assumed to reside
in the directory from which execution is initiated. The same data file can be named for a number
of curved edges. See § 3.1.1 below for further information and discussion relating to SPLINE curves,
and consult the Dog user guide for an example.

2.5.9 FORCE

This optional section declares various kinds of body-force information for Navier–Stokes momentum
equations. Please consult § 4.13 for more detail.

2.5.10 USER

The principal purpose of the USER section is in specifying solution values which are parsed and written
out as a field dump using the compare utility. These could be e.g. an analytical solution or an initial
condition such as a solid-body rotation. If they are an analytical solution, another utility (rstress)
could subsequently be used to subtract the computed solution— this technique is used in regression
testing. Example:

<USER>

u = -cos(PI*x)*sin(PI*y)*exp(-2.0*PI*PI*KINVIS*t)

v = sin(PI*x)*cos(PI*y)*exp(-2.0*PI*PI*KINVIS*t)

p = -0.25*(cos(TWOPI*x)+cos(TWOPI*y))*exp(-4.0*PI*PI*KINVIS*t)

</USER>
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2.5.11 HISTORY

This section controls the output of history point data at specific points in the domain to an ASCII
file called session.his. Output is made every IO_HIS integration steps. Solution data is written out
for all FIELD variables. Note: the requested point has to actually lie in the solution domain; if it
does not, no output will result. Each point has an integer numeric tag, followed by a location in
(x, y, z) space (even for two-dimensional solutions).

<HISTORY NUMBER=1>

1 0.5 0.1 0.0

</HISTORY>

While mesh nodal locations may be scaled and shifted using tokens X_SCALE, X_SHIFT, Y_SCALE
and Y_SHIFT (see e.g. § 2.5.1), the spatial locations declared in the HISTORY section should be given
in the resulting mapped space.

2.6 Structure of a field file

Field files (with extensions .fld, .rst, .chk, .avg) have a common structure. They all commence
with a 10-line (and 360-byte) ASCII header that briefly describes the file content, typically fol-
lowed by sequenced binary storage of double-precision floating-point data with ordering that matches
AuxField structure. It is possible to convert these data to human-readable ASCII format, via the
convert utility — and back again, if desired, to binary format — but Semtex codes generally use
the binary format for I/O of field files. Regardless of format, one should always be able to view the
contents of the header using the Unix head command, which by default reads off the first 10 lines
of a file.

For example, consider the structure of a two-dimensional field file; here we will use a 2D Taylor flow,
considered again later in more detail in § 3.2.2. An example session file is supplied as mesh/taylor2;
this has four elements, and each element has 11 collocation points on an edge (N_P=11), so a total
of 121 solution data points. The solution is 2D2C, so the number of z-planes required is N_Z=1, but
since this is a default value, it isn’t specified in the session file. As in § 3.2.2, we will just use the
compare utility to generate a restart file, and then look at its header.

$ compare taylor2 > taylor2.rst

$ head taylor2.rst

taylor2 Session

Fri Aug 18 16:08:42 2023 Created

11 11 1 4 Nr, Ns, Nz, Elements

0 Step

0 Time

0.02 Time step

0.01 Kinvis

1 Beta

uvp Fields written

binary IEEE little-endian Format

As previously stated, this header is 360 bytes in length, including newline characters.1 The third line
of output tells us that there are 4 elements, 1 plane of data and each element is of size Nr ×Ns =
11 × 11 = 121. (In Semtex, Nr = Ns = N_P always.) The ninth line of output tells us that
the file contains data for the velocity fields u, v, and pressure p. That means there should be
11 × 11 × 1 × 4 × 3 = 1452 double-precision numbers in taylor2.rst. Each double-precision
number consumes 8 bytes, thus we expect the size of taylor2.rst to be 1452× 8 + 360 = 11976
bytes.

1If you carefully examine the header produced, you will find that the ninth, ‘Fields written’, is here padded at the
end with 9 blank characters. This is to allow the number of fields to rise to a maximum of 49; if the number exceeds
25, the ‘Fields written’ string will be gradually pushed to the right, dropping characters in such a way that the total
length of the line is still 49 characters. Why 49? Well, 49 = 2× 26− 3! The characters X, Y and Z are reserved.
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$ wc -c < taylor2.rst

11976

This example is simple as there is only a single plane of data for each field. Each plane contains
the data for its elements, written in the order they are defined in the session file. (See e.g. figure 3.3,
where the elements are labelled 1. . . 4, and the locations of the data points are also indicated for
our standard Gauss–Lobatto–Legendre element mesh structure.) The ordering of the data in each
element is row-major, starting from the bottom-left corner and working across rows, then up, until
the top-right corner is reached; this is also the ordering in the file.2 Following the data for the first
field (u), here a single plane of storage, we would find the data for the second field, then the third
(and so on, if there were more fields indicated in the header). The extension to files with more planes
of data is straightforward: the planes are written in order for the first field, then the second, etc.

Binary data in three-dimensional field files (where N_Z > 1) by default have physical-space or-
dering, even though most three-dimensional calculations in Semtex are carried out after a Fourier
transformation in the z coordinate. If you wish to get the data to a Fourier-transformed state (say,
to extract a particular two-dimensional Fourier mode), use the transform utility; see e.g. §§ 6.25
and 6.27. The ordering of data planes following real–complex transformation matches how they are
stored in AuxFields: the 0th Fourier mode, which is the z-average at each (x, y) location and real,
is stored as the first plane of data, while the N_Z/2th, ‘Nyquist’, or ‘oddball’ mode, also real, is
stored as the second plane (typically, this will be set to zero since we do not evolve Nyquist modes).
After these two planes of data we have the real and imaginary planes of each complex Fourier mode,
in order, up to (N_Z/2)− 1.

As stated above, field files can also be converted to pure ASCII form, for ease of human readability.
This can be useful for checking purposes, but also allows manipulation of field files using Unix and
Python text-processing utilities. See e.g. utility/addquick. In ASCII format, the ordering of data
changes, such that the field variables are printed up in columns instead of one after another as in the
binary case. Within each column, the ordering is as stated above for binary data: element-by-element
and then plane-by-plane; see § 3.1.3 for an example of this structure. The utility convert does the
conversion of formats, and can read and write from/to standard input and output (and so e.g. you
may convert from one format to another and back using Unix pipes); see § 6.5.

Sometimes, field files will hold more than a single set of data for a complete field (e.g. a sequence
of field dumps). In this case, each set of data commences with a new header (each with a different
Time). To find out how many dumps are in a file, you could do something like:

$ convert taylor.rst | grep Session | wc -l

1

2.7 Utilities

(See also the more extensive discourse of chapter 6.) Source code for these tools is found in the
utility directory. Here is a summary of the most-used utilities:

addfield Compute and add vorticity vector components, divergence, etc., to a field file.
addquick An example shell script for adding arbitrary but simple fields of your choice using

Unix sed and awk utilities together with chop and convert. (Quick and dirty !)
calc A simple calculator that calls femlib’s function parser. The inbuilt parser functions

and default TOKENS can be seen if you run calc -h.
compare Generate restart files, compare solutions to a function.
convert Convert field file formats (IEEE-big/little, to/from ASCII).
eneq Compute terms in the energy transport equation.

2More generally, where the elements are distorted or rotated, from the first corner NODE along the edge to the second
corner NODE, and on up to the third (‘top-right corner’) NODE location for any quadratic ELEMENT in a session file.
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assembly Generate global node numbering used in matrix assembly.
The output of this utility is no longer directly used by simulation codes
(since they now generate assembly mappings at runtime),
but is supplied for checking purposes. It replaces the
former utility called enumerate.

integral Obtain the 2D integral of fields over the domain area.
interp Interpolate a field file onto a (2D) set of points.
meshplot Generate a PostScript plot of mesh from meshpr output.
meshpr Generate 2D mesh locations for plotting or checking.
noiz Add a Gaussian-distributed random perturbation to a field file.
probe Probe a field file at a set of 2D/3D points. Different interfaces to probe

are obtained through the names probeline and probeplane:
make these soft links by hand.

project Convert a field file to a different order interpolation.
rectmesh Generate a template session file for a rectangular domain.
rstress Postprocess to compute Reynolds stresses from a file of time-averaged variables.
sem2tec Convert field files to AMTEC Tecplot format. Note that by default, sem2tec

interpolates the original GLL-mesh-based data onto a (isoparametrically mapped)
uniform mesh for improved visual appearance. Sometimes it is useful to see the
original data (and mesh); for this use the -n 0 command-line argument to sem2tec.

sem2vtk Convert field files to VTK format (VisIt, ParaView).
transform Take Fourier, Legendre, modal basis transform of a field file. Invertible.
wallmesh Extract the mesh nodes corresponding to surfaces with the wall group.
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Chapter 3

Example applications

We will run through some examples to illustrate input files, utility routines, and use of the solvers.
While most users will likely be primarily interested in solving Navier–Stokes problems, we commence
by outlining the use of the elliptic solver.

3.1 Elliptic equations

The elliptic solver can be used to solve Laplace, Poisson or Helmholtz problems in two-dimension-
al and three-dimensional Cartesian and cylindrical coordinate systems, vide (2.1). From a code
development viewpoint it also provides a means to test new formulations of elliptic solution routines
which are used in the Navier–Stokes type solvers; historically, elliptic was written and tested
prior to dns. In this section we illustrate the use of the elliptic solver for a two-dimensional Laplace
problem, ∇2c = 0. In this case the function

c(x, y) = sin(x) exp(−y) (3.1)

satisfies Laplace’s equation and is used to set the boundary conditions. This example illustrates the
methods used to set BCs and also to generate curved element boundaries. Also we will demonstrate
the selection of the iterative PCG solver (Barrett et al.; 1994) as an alternative to the default direct
Cholesky solver (Anderson et al.; 1999). The session file laplace7 shown below is provided in the
mesh subdirectory.

##############################################################################

# Laplace problem on unit square, BC c(x, y) = sin(x)*exp(-y)

# is also the analytical solution. Use essential (Dirichlet) BC

# on upper, curved edge, with natural (Neumann) BCs elsewhere.

<FIELDS>

c

</FIELDS>

<USER>

Exact sin(x)*exp(-y)

c = sin(x)*exp(-y)

</USER>

<TOKENS>

N_P = 11

TOL_REL = 1e-12

STEP_MAX = 1000

</TOKENS>

<GROUPS NUMBER=4>
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1 d value

2 a slope

3 b slope

4 c slope

</GROUPS>

<BCS NUMBER=4>

1 d 1

<D> c = sin(x)*exp(-y) </D>

2 a 1

<N> c = -cos(x)*exp(-y) </N>

3 b 1

<N> c = cos(x)*exp(-y) </N>

4 c 1

<N> c = sin(x)*exp(-y) </N>

</BCS>

<NODES NUMBER=9>

1 0.0 0.0 0.0

2 0.5 0.0 0.0

3 1.0 0.0 0.0

4 0.0 0.5 0.0

5 0.5 0.5 0.0

6 1.0 0.5 0.0

7 0.0 1.0 0.0

8 0.5 1.0 0.0

9 1.0 1.0 0.0

</NODES>

<ELEMENTS NUMBER=4>

1 <Q> 1 2 5 4 </Q>

2 <Q> 2 3 6 5 </Q>

3 <Q> 4 5 8 7 </Q>

4 <Q> 5 6 9 8 </Q>

</ELEMENTS>

<SURFACES NUMBER=8>

1 1 1 <B> c </B>

2 2 1 <B> c </B>

3 2 2 <B> b </B>

4 4 2 <B> b </B>

5 4 3 <B> d </B>

6 3 3 <B> d </B>

7 3 4 <B> a </B>

8 1 4 <B> a </B>

</SURFACES>

<CURVES NUMBER=1>

1 4 3 <ARC> 1.0 </ARC>

</CURVES>

Refer to § 2.5 for a discussion of the purposes of each of the sections within this file. Within
the TOKENS section, N_P=11 declares that there will be 11 points along the side of each element
and hence, two-dimensional element shape functions are tensor products of 10th-order polynomials.
TOL_REL=1e-12 directs the iterative preconditioned conjugate gradient solver, if used, to stop when
the solution residual ||r(i)|| = ||Ax(i) − b|| < TOL_REL× ||b||, while STEP_MAX=1000 directs that no
more than 1000 iterations be taken in striving to reach TOL_REL; note that these values are only
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Figure 3.1: The mesh corresponding to the laplace7 session file. Note that the number of points
along the edge of every element is N P = 11 as declared in the TOKENS section and that internal
points are placed inside non-rectangular elements, e.g. element 4, using isoparametric mapping. This
image was produced using the meshplot utility.

relevant if an iterative solver is chosen instead of default direct solution, and that the default values
of the two tokens are respectively 1e-8 and 500, as may be established by running calc -h.

3.1.1 Curved element edges (and plotting the mesh)

The mesh for this problem consists of a set of four elements, one of which, the 3rd edge of element 4,
specified in the CURVES section, is a a circular arc. Both ARC and SPLINE type curves are currently
implemented. For the ARC type, the parameter supplies the radius of the curve: a positive value
implies that the curve makes the element convex on that side, while a negative value implies a
concave side. Note that where elements mate along a curved side, the curve must be defined twice,
once for each element, and with radii of different signs on each side. The mesh for this problem
can be seen in figure 3.1; mesh output is generated by running the meshpr utility, from which a
PostScript file may be generated and visualised using the meshplot utility.

$ meshpr laplace7 | meshplot -i -n -o mesh.ps -d gv

If you have the gv utility installed (for X11 display of PostScript) you should see a plot like figure 3.1.
Alternatively you could (again, assuming you have an appropriate utility installed) convert the output
to PDF, e.g.

$ meshpr laplace7 | meshplot -i -n | ps2pdf - > laplace7.pdf

For the SPLINE type, the parameter supplies the name of an ASCII file which contains a list of
(x, y) coordinate pairs (white-space delimited). Naturally, the list of points should be in arc-length
order. A single file can be used to supply the curved edges for a set of element edges. The vertices of
the relevant elements do not have to lie exactly on the splined curve— if they do not, those vertices
get shifted to the intersection of the projection of the straight line joining the original vertex position
and its neighbouring ‘curve-normal’ vertex, and the cubic spline joining the points in the file. On
the other hand, it is good practice to ensure that the declared vertex locations lie close to the spline,
and to visually check the mesh that is produced.
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3.1.2 Boundary conditions

The sections GROUPS and BCS are used to specify boundary conditions for the problem. The GROUPS
section associates a character group tag (e.g. d) with a string (e.g. value), but note that different
groups can be associated with the same string1. Groups a, b and c will be used to set natural (i.e.
slope or Neumann), boundary conditions (∂c/∂n = value), while group a will be used to impose an
essential or Dirichlet condition (c = value).

The BCS section is used to define the boundary conditions which will be applied for each group. For
each group, after the numeric tag (ignored) appears the character for that group, then the number
of BCs that will be applied: this corresponds to the number of fields in the problem, in this case 1
(c). BCs are typically of Dirichlet, Neumann, or Robin/mixed type (note that domain periodicity can
be employed but that this does not constitute a boundary condition). So in this case we will declare
the BC types to be D (Dirichlet) for group d and N (Neumann) for groups a, b and c. On Neumann
boundaries, the value which must be supplied is the slope of the solution along the outward normal
to the solution domain. Note the fact that the BCs can be set using the function parser, using the
built-in functions and variables, also any symbols defined in the TOKENS section, as well as the spatial
variables x, y and z. The BCs can also be functions of time, t, and for time-varying problems, which
this is not, the boundary conditions are re-evaluated every time step.

The BC groups are associated with element edges in the SURFACES section. Periodic edges, Dirich-
let, Neumann and mixed boundary conditions can be arbitrarily combined in a problem. Dirichlet
conditions over-ride Neumann ones where they meet (say at the corner node of an element). See
further discussion on boundary conditions in § 3.7 below.

3.1.3 Running the codes

We will run the elliptic solver and compare the computed solution to the analytical solution. We
will first run with the default direct solver:

$ elliptic laplace7

-- Forcing : set to zero

-- Initial condition : set to zero

-- Installing matrices for field ’c’ [*]

-- REMARK: Field: ’c’ error norms (inf, L2, H1): 8.54872e-15 2.15768e-15 5.46269e-14

The ‘Installing matrices’ message indicates that a direct solution will be carried out. Next
try the iterative (PCG) solver using the -i command-line option to elliptic:

$ elliptic -i laplace7

-- Forcing : set to zero

-- Initial condition : set to zero

-- REMARK: Field: ’c’ error norms (inf, L2, H1): 8.32201e-13 2.93711e-13 5.01449e-12

In this case the direct solver is more accurate, but comparable accuracy with the iterative solver could
be obtained by decreasing TOL_REL in the TOKENS section (and if necessary by further increasing
STEP_MAX).

For post-processing we can prepare a Tecplot input file (which can also be read by VisIt and
Paraview)

$ meshpr laplace7 | sem2tec laplace7.fld

which produces laplace7.plt, an input file format which can be read by Tecplot. A contour plot
of the solution obtained with Tecplot is shown in figure 3.2.

1This allows actions to be taken over a set of BCs which share the same string.
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Figure 3.2: Solution corresponding to the laplace7 session file. This image was produced using
Tecplot.

3.1.4 Laplace, Poisson, Helmholtz problems

Poisson and Helmholtz problems differ from Laplace problems in that they have a forcing term. For
elliptic problems this is supplied in the USER section by a line of the type Forcing <string> where
<string> is ASCII text without white space which can be parsed, e.g. either a numeric constant or
a function of spatial variables can be supplied. In the case of Helmholtz problems we need also to
supply a positive numerical value for the token LAMBDA2, equivalent to the constant λ2.

If one has an analytical solution to the problem in question, this can also be supplied in the USER
section with a line of the type Exact <string> where again <string> is ASCII text which can be
parsed. The outcomes are compared to the computed numerical solutions and various error norms
are reported, as we saw in § 3.1.3. An analytical solution isn’t required to run the solver, so this line
is optional.

Various session files for elliptic problems can be found in the mesh subdirectory, with fairly obvious
names. One of these, laplace8 is for a three-dimensional problem in cylindrical coordinates. If
a solution is desired in cylindrical coordinates, one must also set the token CYLINDRICAL=1; this
convention applies in general for Semtex codes such as dns and the utility programs too. The default
value of CYLINDRICAL is 0 (corresponding to Cartesian coordinates).

3.2 2D Taylor flow

Taylor flow is an analytical solution to the Navier–Stokes equations. In the x–y plane the solution is

u = − cos(πx) sin(πy) exp(−2π2νt), (3.2)

v = +sin(πx) cos(πy) exp(−2π2νt), (3.3)

p = −(cos(2πx) + cos(2πy)) exp(−4π2νt)/4 + const. (3.4)

The solution is doubly periodic in space, with periodic length 2. Since the solution is periodic in both
directions, no boundary conditions are required but the periodicity must be specified in the SURFACES
section. As usual for Navier–Stokes solutions, the pressure can only be specified up to an arbitrary
constant. An interesting feature of this solution is that the nonlinear and pressure gradient terms
balance one another, leaving a diffusive decay of the initial condition— this property is occasionally
useful for checking codes.

22



3.2.1 Session file

Below is the complete input or session file we will use; it has four elements, each of the same size,
with 11 nodes along each edge. This session file, taylor2, is supplied in the mesh subdirectory.

##############################################################################

# 2D Taylor flow in the x--y plane has the exact solution

#

# u = -cos(PI*x)*sin(PI*y)*exp(-2.0*PI*PI*KINVIS*t)

# v = sin(PI*x)*cos(PI*y)*exp(-2.0*PI*PI*KINVIS*t)

# w = 0

# p = -0.25*(cos(2.0*PI*x)+cos(2.0*PI*y))*exp(-4.0*PI*PI*KINVIS*t)

#

# Use periodic boundaries (no BCs).

<USER>

u = -cos(PI*x)*sin(PI*y)*exp(-2.0*PI*PI*KINVIS*t)

v = sin(PI*x)*cos(PI*y)*exp(-2.0*PI*PI*KINVIS*t)

p = -0.25*(cos(TWOPI*x)+cos(TWOPI*y))*exp(-4.0*PI*PI*KINVIS*t)

</USER>

<FIELDS>

u v p

</FIELDS>

<TOKENS>

N_TIME = 2

N_P = 11

N_STEP = 20

D_T = 0.02

Re = 100.0

KINVIS = 1.0/Re

TOL_REL = 1e-12

</TOKENS>

<NODES NUMBER=9>

1 0.0 0.0 0.0

2 1.0 0.0 0.0

3 2.0 0.0 0.0

4 0.0 1.0 0.0

5 1.0 1.0 0.0

6 2.0 1.0 0.0

7 0.0 2.0 0.0

8 1.0 2.0 0.0

9 2.0 2.0 0.0

</NODES>

<ELEMENTS NUMBER=4>

1 <Q> 1 2 5 4 </Q>

2 <Q> 2 3 6 5 </Q>

3 <Q> 4 5 8 7 </Q>

4 <Q> 5 6 9 8 </Q>

</ELEMENTS>

<SURFACES NUMBER=4>

1 1 1 <P> 3 3 </P>

2 2 1 <P> 4 3 </P>

3 2 2 <P> 1 4 </P>

4 4 2 <P> 3 4 </P>
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</SURFACES>

(Below we give a brief reprise of some information we earlier dealt with in § 2.5.)
The first section of the file in this case contains comments; a line anywhere in the session file

which starts with a # is considered to be a comment. Following that are a number of sections which
are opened and closed with matching keywords in HTML style (e.g. <USER>–<\USER>). Keywords
are not case sensitive. The complete list of keywords is: TOKENS, FIELDS, GROUPS, BCS, NODES,
ELEMENTS, SURFACES, CURVES and USER. Depending on the problem being solved, some sections
may not be needed, but the minimal set is: FIELDS, NODES, ELEMENTS and SURFACES. Anywhere
there is likely to be a long list of inputs within the sections, the NUMBER of inputs is also required; this
currently applies to GROUPS, BCS, NODES, ELEMENTS, SURFACES and CURVES. In each of these cases
the numeric tag appears first for each input, which is free-format. The order in which the sections
appear in the session file is irrelevant.

The USER section is ignored by the solvers, and is used instead by utilities — in this case it will
be used by the compare utility both to generate the initial condition or restart file and to check
the computed solution. This section declares the variables corresponding to the solution fields with
the corresponding analytical solutions. The variables x, y, z and t can be used to represent the
three spatial coordinates and time. Note that some constants such as PI and TWOPI are predefined,
while others, like KINVIS, are set in the TOKENS section. Note also the use of predefined functions,
accessed through an inbuilt function parser.2

The FIELDS section declares the one-character names of solution fields. The names are significant:
u, v and w are the three velocity components (we only use u and v here for a 2D solution and the w
component is always the direction of Fourier expansions), p is the pressure field. The field name c

is also recognised as a scalar field for certain solvers, e.g. the elliptic solver.
In the TOKENS section, second-order accurate time integration is selected (N_TIME = 2) and the

number of Lagrange knot points along the side of each element is set to 11 (N_P = 11), corresponding
to the use of 10th-order polynomials, and giving two-dimensional elemental shape functions which
are tensor-products of 10th-order Lagrange polynomials.3 The code will integrate for 20 timesteps
(N_STEP = 20) with a timestep of 0.02 (D_T = 0.002). The kinematic viscosity is set as the inverse
of the Reynolds number (100): note the use of the function parser here. Finally the relative tolerance
used as a stopping test in the PCG iteration used to solve the viscous substep on the first timestep
is set as 1.0× 10−12.

The shape of the mesh is defined by the NODES and ELEMENTS sections. Here there are four
elements, each obtained by connecting the corner nodes in a counterclockwise traverse. The x, y
and z locations of the nodes are given, and the four numbers given for the nodes of each element
are indices within the list of nodes.

In the final section (SURFACES), we describe how the edges of elements which define the boundary
of the solution domain are dealt with. In this example, the solution domain is periodic and there are no
boundary conditions to be applied, so the SURFACES section describes only periodic (P) connections
between elements. For example, on the first line, side 1 of element 1 is declared to be periodic with
side 3 of element 3 — side 1 runs between the first and second nodes, while side 3 runs between the
third and fourth.

3.2.2 Running the codes

Assume we’re in the dns directory of the distribution, that the compare, meshpr and sem2tec
utilities have been compiled, as well as the dns simulation code.

$ cp ../mesh/taylor2 .

2The built-in functions and predefined constants can be found by running calc -h.
3The minimum accepted value of N P = 2, corresponding to (bi)linear shape functions. The practicable upper value

is around 20.
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Figure 3.3: The mesh corresponding to the taylor2 session file. This image was produced by using
SuperMongo macros.

First we’ll examine the mesh, in this case using SuperMongo macros supplied with the Semtex
distribution as an alternative to using the meshplot utility.

$ meshpr taylor2 > taylor2.msh

$ sm

Hello Hugh, please give me a command

: meshplot taylor2.msh 1

Read lines 1 to 1 from taylor2.msh

Read lines 2 to 485 from taylor2.msh

: meshnum

: meshbox

: quit

You should have seen a plot like that in figure 3.3. (Note: while you are building up the mesh parts
of a session file, perhaps by hand, you may use meshpr -c to suppress some of the checking for
matching element edges and curved boundaries that meshpr does by default.)

The compare utility is used to generate a file of initial conditions using information in the USER
section of a session file. This restart file contains binary data, but we’ll have a look at the start of
it by converting it to ASCII format. Also, the header of these files is always in ASCII format, and so
can be examined directly using the Unix head command.

$ compare taylor2 > taylor2.rst

$ convert taylor2.rst | head -20

taylor2 Session

Wed Aug 13 21:39:47 1997 Created

11 11 1 4 Nr, Ns, Nz, Elements

0 Step

0 Time

0.02 Time step

0.01 Kinvis

1 Beta

uvp Fields written

ASCII Format

0.000000000 0.000000000 -0.5000000000
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0.000000000 0.1034847104 -0.4946454574

0.000000000 0.3321033052 -0.4448536974

0.000000000 0.6310660897 -0.3008777952

0.000000000 0.8940117093 -0.1003715318

0.000000000 1.000000000 0.000000000

0.000000000 0.8940117093 -0.1003715318

0.000000000 0.6310660897 -0.3008777952

0.000000000 0.3321033052 -0.4448536974

0.000000000 0.1034847104 -0.4946454574

Then the dns solver is run to generate a solution or field file, taylor2.fld. This has the same
format as the restart file.

$ dns taylor2

-- Initial condition : read from file taylor2.rst

-- Coordinate system : Cartesian

Solution fields : uvp

Number of elements : 4

Number of planes : 1

Number of processors : 1

Polynomial order (np-1) : 10

Time integration order : 2

Start time : 0

Finish time : 0.4

Time step : 0.02

Number of steps : 20

Dump interval (steps) : 20 (checkpoint)

-- Installing matrices for field ’u’ [*]

-- Installing matrices for field ’v’ [.]

-- Installing matrices for field ’p’ [*]

Step: 1 Time: 0.02

Step: 2 Time: 0.04

Step: 3 Time: 0.06

Step: 4 Time: 0.08

Step: 5 Time: 0.1

Step: 6 Time: 0.12

Step: 7 Time: 0.14

Step: 8 Time: 0.16

Step: 9 Time: 0.18

Step: 10 Time: 0.2

Step: 11 Time: 0.22

Step: 12 Time: 0.24

Step: 13 Time: 0.26

Step: 14 Time: 0.28

Step: 15 Time: 0.3

Step: 16 Time: 0.32

Step: 17 Time: 0.34

Step: 18 Time: 0.36

Step: 19 Time: 0.38

Step: 20 Time: 0.4

Note the difference in the information following the three ‘Installing matrices’ messages:
every instance of ‘*’ indicates a new matrix system is being computed, while a ‘.’ indicates that a
previously computed system will be used: in this case, the matrix system for ‘v’ can re-use the matrix
system for ‘u’, since the Helmholtz constant and boundary conditions match.

We can use compare to examine how close the solution is to the analytical solution. The output
of compare in this case is a field file which contains the difference: since we’re only interested in
seeing error norms here, we’ll discard this field file.
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Figure 3.4: Solution to the taylor2 problem, visualized using Tecplot.

$ compare taylor2 taylor2.fld > /dev/null

Field ’u’: norm_inf: 1.127e-05

Field ’v’: norm_inf: 1.127e-05

Field ’p’: norm_inf: 4.224e-01

The velocity error norms are small, as expected, but the pressure norm will always be arbitrary,
corresponding to the fact that the pressure can only be specified to within an arbitrary constant—
hence the reported errors for pressure may be quite large, but this isn’t a cause for alarm.

Finally we will use sem2tec to generate a Tecplot input file. The Tecplot utility preplot must
also be in your path; source for this code is supplied in the utility subdirectory.

$ sem2tec -m taylor2.msh taylor2.fld

This produces taylor2.plt which can be used as input to Tecplot. The plot in figure 3.4 was
generated using Tecplot and shows pressure contours and velocity vectors. Notice that largely for
cosmetic reasons, by default sem2tec interpolates the results from the Gauss–Lobatto–Legendre grid
(seen in figure 3.3) used in the computation to a uniformly-spaced grid of the same order (use -n 0

to defeat this feature and see the actual solution values and on the original mesh).

3.3 3D Kovasznay flow

Here we will solve another viscous flow for which an analytical solution exists, the Kovasznay flow
(we will call the session file kovas3). In the (x, y) plane, this flow is

u = 1− exp(λx) cos(2πy) (3.5)

v = λ/(2π) exp(λx) sin(2πy) (3.6)

w = 0 (3.7)

p = (1− exp(λx))/2 + const. (3.8)

where λ = Re/2− (0.25Re2 + 4π2)1/2.
Although the solution has only two velocity components, we will set up and solve the problem in

three dimensions, with a periodic length in the z direction of 1.0 and eight z-planes of data. The
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length in the z direction is set within the code by the variable BETA where β = 2π/Lz. The default
value of BETA is 1, so we reset this in the TOKENS section using the function parser. The exact
velocity boundary conditions are supplied on at the left and right edges of the domain, and periodic
boundaries are used on the upper and lower edges (the domain has −0.5 ≤ y ≤ 0.5). Since the flow
evolves to a steady state, first order timestepping is employed (N_TIME = 1).

The session file below is provided as mesh/kovas3.

##############################################################################

# Kovasznay flow in the x--y plane has the exact solution

#

# u = 1 - exp(lambda*x)*cos(2*PI*y)

# v = lambda/(2*PI)*exp(lambda*x)*sin(2*PI*y)

# w = 0

# p = (1 - exp(lambda*x))/2

#

# where lambda = Re/2 - sqrt(0.25*Re*Re + 4*PI*PI).

#

# This 3D version uses symmetry planes on the upper and lower boundaries

# with flow in the x-y plane.

#

# Solution accuracy is independent of N_Z since all flow is in the x--y plane.

<USER>

u = 1.0-exp(LAMBDA*x)*cos(TWOPI*y)

v = LAMBDA/(TWOPI)*exp(LAMBDA*x)*sin(TWOPI*y)

w = 0.0

p = 0.5*(1.0-exp(LAMBDA*x))

</USER>

<FIELDS>

u v w p

</FIELDS>

<TOKENS>

N_Z = 8

N_TIME = 1

N_P = 8

N_STEP = 500

D_T = 0.008

Re = 40.0

KINVIS = 1.0/Re

LAMBDA = Re/2.0-sqrt(0.25*Re*Re+4.0*PI*PI)

Lz = 1.0

BETA = TWOPI/Lz

</TOKENS>

<GROUPS NUMBER=1>

1 v velocity

</GROUPS>

<BCS NUMBER=1>

1 v 4

<D> u = 1-exp(LAMBDA*x)*cos(2*PI*y) </D>

<D> v = LAMBDA/(2*PI)*exp(LAMBDA*x)*sin(2*PI*y) </D>

<D> w = 0.0 </D>

<H> p </H>

</BCS>
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<NODES NUMBER=9>

1 -0.5 -0.5 0.0

2 0 -0.5 0.0

3 1 -0.5 0.0

4 -0.5 0 0.0

5 0 0 0.0

6 1 0 0.0

7 -0.5 0.5 0.0

8 0 0.5 0.0

9 1 0.5 0.0

</NODES>

<ELEMENTS NUMBER=4>

1 <Q> 1 2 5 4 </Q>

2 <Q> 2 3 6 5 </Q>

3 <Q> 4 5 8 7 </Q>

4 <Q> 5 6 9 8 </Q>

</ELEMENTS>

<SURFACES NUMBER=6>

1 1 1 <P> 3 3 </P>

2 2 1 <P> 4 3 </P>

3 2 2 <B> v </B>

4 4 2 <B> v </B>

5 3 4 <B> v </B>

6 1 4 <B> v </B>

</SURFACES>

3.3.1 ‘High-order’ pressure boundary condition

Note that there is only one boundary group, and four boundary conditions must be set, corresponding
to the four fields u, v, w and p. A new feature is a pressure BC of type H, which is an internally-
computed Neumann boundary condition, (a High-order pressure BC) as described in Karniadakis
et al. (1991). This is the kind of pressure BC that we would typically supply on all surfaces except
on outflow boundaries or, in cylindrical coordinates, on the x-axis. The pressure BC is computed
internally, so no value is required (if given, it will be ignored).

3.3.2 Running the codes

Since we already have an analytical solution for the problem, we may as well use that to generate an
initial condition and then run for a moderate number of time steps (e.g. 200) to see if the discrete
solution diverges much from this.

$ compare kovas3 > kovas3.rst

$ dns kovas3

After running dns, we confirm there is only a single dump in the field file kovas3.fld,4 then run
compare in order to examine the error norms for the solution.

$ convert kovas3.fld | grep -i session

kovas3 Session

$ compare kovas3 kovas3.fld > /dev/null

Field ’u’: norm_inf: 5.773e-05

Field ’v’: norm_inf: 3.145e-05

4Note the use of convert and grep to see how many dumps are contained within a field file. More generally (e.g.
within a script) we could pipe the outcome into wc -l to provide a numeric value.
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Figure 3.5: Solution to the kovas3 problem, visualised using Tecplot. The plot shows contours of
v velocity component and streamlines. Since the solution is in fact two-dimensional but we carried
out a three-dimensional solution, the results are identical on each z-plane of data.

Field ’w’: norm_inf: 0.000e+00

Field ’p’: norm_inf: 9.350e-01

$ meshpr kovas3 | sem2tec -n20 kovas3.fld

The errors incurred are relatively small and could be reduced by re-running with increased poly-
nomial order; in kovas3, N_P = 8, i.e. the polynomial order in each direction for each element is 7.
Increasing N_P to 13 will reduce the errors in velocity by more than three orders of magnitude (check
for yourself), illustrating the exponential convergence property of spectral element methods.

Finally we prepare input for Tecplot, projecting the interpolation to a 20×20 grid in each element
in order to produce smoother contours. A view of the result can be seen in figure 3.5.

3.3.3 Valid values of N Z in Semtex

This was a ‘fake’ three-dimensional problem since while we used N_Z=8, in fact the solution is two-di-
mensional, at least in Cartesian coordinates; the solution is invariant in the z-direction (in chapter 7
we will examine turbulent DNS which is three-dimensional). However, in passing, we note here
the values which N_Z can take for three-dimensional solutions: since we use a 2–3–5 prime-factor
complex–complex FFT (Temperton; 1992) together with a real–complex conversion (e.g. § 12.3, Press
et al.; 1992) to carry out Fourier transforms, N_Z must be even (factorisable by 2) but can also have
factors of 3 and 5. Hence valid values of N_Z are: 2, 4, 6, 8, 10, 12, 16, 20, 24, 30, 32 . . .. Of course
N_Z=1 is also valid but the solution will perforce be two-dimensional. However, owing to the use of
complex–real conversion in which the Nyquist data are always set to zero, in fact a solution with
N_Z=2 will also always be two-dimensional (the same on both z-planes). Hence the minimum value
of N_Z which in fact allows any three-dimensionality in Semtex is 4. For Navier–Stokes problems,
flows which have N Z > 1 must also have three velocity components.
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3.4 Vortex breakdown—a cylindrical-coordinate problem

Here we will examine a problem which uses the cylindrical coordinate option of dns. The physical
situation is a cylindrical cavity, H/R = 2.5 with the flow driven by a spinning lid at one end. At the
Reynolds number we’ll use, Re = ΩR2/ν = 2119, a vortex breakdown is known to occur. The flow in
this case is invariant in the azimuthal direction, but has three velocity components (it is 2D3C) and
hence we use N_Z=1. In the cylindrical code, the order of spatial directions and velocity components
is x, r, θ, though we retain the coordinate names x, y, z (i.e. y ≡ r and z ≡ θ, v ≡ ur, w ≡ uθ).

Note that for a full circle in the azimuthal direction, BETA = 1.0, which is the default value.
In fact, the value would not be used in the present solution, since all derivatives in the azimuthal
direction are implicitly zero when N_Z=1. (But see § 3.4.1 below.) The session file below is provided
as mesh/vb1.

#############################################################################

# 15 element driven cavity flow. 2D/3C

<FIELDS>

u v w p

</FIELDS>

<TOKENS>

CYLINDRICAL = 1

N_Z = 1

BETA = 1.0

N_TIME = 2

N_P = 11

N_STEP = 100000

D_T = 0.01

Re = 2119

KINVIS = 1/Re

OMEGA = 1.0

TOL_REL = 1e-12

</TOKENS>

<GROUPS NUMBER=3>

1 v velocity

2 w wall

3 a axis

</GROUPS>

<BCS NUMBER=3>

1 v 4

<D> u = 0 </D>

<D> v = 0 </D>

<D> w = OMEGA*y </D>

<H> p </H>

2 w 4

<D> u = 0 </D>

<D> v = 0 </D>

<D> w = 0 </D>

<H> p </H>

3 a 4

<A> u </A>

<A> v </A>

<A> w </A>

<A> p </A>

</BCS>
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<NODES NUMBER=24>

1 0 0 0

2 0.4 0 0

3 0.8 0 0

4 1.5 0 0

5 2.4 0 0

6 2.5 0 0

7 0 0.15 0

8 0.4 0.15 0

9 0.8 0.15 0

10 1.5 0.15 0

11 2.4 0.15 0

12 2.5 0.15 0

13 0 0.75 0

14 0.4 0.75 0

15 0.8 0.75 0

16 1.5 0.818 0

17 2.4 0.9 0

18 2.5 0.9 0

19 0 1 0

20 0.4 1 0

21 0.8 1 0

22 1.5 1 0

23 2.4 1 0

24 2.5 1 0

</NODES>

<ELEMENTS NUMBER=15>

1 <Q> 1 2 8 7 </Q>

2 <Q> 2 3 9 8 </Q>

3 <Q> 3 4 10 9 </Q>

4 <Q> 4 5 11 10 </Q>

5 <Q> 5 6 12 11 </Q>

6 <Q> 7 8 14 13 </Q>

7 <Q> 8 9 15 14 </Q>

8 <Q> 9 10 16 15 </Q>

9 <Q> 10 11 17 16 </Q>

10 <Q> 11 12 18 17 </Q>

11 <Q> 13 14 20 19 </Q>

12 <Q> 14 15 21 20 </Q>

13 <Q> 15 16 22 21 </Q>

14 <Q> 16 17 23 22 </Q>

15 <Q> 17 18 24 23 </Q>

</ELEMENTS>

<SURFACES NUMBER=16>

1 1 1 <B> a </B>

2 2 1 <B> a </B>

3 3 1 <B> a </B>

4 4 1 <B> a </B>

5 5 1 <B> a </B>

6 5 2 <B> v </B>

7 10 2 <B> v </B>

8 15 2 <B> v </B>

9 15 3 <B> w </B>

10 14 3 <B> w </B>

11 13 3 <B> w </B>
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Figure 3.6: Mesh for the vortex breakdown problem. The spinning lid is at right. This image was
produced using SuperMongo macros.

12 12 3 <B> w </B>

13 11 3 <B> w </B>

14 11 4 <B> w </B>

15 6 4 <B> w </B>

16 1 4 <B> w </B>

</SURFACES>

The mesh for the problem is shown in figure 3.6, and the velocity field estimate obtained by
running dns is shown compared to an experimental streakline flow visualisation on the front cover
of this document.

3.4.1 BCs for cylindrical coordinates

A new feature here is the use of BCs of type A on the axis of the flow. Internally, the code sets
the BC there either as zero essential or zero natural, depending on the physical variable and the
Fourier mode. Owing to the coupling scheme used in the code (Blackburn and Sherwin; 2004), the
boundary conditions for the radial and azimuthal velocities v and w must be of the same type within
each group. A further restriction is that the group to which the axis belongs must have name axis.

Finally, say you wish to solve a cylindrical-coordinate problem where you know that, while the
solution may be three-dimensional, there is an n-fold azimuthal symmetry (say n = 3). In that
case, it is much cheaper to solve with BETA=3, and use one-third the number of azimuthal planes
that would be required for BETA=1. One does not have to change the specification of axis boundary
conditions when making such a change, as they are internally computed according to Fourier mode
index and BETA.

3.5 Buoyancy driven flow in a cavity

Next we will examine a Navier–Stokes problem with an advected scalar (temperature) and Boussinesq
buoyancy (see § 4.13.9) driving flow in a rectangular cavity. The session file shown below is provided
as tdrivcav1.

# Thermal driven cavity problem for buoyancy-driven flow.

# Left edge is hot, right edge is cool, top and bottom are insulated.

<FIELDS>

u v c p

</FIELDS>

<USER>
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u = 0.0

v = 0.0

c = T_MAX-x

p = 0.0

</USER>

<FORCE>

BOUSSINESQ_TREF = 0.0

BOUSSINESQ_BETAT = RAYLEIGH*PRANDTL

BOUSSINESQ_GRAVITY = 1.0

BOUSSINESQ_GY = -1.0

</FORCE>

<TOKENS>

N_TIME = 1

N_P = 10

N_STEP = 5000

IO_FLD = 1000

D_T = 0.0008

T_MAX = 1.0

T_MIN = 0.0

PRANDTL = 0.71

RAYLEIGH = 1.0e4

KINVIS = PRANDTL

</TOKENS>

<GROUPS NUMBER=3>

1 h hot

2 c cold

3 i insulated

</GROUPS>

<BCS NUMBER=3>

1 h 4

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<D> c = T_MAX </D>

<H> p </H>

2 c 4

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<D> c = T_MIN </D>

<H> p </H>

3 i 4

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<N> c = 0.0 </N>

<H> p </H>

</BCS>

<NODES NUMBER=9>

1 0.0 0.0 0.0

2 0.5 0.0 0.0

3 1.0 0.0 0.0

4 0.0 0.5 0.0

5 0.5 0.5 0.0

6 1.0 0.5 0.0

7 0.0 1.0 0.0
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8 0.5 1.0 0.0

9 1.0 1.0 0.0

</NODES>

<ELEMENTS NUMBER=4>

1 <Q> 1 2 5 4 </Q>

2 <Q> 2 3 6 5 </Q>

3 <Q> 4 5 8 7 </Q>

4 <Q> 5 6 9 8 </Q>

</ELEMENTS>

<SURFACES NUMBER=8>

1 1 1 <B> i </B>

2 2 1 <B> i </B>

3 2 2 <B> c </B>

4 4 2 <B> c </B>

5 4 3 <B> i </B>

6 3 3 <B> i </B>

7 3 4 <B> h </B>

8 1 4 <B> h </B>

</SURFACES>

$ dns tdrivcav1

-- Initial condition : set to zero

-- Coordinate system : Cartesian

Solution fields : uvcp

Number of elements : 4

Number of planes : 1

Number of processors : 1

Polynomial order (np-1) : 9

Time integration order : 1

Start time : 0

Finish time : 4

Time step : 0.0008

Number of steps : 5000

Dump interval (steps) : 1000 (checkpoint)

-- Installing matrices for field ’u’ [*]

-- Installing matrices for field ’v’ [.]

-- Installing matrices for field ’c’ [*]

-- Installing matrices for field ’p’ [*]

Step: 1 Time: 0.0008

Step: 2 Time: 0.0016

Step: 3 Time: 0.0024

Step: 4 Time: 0.0032

Step: 5 Time: 0.004

...

...

Step: 4996 Time: 3.9968

Step: 4997 Time: 3.9976

Step: 4998 Time: 3.9984

Step: 4999 Time: 3.9992

Step: 5000 Time: 4

# CFL: 1.4, dt (max): 0.000572, dt (set): 0.0008 (139%), field: v, elmt: 1

# Divergence Energy: 0.000283

By now the structure of the session file should be fairly familiar, except perhaps for the specification
of a thermally driven buoyancy body force in the FORCE section, for which you are referred ahead
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Figure 3.7: Solution for the buoyancy driven flow in a cavity: colour contours of temperature
overlaid with streamlines. Compare results for Ra = 1 × 104 in de Vahl Davis (1983). This image
was produced using Tecplot.

to read § 4.13 and § 4.13.9 in particular. Note how variables are set to achieve a desired Rayleigh
number Ra = gβTL

3(Tmax − Tmin)/(ναTref) = 1× 104.

3.6 Timestepping stability: CFL and divergence energy

We have not yet touched upon the dns output information regarding CFL (Courant–Friedrichs–Lewy)
limits and divergence (as listed in the example above). These are reported in dns output every IO_CFL
steps. The CFL estimates are computed according to methods outlined in § 6.3 of Karniadakis and
Sherwin (2005) based on velocity component values and mesh sizes, and are roughly proportional to
u∆t/∆x. Typically, we need to keep CFL values below around unity to maintain stability with explicit
time integration methods of the kind used here for advection based on nonlinear terms. We see that
at the end of integration, our CFL value is actually larger than this (1.4), though stable integration is
achieved (partly since, as we are integrating towards a steady-state solution, we have used first-order
timestepping rather than the second-order default). Also, we see which velocity component (v) is
the most critical with respect to CFL instability, and in which element (1) this occurs.

On the lines following CFL estimate reports, we get another indication of solution robustness,
the (average) divergence energy, which is (2A)−1

∫
(∇ · u)2 dΩ where A =

∫
dΩ is the area of the

domain. Our numerical method, which uses a time-splitting approach to integrating the Navier–
Stokes equations, commits a divergence error that is asymptotically proportional to |∆t|N TIME (even
when the mesh is adequate for spatial resolution). If the timestep is too large, we will also get large
divergence energy: for solutions with length and velocity scales of order unity, a rule of thumb is
that reported divergence energies should be well below unity in order for results to be reasonably
well resolved in time. Typically, if the timestep is too large, CFL instability will set in and both
the reported CFL and divergence energy values will start to become very large before the simulation
terminates with a floating-point overflow error (Unix SIG8).
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3.7 Boundary condition roundup

The basic types of boundary conditions the code can deal with are Dirichlet type (value of variable
is set, a.k.a. an essential boundary condition in the finite element community) and Neumann type
(boundary-normal gradient of value is approximated, a.k.a. a natural type boundary condition in the
finite-element community). The code can also deal with boundary conditions of mixed type (a linear
combination of Dirichlet and Neumann). We note that periodic domain boundary surfaces (<P>) are
allowed, but strictly speaking, periodicity does not constitute a boundary condition as such. Also we
remark that for our code(s), boundary conditions may only be set for variables involved in elliptic
sub-problems where, owing to the MWR treatment, Neumann boundary conditions are implemented
as integral approximations (which converge to the given value pointwise as resolution is increased),
while Dirichlet conditions are ‘lifted’ out of the problem and imposed exactly to the values which are
set by the user.

Standard Dirichlet and Neumann boundary conditions may be supplied as a string that can be
parsed by the solver to obtain a real value, based on predefined and user-declared TOKENS, and also
the space/time variables x, y, z and t. These strings are re-parsed at each time step, so time-varying
boundary conditions are allowed. We have already seen examples of these BC declarations in §§ 3.1,
3.3 and 3.4. Note that the strings involved should not contain white space.

We have not yet described mixed boundary conditions. These are of type ∂c/∂n+K(c−C) = 0
where C and K are constants. Here, n signifies the unit outward normal direction: ∂c/∂n = n ·∇c.
Mixed boundary conditions are specified in the form <M> field = mulval;refval </M> where
mulval is (a string that evaluates to) the real value K and refval is (a string that evaluates to)
the real value C. At present for mixed BCs, unlike Dirichlet and Neumann boundary conditions, C
and K are fixed at the values they initially evaluate to (not time-varying).

In Navier–Stokes type problems, various of the above boundary conditions for the velocity and
pressure variables are typically combined in set ways. In some cases, the user does not provide values
or choose the combination since the boundary conditions are computed internally. Below we supply
as examples various typical boundary condition sets which would be located in the BCS section of a
session file. As written, they are for two-component Navier–Stokes problems but the generalisation
to three-component problems should be obvious.

See also § 3.2 of the Dog user guide for a discussion of sets of boundary conditions appropriate
for symmetry and anti-symmetry boundaries.

3.7.1 No-slip wall

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<H> p </H>

The tag H for pressure (p) denotes an internally computed ’high-order’ Neumann condition, as
originally described by Karniadakis et al. (1991). If the associated GROUP string is wall then tractions
will contribute to the integrated values found in session.flx file, see § 4.5.

3.7.2 Inflow or prescribed-velocity boundary

<D> u = 1.0 </D>

<D> v = 0.0 </D>

<H> p </H>

Note that either of the supplied values can be a string to be evaluated by the parser at each timestep.
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3.7.3 Slip (no-penetration) boundary

<N> u = 0.0 </N>

<D> v = 0.0 </D>

<H> p </H>

Note that in this case, the boundary needs to be aligned with the x axis. At present there is no way
to set a slip boundary which is inclined or curved; it must be parallel to either the x or y axis.

3.7.4 ‘Stress-free’ outflow boundary

<N> u = 0.0 </N>

<N> v = 0.0 </N>

<D> p = 0.0 </D>

This is a restricted approximation to a true stress-free boundary where the tractions are zero. This
boundary is also stress-free but achieves the condition by ensuring that the viscous and pressure
tractions are individually zero, rather than their sum.

3.7.5 Energy-stable open boundary

<O> u </O>

<O> v </O>

<O> p </O>

This is a set of computed boundary conditions (computed Robin/mixed for velocity and pressure).
These boundary conditions were originally described in Dong (2015) (see equations 37 and 38 there),
and are based on maintaining boundedness of kinetic energy within the domain. It is an excellent
combination for maintaining stability for flows in short open domains, where the use of the ’stress-
free’ condition described in § 3.7.4 can lead to catastrophe if significant inflow occurs over an outflow
boundary, or for allowing inflows on ingestion boundaries (such as outboard of a jet issuing from a
wall). Type O boundaries must set the string open in their associated GROUP. In addition one may
set the tokens DONG_UODELTA and DONG_DO (see Dong; 2015, these are Uoδ and Do), with default
values 0.05 and 1.0 respectively. For a scalar variable (c), a zero Neumann condition is set on these
boundaries.

3.7.6 Axis boundary

<A> u </A>

<A> v </A>

<A> p </A>

This is a set of Fourier-mode dependent homogeneous Dirichlet and Neumann boundary conditions to
be used when the boundary coincides with the x axis of a cylindrical coordinate system as described
in Blackburn and Sherwin (2004). Type A boundaries must set the string axis in their associated
GROUP.

3.8 Fixing problems

You are liable to come up against a few generic problems when making and running your own cases.
Here we will restrict discussion to Navier–Stokes problems and dns. The code will output an estimate
of the CFL-timestep every IO_CFL timesteps (default 50), along with the average divergence of the
solution (in the operator-splitting used, incompressibility is only ensured in the spatial-convergence
limit). The CFL estimate is generally quite reliable and provides guidance as to which velocity
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component and element number is the most critical, but also the divergence energy provides an
excellent diagnostic of trouble! If velocity and length scales are of order unity, the reported divergence
energy should be much less than unity; if the divergence is comparatively large then either the solution
is blowing up,5 or the spatial resolution is inadequate, or both.

By far the most common problem is that the solution will have a CFL-type instability brought
about by using too large a time-step; this instability is unavoidably associated with using explicit time
integration for the advection terms in the Navier–Stokes equations. This problem is easily enough
fixed: try reducing D_T, and if required, increasing N_STEP to maintain the same integration interval.
Obviously you will typically want D_T as large as possible, so if the problem runs stably, increase
the timestep as much as is reasonable. If the velocity and timescales are of order unity, then the
maximum timestep would typically be of order two orders of magnitude smaller (0.01). Note that
CFL-stability will decrease with increasing time-integration order (N_TIME).

If the solution persists in blowing up when the timestep is reduced, the next most common cause
is that there is inflow across an outflow boundary (in which case the problem is ill-posed, however,
in practice some inflow across an outflow boundary over restricted times may be present without
causing difficulty). To check if this is the cause, you could put some history points near the outflow
(see § 4.8), but the best method of diagnosis is to run the solution up to a time when divergence
starts to increase markedly, then use Tecplot or some other postprocessor to examine the solution
near the outflow. This problem has been largely circumvented in Semtex V8 using the open BC set
described by Dong (2015), see § 3.7.5 above, though it cannot overcome all problems. In pathological
cases, fixing the problem will generally require the mesh to be altered: sometimes the mesh is badly
structured near the outflow (e.g. element sizes have been varied too rapidly); sometimes the problem
can be overcome by extending the domain downstream; sometimes the domain needs to be reshaped
(e.g. by contracting it in the cross-flow direction) so that there will be no outflow over the inflow
boundary. If all else fails, consider the methods of § 4.13.4 to force the velocity near the outflow to
be something more computationally tractable (if unphysical).

Finally: if you can’t remember the syntax of a particular Semtex command, most of the executables
will issue a usage prompt when requested with the -h command-line flag, along the lines of regular
Unix commands. For example:

$ dns -h

Usage: dns [options] session-file

[options]:

-h ... print this message

-f ... freeze velocity field (scalar advection/diffusion only)

-i ... use iterative solver for viscous steps

-v[v...] ... increase verbosity level

-chk ... turn off checkpoint field dumps [default: selected]

-S|C|N ... regular skew-symm || convective || Stokes advection

If that is not enough help then you might consider examining at least the header of associated source
files, especially of the utilities.

3.9 Execution speed

3.9.1 Serial (per processor) speed

Semtex makes good use of the BLAS, so it can be worth seeking fast implementations. Espe-
cially, performance of the matrix–matrix multiplication routine dgemm is critical. Many math li-
braries, e.g. openblas and vendor-supplied math libraries such as AMD’s acml, Intel’s mkl or Ap-
ple’s Accelerate framework, now include some version of Kazushige Goto’s fast implementation of
dgemm.

5One wag suggested the name Semtex was associated with this property of the solutions.

39



R
ai
jin

<latexit sha1_base64="Nhx4vh4nP2YsaOCppx+wZWgAz74="></latexit><latexit sha1_base64="Nhx4vh4nP2YsaOCppx+wZWgAz74="></latexit><latexit sha1_base64="Nhx4vh4nP2YsaOCppx+wZWgAz74="></latexit><latexit sha1_base64="Nhx4vh4nP2YsaOCppx+wZWgAz74="></latexit>

M
ag

nu
s

<latexit sha1_base64="jCXEuNS1jZypwZALPpuraEcQ59o="></latexit><latexit sha1_base64="jCXEuNS1jZypwZALPpuraEcQ59o="></latexit><latexit sha1_base64="jCXEuNS1jZypwZALPpuraEcQ59o="></latexit><latexit sha1_base64="jCXEuNS1jZypwZALPpuraEcQ59o="></latexit>

Figure 3.8: Hard scaling (speed-up for problem of a fixed size) relations for Fourier-parallel DNS of
a turbulent pipe flow obtained at two different supercomputer facilities using MPI. The speed-up is
approximately linear with number of processes until communications overheads become dominant
(problem-dependent). (Reproduced from Blackburn et al.; 2019).

As Reynolds numbers increase (i.e. KINVIS decreases), the viscous Helmholtz matrices in the
operator splitting become more diagonally dominant and better conditioned. In this case, you may
find that iterative (PCG) solution of the viscous step (obtained by setting ITERATIVE=1 or running
dns -i) is actually faster than the direct solution that is obtained by default. This is nice because
additionally, less memory is required. It is generally worth checking this if you plan an extended series
of runs, and Reynolds numbers are large.

3.9.2 Parallel execution

At present, the two primary solvers in Semtex support parallel MPI-based execution for three-dimen-
sional problems. The associated solvers are called elliptic_mp (which gets little use— it mainly
exists for completeness and testing purposes) and dns_mp. If an MPI system (e.g. openmpi, mpich,
lam/mpi) is present on your machine, the cmake build system should detect that and compile these
two extra executables.

For three-dimensional problems (N_Z≥ 4, see § 3.3.3), the solution can be made parallel across
(two-dimensional) Fourier modes. No change to the problem’s session file is required; one just
needs to change the executable from dns to dns_mp and pass execution over to mpirun (or local
equivalent) for administration. The maximum number of processors which can be employed is N_Z /2,
because each two-dimensional Fourier mode is complex (has real and imaginary parts), must be even,
and must be congruent with the 2-3-5 prime-factor FFT used. (Don’t be too concerned: if you choose
an inappropriate value, an error message will be issued and execution will be terminated!). Generally,
parallel speed-up will be initially somewhat linear with number of processors used, but will eventually
decay (see figure 3.8).

For example, the mesh used for the channel flow DNS examined in chapter 7 has N_Z= 80. Then
the maximum number of processes which could be employed for parallel execution is 40. However,
the number of elements (96) is rather small, so one could perhaps more efficiently use 20, or 10
(and maybe even as few as 8, 4 or 2) processors: one has to check the speed-up to see which is
most efficient, consider how long you are prepared to wait for results and how many processors are
available for use.
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Here is how to use dns_mp for that problem with 8 processors:

$ mpirun -np 8 dns_mp chan > /dev/null

(Redirection of stdout to /dev/null is not necessary, but once you are sure that the problem will
run OK, is generally a Good Idea.)

Apologies, but for now at least, none of the Semtex utilities will run in parallel.
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Chapter 4

Extra controls

This chapter describes some additional features that are implemented within the Navier–Stokes solver
dns to control execution and output.

4.1 Default values of flags and internal variables

There are two simple ways to establish the default values of all the internal flags and variables used
by Semtex. The first is via the calc utility: run calc -h and check the output (this will also show
you all the functions available to the parser for calculating TOKEN variables, initial and boundary
conditions). The second is to examine the file femlib/defaults.h.

4.2 Checkpointing

By default, intermediate solutions are written out as checkpoint dumps in file session.chk every
IO_FLD steps (default value IO_FLD = 500), rotating this to session.chk.bak so there are usually
two checkpoint files available for restarting if execution stops prematurely (e.g. if terminated by a
queuing system or by a floating point error). Once the final time (N_STEP) is reached, the outcome
(the terminal solution field) is written to session.fld.

Sometimes however, one wants a sequence of field dumps to be written to session.fld. One
can toggle this behaviour on the command line using dns -chk, or alternatively set the TOKEN

CHKPOINT=0 (the default being CHKPOINT=1). Beware: turning off checkpointing can result in the
generation of extremely large session.fld files.

4.3 Iterative solution

Two matrix solution methods are implemented for Helmholtz problems associated with the viscous
substep of the time splitting. By default, direct Schur-complement solutions are used. The associated
global matrices can consume quite large amounts of memory, typically much more than is required
for storage of the associated field variable. Iterative (PCG) solution can also be selected, and this has
the advantage that since it is matrix-free, no global matrices are required, however, solution may be
slower than for the direct solver (depending on the condition number of the global matrix problem).

The token that controls the selection of matrix solution method is ITERATIVE. For dns, PCG
solution can be selected for the viscous substep of the solution (ITERATIVE = 1). This can also
be selected via a command-line option (dns -i), but note that this overridden by tokens set in the
session file (the default value is ITERATIVE = 0).

Iterative solution can be useful for the viscous substep, particularly when the Reynolds number is
high, since this decreases the condition number of the associated global matrices. In fact, iterative
solutions for the viscous substep can execute faster than direct solutions at high Reynolds number,
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although this is platform dependent. You should always consider trying ITERATIVE = 1 as an option
for simulations where the Reynolds number is more than a few hundred.

4.4 Alternative forms of nonlinear terms

Various forms of the nonlinear terms for the Navier–Stokes equations (e.g. u·∇u) are available. The
more standard ones are generally selectable from the dns command line, but additional forms can be
selected via the token ADVECTION (which has default value 1). If you wish to solve the (unsteady)
incompressible Stokes equations for which the nonlinear terms are zero, set ADVECTION = 5 (or use
dns -N). Owing to various vector identities and incompressibility, ∇ · u = 0, the various nonlinear
terms are equivalent in the continuum setting:

u · ∇u ≡ ∇ · uu ≡ 1
2 [u · ∇u+∇ · uu] ≡ u×∇× u ≡ u×∇× u− 1

2∇u · u.

The five forms above are generally named: convective (or, sometimes, non-conservative), conserva-
tive, skew-symmetric, rotational-1 and rotational-2. While equivalent in the continuum setting, they
have somewhat distinct behaviours in the discrete (numerical) setting.

The convective form (standard in fluid mechanics texts) is generally the simplest, and cheapest to
compute (use ADVECTION = 2 or dns -C). Going back (at least) to the work of Zang (1991), it is
generally acknowledged that the skew-symmetric form has superior energy conservation properties in
the discrete setting and in our experience is generally the most benign when solution resolution starts
to become marginal. In early versions of Semtex, this was the default form (use ADVECTION = 0

or dns -S). It does, however, cost double to compute compared to the convective form. A simple
variation, suggested by Kerr (1985), is to use the convective and conservative forms on alternate
timesteps — this is called the ’alternating’ skew-symmetric form; ‘on average’ one may expect similar
behaviour to the full skew-symmetric form, and it costs much the same to compute as the convective
form. In our experience it is about as robust as full skew-symmetric form, and since it is cheaper,
it has become the default option in Semtex (use ADVECTION = 1 to explicitly select it). It does,
however, have a slight defect: owing to alternation, it can produce small high-frequency temporal
oscillations in the solution, of period 2∆t. It may also slightly reduce the asymptotic convergence
rates of steady solutions. If you are seeking very clean solutions at high resolution (e.g. to compute
base flows for stability analysis, or your flow may have sensitive dynamics), it is best to use either
convective or full skew-symmetric forms. In general, or perhaps when computing, say, a turbulent
flow, which is full of disturbance, you might profitably use the default.

The two rotational forms are provided for completeness if you have a specific interest in them —
use either ADVECTION = 3 or 4. Their computational cost is similar to the conservative form. In
summary:

ADVECTION = 0 1
2 [u · ∇u+∇ · uu] dns -S

ADVECTION = 1 [u · ∇u](n) or [∇ · uu](n+1) (default)
ADVECTION = 2 u · ∇u dns -C

ADVECTION = 3 u×∇× u
ADVECTION = 4 u×∇× u− 1

2∇u · u
ADVECTION = 5 0 dns -N

You may ask: what about the conservative form, ∇ · uu? Isn’t that as cheap to compute as the
convective form? Well, yes it is, but Wilhelm and Kleiser (2001) showed that it was also linearly
unstable in a discrete setting. And, during development, our companion stability analysis code, dog,
produced erroneous results when the skew-symmetric form of advection terms was initially employed.
So, the conservative form is not provided as an option for dns and indeed, for this reason, the
linearised advective term used by dog (u′ · ∇U +U · ∇u′) is based on the convective form.

Prior to Semtex V8, nonlinear product terms were dealiased in the Fourier direction (only) when
using the serial version of dns. Partly for consistency across serial and parallel computations, and
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partly for simplicity, dealiasing was subsequently removed from the code. This can somewhat degrade
the rate of exponential convergence of results in the Fourier direction for serial execution, compared
to earlier releases. Results for parallel execution are unchanged from before, since no dealiasing
was ever employed for parallel executables. We note that in lieu of dealiasing, a weak application
of spectral vanishing viscosity (see § 4.12) can have beneficial effects at high wavenumbers when
resolution is marginal (typically, when Reynolds numbers are high).

4.5 Wall fluxes, forces, torques

A file called session.flx is used to store the integral over the wall group boundaries of viscous and
pressure stresses (i.e. lift and drag forces). Output is done every IO_HIS steps. For each direction
(x, y, z), the outputs are in turn the pressure, viscous, and total force per unit length (in z). In 2D
the z-components are always zero, while in 3D the z-component pressure force is always zero, owing
to the fact that the geometry is invariant in that direction. For cylindrical geometries, the output
values are forces per radian (in the x and y directions) and torque per radian (in the z direction)
rather than forces per unit length.

If a scalar (c) is present in the simulation, then its integral flux is also computed over the wall

group boundaries and output in the session.flx file, preceding the wall tractions.

4.6 Wall tractions

If the token IO_WSS is set to a non-zero value then the normal and the single (2D) or two (3D)
components of tangential boundary traction are computed on the wall group, and output every
IO_WSS steps in the file session.wss. This is a binary file with structure similar to a field dump.
The utility wallmesh is used to extract the corresponding mesh points along the walls (and can be
used with sem2tec to produce Tecplot input files). Note also that there is a stand-alone utility called
traction which is a post-processor that takes a standard .fld file and produces a wall traction file.

4.7 Modal energies

For three-dimensional simulations (N_Z > 1), a file of modal energies, session.mdl, is produced.
This provides valuable diagnostic information for turbulent flow simulations. For each active Fourier
mode k in the simulation, the value output every IO_HIS steps is

Ek =
1

2A

∫
Ω
û∗
k · ûk dΩ,

where A is the area of the 2D domain Ω. (In cylindrical coordinate problems, the integrand is
multiplied by radius.) Each line of the file contains the time t, mode number k and Ek.

Note that the energies are output only for non-negative Fourier modes. To get the correct estimates
for the one-sided spectrum (and to satisfy Parseval’s relation), the energies for non-zero modes should
be doubled.

4.8 History points

History points are used to record solution variables at fixed spatial locations as the simulation pro-
ceeds. The locations need not correspond to grid points, as data are interpolated onto the given
spatial locations using the elemental basis functions. Locations of history points are declared in the
session file as follows:
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<HISTORY NUMBER=1>

# tag x y z

1 0 0 0

</HISTORY>

A file called session.his is produced as output. Each line of the file contains the step number,
the time, the history point tag number, followed by values for each of the solution variables. The
step interval at which history point information is dumped to file is controlled by the IO_HIS token;
the default value is IO_HIS = 10.

Regarding interpolation: to locate a desired history point in the domain, the solver uses a Newton–
Raphson iteration. It is not impossible that that this can fail to converge; if it does so, you can try
adjusting TOKENs NR_MAX and/or TOL_POS from their default values (20 and 1× 10−5). See also the
discussion under § 6.9. The same considerations in fact apply to some other related functions that
involve data extraction at points, such as the probe utility and particle tracking.

4.9 Averaging

Set AVERAGE = 1 in the tokens section to get averages of field variables left in files session.ave and
session.avg (which are analogous to session.chk and session.fld, but session.ave.bak is
not produced). Averages are updated every IO_HIS steps, and dumped every IO_FLD steps. Restarts
are made by reading session.avg if it exists.

Setting AVERAGE = 2 will accumulate averages for Reynolds stresses as well, with reserved names
ABCDEF, corresponding to products

uu uv uw A B D

vv vw = C E

ww F

The hierarchy is named this way to allow accumulation of products in 2D as well as 3D (for 2D
you get only ABC). In order to actually compute the Reynolds stresses from the accumulated products
you need to run the rstress utility, which subtracts the products of the means from the means of
the products:

rstress session.avg > reynolds-stress.fld

An alternative function of rstress is to subtract one field file from another:

rstress good.fld test.fld | convert | diff

With the addition of scalar as well as velocity components, the averaging (and naming) is extended
in the following way:

uu uv uw uc A B D G

vv vw uv = C E H

ww uw F I

cc J,

again with a fairly obvious two-dimensional restriction (ABCGHJ). Again, use rstress to subtract
products of means from means of products.

Setting AVERAGE = 3 will accumulate sums of additional products for computation of terms in
the kinetic energy transport equation. You will then need to use the eneq utility to actually compute
the terms. Presently this part of the code is only written for Cartesian coordinates, and only does
collections based on kinetic energy.
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4.10 Phase averaging

Phase averaging is useful for turbulent flows with a dominant (and known) underlying temporal
period. We can collect statistics (with AVERAGE=1, 2 or 3)—much as for the case without phase
averaging enabled—conditional on phase in the cycle of the underlying period, see Reynolds and
Hussain (1972). Turning on phase averaging does not preclude or stop collection of standard statis-
tics. The enabling token is N_PHASE, which must be a positive integer; in addition one needs token
STEPS_P (steps per period) which must be chosen such that STEPS_P modulo N_PHASE is zero, and
also N_STEP modulo N_PHASE must be zero and IO_FLD=STEPS_P/N_PHASE. Statistics are written
to files session.0.phs . . . session.X.phs where X=N_PHASE-1. The Reynolds stresses computed
from these files will represent fluctuations around the conditional average flow at each phase point
(the so-called ‘triple decomposition’).

The slight difficulty is that if the period is not very well-defined or we have a poor estimate of
it, our sampling phase will slowly drift unless we take corrective action. However if the underlying
period is very well defined (e.g. the flow is periodically forced) the method has great potential.

4.11 Particle tracking

The code allows for tracking of massless particles, but this only works correctly for non-concurrent
execution at present. Tracking is quite an expensive operation, since Newton–Raphson iteration is
used to relocate particles within each element at every timestep.

The application looks for a file called session.par. Each line of this file is of form

# tag time ctime x y z

1 0.0 0.0 1.0 10.0 0.5.

The time value is the integration time, while ctime records the time at which integration was
initialised.

Output is of the same form, and is called session.trk. The use of separate files, rather than by
declaration in the session file, is intended so that session.trk files can be moved to session.par

files for restarting. Particles that aren’t in the domain at startup, or leave the domain during
execution, are deleted.

Setting SPAWN = 1, re-initiates extra particles at the original positions every timestep. With
spawning, particle tracking can quickly grow to become the most time-consuming part of execution.

4.12 Spectral vanishing viscosity (SVV)

Spectral vanishing viscosity amounts to implementing larger viscosity at higher wavenumbers either
in Fourier space or in spectral element polynomial space. The idea is that as resolution is increased
via p-refinement, the effect ‘vanishes’ (Tadmor; 1989; Maday et al.; 1993). One may regard SVV
either as a type of implicit large-eddy simulation methodology (Pasquetti; 2006) or as a means of
stabilising spectral element solutions especially at high Reynolds numbers (Xu and Pasquetti; 2004;
Kirby and Sherwin; 2006), effectively as a palliative used in lieu of dealiasing. Neither of these ideas
has firm theoretical underpinning at this stage, yet the method does appear quite effective in reducing
resolution requirements for turbulent flow simulations (Koal et al.; 2012; Chin et al.; 2015). Our
implementation and nomenclature follows the ‘standard method’ described in Koal et al. (2012).
One can turn on SVV separately and with different parameters for (x, y) spectral elements and in
the Fourier (z) direction. These are all declared in the TOKENS section.

SVV MN Corresponds to cut-in mode Mzr in spectral elements. Must be less than N P.
SVV MZ Corresponds to cut-in mode Mφ in Fourier direction. Must be less than N Z/2.
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SVV EPSN Corresponds to εzr. Should be a value larger than KINVIS, e.g. 5*KINVIS.
SVV EPSZ Corresponds to εφ. A value larger than KINVIS.

The default polynomial transform in to place spectral element expansions into a discrete hierar-
chical space is the discrete Legendre transform (see e.g. Blackburn and Schmidt; 2003). This can
be changed in src/svv.cpp.

4.13 General body forcing

This extension was largely developed by Thomas Albrecht.

If found, the FORCE section of the session file allows you to declare various types of body forcing,
i.e. add a source term to the RHS of the Navier–Stokes equation. The currently implemented types
include (any combination allowed):

f = fconst constant force (frame acceleration)
+ a1(x) steady, but spatially varying force
+ a2(x)α(t) modulated force
− m1(x) (u− u0) sponge region
− m2(x) (u/|u|) |u(x, t)|2 ‘drag’ force
+ ϵG white noise
− χ(u− u) selective frequency damping
− 2 Ω× u− (dΩ/dt)× x−Ω×Ω× x Coriolis force
− βT (c− cref)g Boussinesq buoyancy.

4.13.1 Constant force

For example, a force constant in time and space f = fconst is declared by:

<FORCE>

CONST_X = 4

CONST_Y = 0

CONST_Z = 0

</FORCE>

This type of forcing must not be time or space dependent. It is suitable for periodic channel flow,
where you have a uniform and steady force driving the flow, see channel-FX for an example session.

All forcing terms are applied in physical space.
Unless otherwise noted, any skipped keyword defaults to 0. Any line starting with a hash # is

ignored.

4.13.2 Steady force

A spatially varying, steady force f = a(x), computed (or read from a file) during pre-processing and
applied every time step. See box-steady for the complete example session. It suits applications
requiring localised, steady forcing.

<FORCE>

STEADY_X = cos(x)

STEADY_Y = -sin(z)

STEADY_Z = -cos(y)

# STEADY_FILE = box-steady.force.fld

</FORCE>
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You may also point STEADY_FILE to a field file, in which case the force is taken from the uvw

fields of that file and STEADY_[XZY] is ignored.

4.13.3 Modulated force

A spatially varying force, which is modulated in time, f = a(x)α(t). The steady part a(x) is
computed (or read from a file) during pre-processing, while α(t) is evaluated each time step.

<FORCE>

# -- spatially varying part

MOD_A_X = cos(x)

MOD_A_Y = -sin(z)

MOD_A_Z = -cos(y)

# MOD_A_FILE = box-mod.force.fld

# -- time varying part

MOD_ALPHA_X = step(t, 10)

MOD_ALPHA_Y = step(t, 10)

MOD_ALPHA_Z = step(t, 10)

</FORCE>

4.13.4 Sponge region

This implements a so-called ‘sponge region’ defined by the shape functionm(x) in which a (physically
meaningless) penalty term f = m(x) (u − u0) forces the flow towards a given solution u0. It is
especially useful for inflow–outflow simulations of vortex shedding or turbulence: if the velocity
fluctuations hit the outflow boundary condition, they cause unphysical reflections back into the
domain which distort the upstream flow. A sponge region placed just upstream the outflow boundary
helps to reduce the velocity fluctuations to (near) zero and thereby prevents those reflections. The
following section would apply the penalty term for 20 ≤ x ≤ 24, and within that region forces the
velocity to approach (1, 0, 0). That given solution may be a function of space, but must be steady.

<FORCE>

SPONGE_M = 5. * step(x,20)*heav(24-x)

SPONGE_U = 1

SPONGE_V = 0

SPONGE_W = 0

</FORCE>

4.13.5 ’Drag’ force

An approximate drag force f = −m(x) (u/|u|) |u(x, t)|2. Be aware that we use the previous time
step’s velocity un here.

<FORCE>

DRAG_M = heav((x-2)^2 + y^2)

</FORCE>

4.13.6 White noise force

Similar to the noiz tool, this continuously adds random perturbation f = (ϵx, ϵy, ϵz)
T G in specified

direction, where G is a normally distributed random variable. It is now only possible to apply the
forcing uniformly in physical space.

The following example applies white noise in x−direction to mode 0:
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<FORCE>

WHITE_EPS_X = 0.1

WHITE_EPS_Y = 0

WHITE_EPS_Z = 0

</FORCE>

Adding white noise in all three directions degrades performance by about 10%.

4.13.7 Selective frequency damping (SFD)

This is a means of obtaining an approximate steady state solution to the Navier–Stokes equations
using an unsteady solver, originally described by Åkervik et al. (2006). SFD applies a penalty term of
the form −χ(u− u) to the right-hand side of the momentum equations, where u is an estimate of
the time-mean solution that is updated as integration proceeds (and held in internal storage). SFD
can also be considered as applying an IIR low-pass digital filter to the discrete approximation of the
Navier–Stokes equations.

The two parameters are SFD_CHI (i.e. penalisation multiplier χ) and SFD_DELTA, which is the time
constant ∆ used in updating a forwards-Euler approximation of the steady flow u (see reference).
Both values are problem-specific and should be tuned to get acceptable results. Note that it is
not always possible to obtain a steady outcome with SFD, and that it is generally preferable to use
standard skew-symmetric form of the nonlinear terms for dns, rather than the now-default alternating
skew symmetric form: this can be achieved by setting token ADVECTION = 0 or by using command-
line flag -S with dns.

<FORCE>

SFD_CHI = 0.2

SFD_DELTA = 0.75

</FORCE>

A final point to note is that the values of the two parameters are parsed once, at the beginning of
runtime, after any restart file (if present) is read. Thus, their definitions can contain the temporal
variable t, but the value used is whatever holds at the start of runtime.

4.13.8 Rotating frame of reference: Coriolis and centrifugal force

If the flow is to be computed in a rotating frame of reference, additional acceleration terms appear,
namely f = −2Ω×u− (dΩ/dt)×x−Ω× (Ω×x) (Batchelor; 1967). The vector of rotation Ω is
always given in Cartesian co-ordinates, even if CYLINDRICAL = 1. Its magnitude and/or orientation
can change with time. However, the axis of rotation it is always assumed to go through the origin.
Depending on whether Ω is steady or not, usage slightly differs.

For unsteady Ω, set the flag CORIOLIS_UNSTEADY = 1 and give Ω and dΩ/dt. All terms are
re-evaluated each time step.

<TOKENS>

f = 1.

omega = TWOPI * f

</TOKENS>

<FORCE>

CORIOLIS_UNSTEADY = 1

CORIOLIS_OMEGA_X = 0

CORIOLIS_OMEGA_Y = 0
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CORIOLIS_OMEGA_Z = omega * sin(t)

CORIOLIS_DOMEGA_X_DT = 0

CORIOLIS_DOMEGA_Y_DT = 0

CORIOLIS_DOMEGA_Z_DT = omega * cos(t)

</FORCE>

For constant Ω ̸= f(t), the term −(dΩ/dt)× x vanishes, and the centrifugal force −Ω× (Ω× x)
can be computed during pre-processing. Set CORIOLIS_UNSTEADY = 0 and make sure to include
the centrifugal force manually using a steady force as it is no longer computed automatically1. A
temporal derivative dΩ/dt, if given, is ignored.

<FORCE>

CORIOLIS_UNSTEADY = 0

CORIOLIS_OMEGA_X = 0

CORIOLIS_OMEGA_Y = 0

CORIOLIS_OMEGA_Z = omega

# -- centrifugal term for Omega = (0, 0, omega)^T

# for a cylindrical problem

STEADY_X = x*omega^2

STEADY_Y = omega^2*y*(cos(z)^2)

STEADY_Z = -omega^2*y*cos(z)*sin(z)

</FORCE>

See Albrecht et al. (2015) for an example of DNS carried out in a rotating frame of reference.

4.13.9 Boussinesq buoyancy

See the example of § 3.5. This option is available if your simulation includes a scalar, in which case
it can be considered as a temperature, allowing for the introduction of body forces based on density
variation produced by a coefficient of thermal expansion βT . In the Boussinesq approximation, the
flow is still assumed to be incompressible, and the added body force is of form −βT (c− cref)g, where
cref is a reference value of scalar (i.e. temperature) and g is the gravitational acceleration vector.
Note that for an ideal gas, βT = 1/cref.

<FORCE>

BOUSSINESQ_TREF = 288.15

BOUSSINESQ_BETAT = 1./BOUSSINESQ_TREF

BOUSSINESQ_GRAVITY = 10.

BOUSSINESQ_GY = -1.0

</FORCE>

The gravity vector is supplied as a magnitude, BOUSSINESQ_GRAVITY, and a set of direction
cosines; in the above example, only the y component is set, with the other components defaulting
to zero. If cylindrical coordinates are employed, only the axial, x, direction cosine is used, i.e. the
gravity vector must be aligned with the axis of the coordinate system. For historical reasons, the
scalar c goes under the pseudonym T here, i.e. cref ≡ BOUSSINESQ_TREF

1If you’re lazy, or for cross-checking, you could set CORIOLIS UNSTEADY = 1 and omit CORIOLIS DOMEGA [XYZ] DT

to have the centrifugal term computed automatically. Note, however, that this degrades performance as it is done each
time step.
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A further restriction to note is that while, logically, buoyancy forces should recognise potential-type
reference frame forces (such as rotation), at present this is not implemented, so that buoyancy only
responds to gravity fields.

As of 2022, this kind of gradient-based Boussinesq treatment has been deprecated in favour of
the more complete approach described in the following section.

4.13.10 ‘Canonical’ steady Boussinesq buoyancy

This is the treatment of Boussinesq buoyancy described in Blackburn et al. (2021), whereby density
fluctuation is applied to all the convective and frame-acceleration terms in the Navier–Stokes equa-
tions. In fact, here, it is applied to the convective, frame-acceleration, and any other forcing terms.
(It is usual in GFD Boussinesq applications to apply density variation only to gravitational body
force—equivalent to a frame acceleration—on the assumption that this is typically large compared
to the fluid acceleration terms.)

Following from Blackburn et al. (2021), the canonical Boussinesq treatment of the incompressible
Navier–Stokes equations (§ 2.2) is (with body force terms f included, and transposed onto the LHS
of the momentum equation)

ρ

ρ0

[
Du

Dt
− f

]
=

(
1 +

ρ′

ρ0

)[
Du

Dt
− f

]
= − 1

ρ0
∇p+ ν∇2u, ∇ · u = 0, (4.1)

where u is the velocity field measured in an inertial frame of reference. Using the typical approach
where the effect of density variation is dropped from the local accelerative term, the momentum
equation above is approximated as

∂u

∂t
+

(
1 +

ρ′

ρ0

)
[u · ∇u+ 2Ω×u+Ω×(Ω×r) +α×r +A− f ] = − 1

ρ0
∇p+ ν∇2u, (4.2)

where now u is measured relative to the origin of the arbitrarily accelerating and rotating frame
of reference. As in our standard treatment of Boussinesq buoyancy (§ 4.13.9) the relative density
variation ρ′/ρ0 = βT (Tref − T ) ≡ βT (cref − c). Equation (4.2) is the ‘canonical steady Boussinesq’
treatment of buoyancy terms. As explained in Blackburn et al., it is a robust treatment of Boussinesq
buoyancy and fulfils the original intention in the case of steady flows—and the omission of effect of
density variation on the local acceleration term is also a part of standard Boussinesq treatments, so
in effect it is a more complete approach than the standard method. Note that the flows considered
need not be steady; it is just the case that, as for standard Boussinesq treatments, the approximation
is more complete when they are. We call the method the convective–frame-acceleration Boussinesq
treatment (that’s a mouthful, so we use the acronym CFB below).

As outlined in Blackburn et al., a gravitational field g would be included as a frame acceleration
term A ≡ −g and dealt with using the approach described in § 4.13.1. Any frame-rotation terms
would be dealt with as described in § 4.13.8.

To use CFB buoyancy, one needs to define CFB_BETA_T and CFB_T_REF in the FORCE section.
These are equivalent to the regular Boussinesq tokens outlined in the previous section. In addition,
one may need to apply frame acceleration terms as outlined above in §§ 4.13.1, 4.13.2 and 4.13.8.

For example, consider the case dealt with in Blackburn et al. (2021) § 3.1, see the present fig-
ure 4.1(a). This is an axisymmetric rotating flow dealt with in cylindrical coordinates. It has frame
acceleration in the −x direction, which is equivalent to a steady body force in the +x direction. As
explained in § 4.13.8, we can set CORIOLIS_UNSTEADY=0 and explicitly add a steady (centrifugal)
body force |Ω|2r — this is computationally cheaper than computing −Ω×(Ω×x) at every timestep.
We still need to set CORIOLIS_OMEGA_X to ensure the Coriolis body force terms −2Ω×u are com-
puted. Here is the FORCE section for that example (see also session file MMBL in the mesh directory).
The supplied values in various of the assignments below correspond to user-defined TOKENS.
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(a) (b)

Figure 4.1: Canonical steady buoyancy test case examples from Blackburn et al. (2021). Red/blue
colours indicate warm/cool fluid. See supplied session files MMBL and annulus36.

<FORCE>

CFB_BETA_T = BETA_T

CFB_T_REF = T_REF

CORIOLIS_UNSTEADY = 0

CORIOLIS_OMEGA_X = OMEGA

STEADY_Y = OMEGA*OMEGA*y

CONST_X = GRAVITY

</FORCE>

Another example is the test case of Blackburn et al. (2021) § 3.2, see present figure 4.1(b). This is
a rotating flow, and the geometry and boundary conditions are again axisymmetric, but the problem
is dealt with in Cartesian coordinates (which allows the k = 5 wavy primary instability to develop in
2D). There is no gravitational acceleration in this case. Note the treatment of the centrifugal force
terms. See also the session file annulus36 in the mesh directory.

<FORCE>

CFB_T_REF = T_REF

CFB_BETA_T = BETA_T

CORIOLIS_UNSTEADY = 0

CORIOLIS_OMEGA_Z = OMEGA

STEADY_X = OMEGA*OMEGA*x

STEADY_Y = OMEGA*OMEGA*y

</FORCE>

By default, hydrostatic pressure gradients associated with steady body forces or accelerations are
removed for CFB. This is convenient in the case that there are free boundaries and one does not
wish to apply associated pressures. If you wish hydrostatic terms to appear, you should also set
CFB_REMOVE_HYDRO=1.
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Chapter 5

Code design and the Semtex API

While the top level of the code is written in C++, the bulk of computational work is carried out
using 3rd-party libraries: BLAS and LAPACK (vendor- or distribution-supplied) for two-dimensional
operations, Temperton’s 2-3-5 prime factor FFT (incorporated into femlib) for three-dimension-
al operations, and (open)MPI for parallel operations. Depending on what your application hits
the hardest, one or other of these things may be the speed-determining component. Optimising
compilers are liable to make a only a small difference—most speed-up is now to be achieved by
further algorithm development. However, it is definitely worthwhile seeking out a fast BLAS library
(as supplied with Apple’s Xcode, Intel’s MKL, or AMD’s ACML).

Some fundamental design decisions:

1. In Semtex, all floating point numbers are double precision variables.

2. Most real-type data arrays are flat (one-dimensional). In C and C++, such arrays have indices
starting at 0, while in Fortran, indexing starts at 1 by default— though the start address is
identical. This makes them easy to use with Fortran routines, but with the following caveat.

3. The layout of these flat arrays are typically taken as row-major, which is standard C/C++.
However, Fortran uses column-major ordering. For this reason, any BLAS or LAPACK matrix
operation may at first sight seem to be the transpose of what is intended.

4. Ordering of storage in data AuxFields is, working bottom-up: (x, y) data in each element
with internal row-major order starting from the bottom-left corner (i.e. at the first vertex), then
a list of elements as declared in the ELEMENTS section of the session file, then by z−planes.

5. Most low-level C++ methods in the code do not incorporate internal data storage but can be
regarded as operator routines, and get handed addresses to appropriate parts of storage from
within the flat data arrays on which to work.

Coding conventions:

1. Class private or protected member data names start with an underscore, e.g. ntot.

5.1 Useful things to know about

Hierarchy of main data storage From top down: Domain, Fields, AuxFields, Elements. The
key entity for most applications programming is the AuxField class, which contains scalar
field variables and a list of Element pointers. The Field class inherits from the AuxField

class, adding a list of boundary condition applicators and the ability to solve elliptic problems.
The Domain class holds an array of Field pointers and most of its internal storage is publicly
accessible.
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The Geometry class This class (src/geometry.cpp) centralises information about the ‘logical’
(rather than ‘spatial’) geometry of the solution domain, for example, the number of points
along the edge of each element, the number of elements, number of processes, the total
number of z-planes, the number of z-planes per process, the number of Fourier modes, the
number of data in a single (x, y) plane, etc.

Most of these are fairly straightforward (peruse geometry.h), but it may be worthwhile to
explain the distinction between Geometry::nPlane() and Geometry::planeSize(). The
first of these is simple to understand: the number of elements multiplied by the number of
points in each element. The second is similar, but often somewhat larger, because of (a)
restrictions brought on by the FFT used (the number of points in a plane must be even if
the solution is three-dimensional and an FFT will be used in the orthogonal direction) and
(b) further requirements for parallel execution, which requires block-transposes of data across
processes, as explained in Rudman and Blackburn (2006). In each case, the extra padding
does not end up entering computations. The amount of data allocated internally for each data
plane is Geometry::planeSize(). A consequence of this distinction is that the memory for
the first storage location in any data plane does not necessarily immediately follow that for the
last storage location of the preceding plane. In an AuxField, the variable _plane references
a set of pointers to the first storage location of each plane on the current process.

Timestepping algorithm, storage schemes The time integration scheme used in dns is the ‘stiffly
stable’ algorithm, based on backward differencing in time, and uses time-splitting as originally
described in Karniadakis et al. (1991). What is stored where, and when—see figure 5.1.

Support libraries and static member functions The two base-class libraries provided as part of
Semtex are called veclib and femlib. Veclib provides vector algebra primitives and can
be regarded as an extension to the BLAS: check veclib/README for a summary of the op-
erations it provides. Femlib is a bundle of low-level operations that are finite-element and
spectral-element-shape function related, Fourier transforms, and a function string parser (see
femlib/initial.y).

It is standard to use library-name prefixes on calls to these libraries, as well as for LAPACK
and BLAS calls (Veclib::, Femlib::, Lapack::, Blas::) to help the programmer identify
the libraries involved.

BLAS-conformant increments Where access to a block of data is obtained on the offset, skip
model, this is done in a BLAS-conformant way if the skip is negative: the start address is at
the high end of the memory space.

Implications of Fourier transform in one direction For three-dimensional computations, note that
for all of the timestepping loop, other than during computation of the nonlinear terms, field
variables are held in the Fourier-transformed state. Field data written out to file are in physical
space.

Static condensation Because finite/spectral element shape functions can be partitioned into sets
which do/do not have non-zero support at the edges of elements, and because global Galerkin
shape functions have only comparatively local support (confined to mating finite elements),
only element-edge variables need to be considered when assembling the global Galerkin forms
of elliptic equations. Subsequently, remaining element-internal variables can be obtained by
local solutions on an element-by-element basis. Recognition of this fact has long been a
part of finite-element procedures, where it goes under various names: substructuring; static
condensation; Schur-complement solution. Semtex uses this methodology for assembly and
solution of elliptic equations when direct methods are used.
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STAGE

Start

end nonLinear

end waveProp

start setPForce

end setPForce

end Solve (P)

end project

update velocity 
storage

end solve (U)

Domain Us Uf

D->u[0] D->u[1] D->u[2] D->u[3] Us[.][0] Us[.][1] Us[.][2] Uf[.][2]Uf[.][1]Uf[.][0]

Figure 5.1: Arrangement of internal storage during timestepping loop (see dns/integrate.cpp) for
a three-velocity-component, second-order-time, stepping scheme. Presence of a ’-’ indicates that the
relevant storage is free for over-writing if desired. Diagonal lines divide the upper- and lower-order
storage so that e.g. the first entry under column labelled Us[.][0] corresponds (above diagonal)
to Us[0][0] and (below) to Us[1][0]. The number of levels corresponds to N TIME; i.e. what is
shown here corresponds to N TIME=2. For N TIME=1 the entries below the diagonals do not exist,
while for N TIME=3, there would be an additional level for n − 2-type entries. If the problem is
three-dimensional (N Z>1), field variables are held in the Fourier-transformed state except during
computation of nonlinear terms (where products are computed in physical space).

Contents of main directories The following directories are present in the distribution: include

which has copies of header files; src which holds C++ source code for the classes shared by
Semtex applications; veclib which holds routines for many standard loops over vectors, with
a mnemonic naming convention (the code here is almost exclusively written in C); femlib
has one-dimensional spectral polynomial routines (knot and quadrature point computations,
differentiation matrix construction) and FFTs, all written in either C or Fortran77; utility
routines for pre and post-processing; test which has code validity regression tests, with the
‘right answers’ stored in regress; mesh holds a selection of session files. The two main appli-
cation code directories are elliptic and dns which have been described in earlier chapters.
The sm directory contains useful SuperMongo macros, while the python directory has some
useful scripts for data processing.

The code has a fair amount of low-level optimisation built in for vector computer architectures,
but it’s not compiled in by default. To get vector-optimised routines, add -D_VECTOR_ARCH to
the section of src/Makefile appropriate to your machine. Also you may want to try altering the
parameter LVR in src/temfftd.F if your job makes heavy use of FFTs.

5.2 Altering the code

(The following discussion assumes you are using the compile-in-source build model, i.e. make, rather
than compile-out-of-source with cmake. However, similar considerations apply in either case.)
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If you want to alter the supplied source code, the first thing you need to know is that make will
seek to resolve source file names in the current directory first, before looking elsewhere (e.g. the
src directory, the include directory). This means that the best strategy is to copy (if not already
present) only the relevant files which you need to change into your current development directory,
typically from the src directory, and alter these. This way your new version does not interfere with
the supplied code base, and it is also readily apparent exactly which files you have had to change.

For example, say you want to add some new functionality to the AuxField class, within the dns
application. Make a clean copy of the source files (Makefile, *.cpp, *.h) in dns to another directory
at the same level. In that directory, place copies of auxfield.cpp and (if required) auxfield.h
from ../src and then work on these.

Testing. Typically when adding code features you want to be sure that you haven’t broken existing
functionality. The easy way to check is to use the testregress script in the test directory. It will
tell you if the code passes or fails standard regression tests which exercise most code features.
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Chapter 6

Utility programs

Part of the strength of Semtex lies in the accompanying utility programs that are useful to the CFD
analyst. Many of the utilities below will read from standard input and write to standard output,
allowing the user to chain operations together in the standard Unix workflow model. At present, all
utility programs support serial operation only. Below we describe the purpose and use of compiled
utility programs whose source code resides in the utility directory. In this directory you will also
find a few shell scripts such as addquick, rayavg, pline, restart, run_job and save, while some
further python-based utilities are included in the python directory—none of these utilities are as
yet documented below; you may consult the README file in the python directory for some further
guidance on the python facilities.

6.1 addfield

This utility is used to compute and add more variables derived from the original solution variables.

$ addfield -h

Usage: addfield [options] -s session dump.fld

options:

-h ... print this message

-q ... add kinetic energy per unit mass 0.5(u.u) (default)

-d ... add divergence abs(div(u))

-v ... add vorticity w=curl(u)

-e ... add enstrophy 0.5(w.w)

-H ... add helicity 0.5(u.w) (3D only)

-L ... add divergence of Lamb vector, div(uxw)

-g ... add strain rate magnitude sqrt(2SijSji)

-D ... add discriminant of velocity gradient tensor

NB: divergence is assumed to be zero. (3D only)

-J ... add vortex core measure of Jeong & Hussain (3D only)

-a ... add all fields derived from velocity (above)

-f <func> ... add a computed function <func> of x, y, z, t, etc.

-n ... turn off mass-matrix smoothing of computed variables

The computed variables are added to those in the original field file and a new binary file is output.
Here is an example where we add vorticity to the field file produced by running dns on the taylor2
session file produced in § 3.2:

$ convert taylor2.fld | head -12

taylor2 Session

Fri Jan 04 10:44:51 2019 Created

11 11 1 4 Nr, Ns, Nz, Elements

20 Step

0.4 Time
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0.02 Time step

0.01 Kinvis

1 Beta

uvp Fields written

ASCII Format

1.745305889e-15 4.584452860e-15 -0.004570994584

-1.028018800e-06 0.09562927785 2.193775364e-14

$ addfield -v -s taylor2 taylor2.fld | convert | head -12

taylor2 Session

Sat Jan 05 15:05:10 2019 Created

11 11 1 4 Nr, Ns, Nz, Elements

20 Step

0.4 Time

0.02 Time step

0.01 Kinvis

1 Beta

uvpt Fields written

ASCII Format

1.745305889e-15 4.584452860e-15 -0.004570994584 5.806132467

-1.028018800e-06 0.09562927785 2.193775364e-14 5.775032679

There is only a single component of vorticity added (t) since the solution is 2D2C; the (x, y, z)
components of vorticity are named (r, s, t).1 Note also the use made above of the convert utility
(see § 6.5) to convert a binary field file to ASCII for human readability.

There is a point of note when you are using cylindrical coordinates. While, as explained in
Blackburn and Sherwin (2004) and Blackburn et al. (2019), primitive variable results computed by
dns and elliptic display spectral convergence at all locations including the coordinate system axis,
the same cannot be said of results involving spatial derivatives computed by addfield, since it does
not employ l’Hopital’s rule when taking derivatives at the axis. Usually it will set derivatives to zero
on the axis; hence, things such as divergence or vorticity may appear strange there. If the primitive
variables look OK (smooth), very likely all is well.

6.2 calc

The calc utility is a command-line double-precision calculator that uses the same parser and pre-
defined internal variables as dns and elliptic, and is in concept much like the yacc-bison hoc3

program described by Kernighan and Pike (1984). It is very useful for checking strings that you
intend to place in a session file for use by the internal parser. When called with -h it lists all the
predefined internal variables and functions.

$ calc -h

-- Preset internal variables:

N_PROC = 1

BETA = 1

KINVIS = 1

STEP_MAX = 500

N_TIME = 2

IO_WSS = 0

CHKPOINT = 1

IO_HIS = 10

CYLINDRICAL = 0

...

...

SVV_MN = -1

1The convention in Semtex is that scalar fields take single-character names.
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N_Z = 1

ITERATIVE = 0

C_SMAG = 0.10000000000000001

SVV_MZ = -1

-- Calculator operators, functions and procedures:

Unary: -

Binary: -, +, *, /, ^ (exponentiation), ~ (atan2), & (hypot), % (fmod)

Functions: sin, cos, tan, asin, acos, atan,

sinh, cosh, tanh, asinh, acosh, atanh,

abs, floor, ceil, int, heav (Heaviside),

log, log10, exp, sqrt, white

erf, erfc, gamma, lgamma, sgn,

j0, j1, y0, y1,

Procedures: step, jn, yn, rad, ang, rejn,imjn, jacobi, womcos,womsin

Here is a small example:

$ calc

x=-2

y=2

DEG*atan(y/x)

-45

DEG*y~x

135

Terminate input with ^D (EOF) or ^C (SIGINT).

6.3 chop

This is a small but very useful utility for dealing with ASCII text files, often used with the slit utility
(§ 6.23) to ‘slice and dice’ columnar data files, though it has a variety of other uses. Probably there is
a standard Unix utility that does all of what chop does, and more—but chop is small and beautiful.
All it does is reproduce lines from a text file on a requested numbered basis (see an example in the
following section).

$ chop -h

usage: chop [options] [input]

options:

-h ... display this message

-n <lines> ... reproduce this many lines of file [Default: to EOF]

-s <line> ... start at this line number [Default: 1]

-S <num> ... skip <num> lines between each output [Default: 1]

6.4 compare

The compare utility deals with the <USER> section of session files, and has two principal modes of
operation. If called with just a session file on the command line, it uses the definitions of the <USER>
section to prepare a field file. This can be useful, for example, for producing files of initial conditions.
If called with both a session file and a field file, the information in the <USER> section is computed
and the data in the field file is subtracted from it; this is useful e.g. when comparing a computed
and analytical solution. In this second mode of operation, the difference is written to the standard
output as a binary field file, and a summary of the largest difference in each variable is written to
standard error— this feature is used by the regression checks in the test subdirectory.
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$ compare -h

usage: compare [options] session [field.file]

options:

-h ... display this message

-n ... print ’noise-level’ for small errors

-t ... forward Fourier transform output

In the following example, we use compare to generate a laminar initial condition for a channel flow,
then add white noise in Fourier mode 1 to initiate transition (see § 6.14); this is is a fairly standard
model for (eventually) generating a turbulent flow and is also used in chapter 7, but there with noise
in all Fourier modes.

$ chop -s 7 -n 6 ../mesh/chan3

<USER>

u = 1.0-y*y

v = 0.0

w = 0.0

p = 0.0

</USER>

$ compare ../mesh/chan3 | noiz -m 1 -p 1e-3 > chan3.rst

6.5 convert

The adopted Semtex standard format for field data files is: a 10-line ASCII header, followed by
binary data (see § 2.6). But who wants to read binary data? The convert utility exists to convert
between binary and ASCII data formats. Also, it can convert IEEE-little-endian binary data files to
IEEE-big-endian binary data files, which can be useful when moving/processing data produced on
one computer to/on another, though Semtex codes should normally be able to detect the difference
and do the conversion without giving notice. One other useful feature of convert is that it can be
used to extract a specific field dump from within a sequence stored in a single field file (use -n and
-b together to get the requested dump in binary format).

$ convert -h

Usage: convert [-format] [-h] [-v] [-o output] [input[.fld]]

format can be one of:

-a ... force ASCII output

-b ... force IEEE-binary output

-s ... force IEEE-binary output (byte-swapped)

other options are:

-h ... print this message

-n dump ... select dump number

-v ... be verbose

-o output ... output to named file

-z ... zero Time and Step in output

In binary data format, field variables are stored sequentially in the order listed in the header.
However, when printed out in ASCII format, these different variables appear in sequential columns,
as we already saw in § 6.1.

6.6 eneq

From a .avg statistics file collected from dns with AVERAGE=3 set, compute terms in either the TKE
(turbulent kinetic energy) equation or the MKE (mean kinetic energy) equation. If you are planning
to use this utility, this is a case where we must suggest you read the header of the source code
(utility/eneq.cpp), since there is too much information to reasonably present in this user guide.
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$ eneq -h

Usage: eneq [options] session dump.avg

options:

-h ... print this message

-m ... output terms for mean flow energy instead of TKE

6.7 assemble

This utility generates global numberings for element-edge nodes that are used in spectral element
assembly operations, and writes an ASCII file (e.g. session.num). Depending on the mode of op-
eration, it can produce ‘naive’ ascending element-by-element numbering, or bandwidth-minimisation
numberings of various degrees of exhaustiveness using the Reverse-Cuthill-McKee (RCM) algorithm
described e.g. in George and Liu (1981) and also used in SPARSPAK, which is admittedly antiquated.
Such global numberings are needed for all the elliptic solvers used in Semtex. However, this utility
is now provided mostly for verification purposes, as the numbering schemes are computed on the
fly by the executable that requires them, like elliptic and dns. It replaces the old utility called
enumerate, which generated an assembly map or numbering file that the executables read in.

$ assemble -h

usage: assemble [options] session

options:

-h ... display this message

-v ... set verbose output

-n N ... override number of element knots to be N

-O [0-3] ... bandwidth optimization level [Default: 3]

One point to note is is that since Dirichlet BC data are lifted out of the Galerkin solution, nodes
which correspond to Dirichlet BCs are partitioned to the end of the numbering and are not considered
in bandwidth minimisation. Another point is that if the corresponding elliptic problem is singular,
e.g. a pressure field with all-Neumann BCs, the solver will select the highest-numbered pressure node
to be assigned a homogeneous Dirichlet value (i.e. the solution is pinned to zero at an arbitrary
location) in order to make the problem non-singular.

6.8 integral

The integral utility approximates the integral of each scalar in a field file over the domain area
using Gauss–Lobatto–Legendre quadrature. Also, the area of the domain is similarly approximated.
If the session file has N Z > 1 then the values are multiplied by Lz = 2π/β to give volume integrals.
If the coordinate system is cylindrical, the integrals computed further are weighted by radius. The
(x, y) centroidal locations of each integral are also reported.

$ integral -h

Usage: integral [options] session [dump]

options:

-h ... print this message

-v ... verbose output

-c ... switch cylindrical coordinates off, if defined in session

6.9 interp

Interp interpolates field data onto a set of (x, y) points supplied as ASCII data. If the session file
and field dump are three-dimensional then the two-dimensional interpolation is carried out on every
z−plane. If the set of data points has a header indicating it is the output of meshpr (cf. § 6.12)—
which is the standard usage mode—then the interpolated data is output as an ASCII-format field
file (with header), otherwise the outcome is also ASCII data but without a header. The basic purpose
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of the utility is to facilitate interpolation of data from one domain onto another (the domains do not
have to conform but it is assumed that they overlap).

$ interp -h

Usage: interp [options] -s session dump

options:

-h ... print this message

-q ... run quietly: omit warnings about unlocated points

-m file ... name file of point data [Default: stdin]

-v ... verbose output

Each of the points for which interpolation is requested is located in the session domain using
Newton–Raphson iteration and an element-by-element search; the convergence of the iteration can
be controlled by variables NR_MAX and TOL_POS, which can be reset from their default values in
the session file. If a requested point cannot be found then a warning is issued (unless the -q

command-line flag is set) and zero values are returned for the interpolated variables.
The key to understanding its use is to realize that two session files are typically required. The

‘to’ session file is not used directly by interp but is used (by meshpr) to generate a set of points
at which interp will interpolate existing (‘from’) field file data using a corresponding ‘from’ session
file, e.g.

$ meshpr to | interp -q -s from from.fld | convert > to.rst

6.10 mapmesh

This utility may be used to reposition x and/or y locations of NODES within a session file according
to mapping functions supplied on the command line; the output is a new session file. Potentially one
could use this with the rectmesh utility (§ 6.19) to remap a logically/originally rectangular domain
onto a shape that you need.

$ mapmesh -h

Usage: mapmesh [options] session

options:

-h ... print this message

-x <string> ... x <-- f(x, y), f is supplied by string

-y <string> ... y <-- g(x, y), g is supplied by string

6.11 meshplot

Meshplot generates a PostScript description of the 2D mesh information generated by meshpr. This
output can be converted to PDF or displayed on a screen using external utilities such as ps2pdf
and gv. Optionally, if an appropriate viewer is installed, meshplot can directly call for display of a
named output file. It can read from standard input (e.g. output of meshpr) and write to standard
output.

$ meshplot -h

Usage: meshplot [options] [file]

options:

-h ... display this message

-a ... do not show axes

-i ... show element-internal mesh

-n ... show element numbers

-o <file> ... write output to named file [Default: stdout]

-d <prog> ... call prog to display named PostScript output file

-b ’xmin,xmax,ymin,ymax’ ... limit view to region defined by string
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6.12 meshpr

We often need the mesh locations within elements; this information is provided by meshpr (‘mesh
printer’). The number of points along each element edge (N_P) and number of planes (N_Z) are
taken from the supplied session file but these values can be over-ridden by command line flags.

$ meshpr -h

usage: meshpr [options] session

options:

-h ... display this message

-c ... disable checking of mesh connectivity

-s ... list surfaces not determined by mesh connectivity (only)

-v ... set verbose output

-u ... set uniform spacing [Default: GLL]

-3 ... produce 3D mesh output: Np*Np*Nz*Nel*(x y z)

-n <num> ... override number of element knots to be num

-z <num> ... override number of planes to be num

-b <num> ... override wavenumber beta to be <num> (3D)

$ meshpr ../mesh/vb1 | head

11 11 1 15 NR NS NZ NEL

0 0

0.01319971391838815 0

0.04310330526737112 0

0.08695293460075898 0

0.1408483728826121 0

0.2000000000000001 0

0.2591516271173879 0

0.313047065399241 0

0.3568966947326289 0

Note that the output of meshpr is ASCII and has a single-line header that supplies the number of
points in each direction in every element (in Semtex these are always the same, and here called NR and
NS for historical reasons, instead of N_P), followed by the number of z-planes and elements. What
follows is a row-major listing of Gauss–Lobatto–Legendre (x, y) mesh locations in every element,
i.e. the same ordering as used internally for ordering of data in each z-plane. There is a total of
NR× NS× NEL such lines.

If the session file is 3D (i.e. N Z > 1) that list is followed by N Z + 1 lines which provide the
coordinates of z-planes (and then one more, for periodic wrapping purposes; the last value is largely
irrelevant other than to document the length of the domain in the z coordinate, since the location
of the last used z-plane is given by the N Zth value).

6.13 moden

The moden utility is used to compute and output the two-dimensional (x, y) distribution of kinetic
energy in a particular Fourier mode of a field file. The -z command-line flag asks that two z-planes
of data be taken as the 0th Fourier mode, e.g. in the case where we are dealing with a single complex
eigenmode; otherwise, the kinetic energy in mode 0 is computed only from the real part of the Fourier
transform of the input data.

$ moden -h

moden [-h] [-m mode] [-z] [input[.fld]

6.14 noiz

The noiz utility can be used to add Gaussian-distributed white noise of specified standard deviation
to all scalars in a field file. If requested, this noise can be added only to specified Fourier modes,
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otherwise it is added to all modes/data planes. One minor point to note here with respect to restart
files for DNS is that such white-noise perturbations are not divergence-free, though they will become
so (or approximately so) after time-stepping commences.

$ noiz -h

usage: noiz [options] [input[.fld]]

options:

-h ... print this help message

-f ... filter instead of perturb

-o output ... write to named file

-p perturb ... standard deviation of perturbation [Default: 0.0]

-m mode ... add noise only to this Fourier mode [Default: all modes]

-s seed ... set random number seed [Default: 0]

A lesser-used functionality of noiz is, if the -f command-line flag is set, to filter out (zero) data
of a field file in a single Fourier mode as given on the command line.

6.15 probe

This utility provides similar functionality to interp (§ 6.9) in that it outputs field data as interpolated
onto specified points. However, probe differs in that the points may be supplied in three-dimensional
space, whereas for interp the points are in two-dimensional space, i.e. probe also carries out Fourier
series interpolation in the z-direction. The interp utility is designed mainly to interpolate from one
2D Semtex mesh to another, and is capable of writing out an (ASCII-format) field file, while probe
isn’t.

$ probe -h

Usage: probe [options] -s session dump

options:

-h ... print this message

-m ... minimal output

-p file ... name file of point data [Default: stdin]

Example, with probe point entered on command line (terminated with EOF/^D):

$ probe -m -s vb1 vb1.fld

0.5 0.5 0.0

0.023527766 0.005897312 0.078899172 0.0032106831

These are the values of (u, v, w, p) at (0.5, 0.5, 0) for the vortex breakdown solution of § 3.4. Without
the -m flag, probe will also give an integer index of the input point number and echo the location of
the (x, y, z) location of each probe point.

6.16 probeline

Probeline actually just provides an alternative interface to the probe utility. Instead of reading the
required points from input, it computes them along a line that is specified on the command line as
a starting point (x0, y0, z0) and a vector (∆x,∆y,∆z).

$ probeline -h

Usage: probeline [-h] -p "[n:]x0,y0,z0,dx,dy,dz" -s session dump

The default number of points (n) is 64. They are uniformly spaced along the line (like Matlab’s
linspace).
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6.17 probeplane

Like probeline, probeplane provides an alternative interface to the probe utility. Instead of
internally computing points along a straight line, however, it computes them on a rectangular cutting
plane that is orthogonal to the x, y or z direction.

$ probeplane -h

Usage: probeplane [options] -s session dump

options:

-h ... print this message

-xy "x0,y0,dx,dy" ... xy-cutting plane

-xz "x0,z0,dx,dz" ... xz-cutting plane

-yz "y0,z0,dy,dz" ... yz-cutting plane

-orig # ... origin of the cutting plane along ortho axis

-nx # ... resolution along the x-axis

-ny # ... resolution along the y-axis

-swap ... swap output x <--> y (rotate)

-tec ... write TECPLOT-formatted ASCII output

-sm ... write SM-formatted binary output

-0 ... output zero if point is outside mesh (instead of warning)

The default number of points (nx or ny) is 64.

6.18 project

The purpose of this utility is to use inbuilt basis functions to project a solution from one polynomial
order to another (higher or lower), retaining the same spectral element/Fourier structure. The
outcome could then be used e.g. to restart a simulation on the same mesh but at a higher or
lower resolution based on p-refinement/coarsening (here p is polynomial order, not pressure). This
purpose is distinct from that of the interp utility, which can be used to transfer data from one
domain/spectral element mesh (session file) to another. The input file should be a binary field file.

$ project -h

Usage: project [options] [file]

options:

-h ... print this message

-n <num> ... 2D projection onto num X num

-z <num> ... 3D projection onto num planes

-w ... Retain w components in 3D-->2D proj’n [Default: delete]

-u ... project to uniform grid from GLL

-U ... project from uniform grid to GLL

The use of the -n command-line flag to project from one spectral element order to another in (x, y)
planes is perhaps both the most common use of this utility and fairly obvious. Note that projecting
a three-dimensional solution to a single z-plane (-z 1) effectively takes the spanwise/azimuthal
average of the solution, and that in this case, by default, the third velocity component (w) will also
be deleted: use the -w command line flag to retain this component if you need to keep it. The
operation below will take a spanwise average of a 3D3C data file and keep all velocity components:

$ project -z 1 -w chan3.fld | project -z 80 > chan3_mean_in_z.fld

6.19 rectmesh

While by design, Semtex deals with unstructured (though conforming) meshes, in a surprising number
of cases a simple rectangular (x, y) mesh is enough. The rectmesh utility is designed to help you
get started in such cases by producing a prototype session file with at least the NODES and ELEMENTS

sections as required, leaving you to fix up the other sections using a text editor. The ASCII input
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for rectmesh is simple: a list of x-locations, one per line, a blank one-line separator, followed by a
list of y-locations. The spectral element mesh is produced by taking the tensor product of these two
lists. We direct the reader to § 7.2 for an example.

$ rectmesh -h

Usage: rectmesh [options] [file]

options:

-h ... print this message

-b <num> ... output in <num> blocks, contiguous in x [Default: 1]

-e <num> ... offset first element number by <num>

-v <num> ... offset first vertex number by <num>

6.20 rstress

This utility has two different modes of use. The name rstress originally came about as a contraction
of ‘Reynolds stress’ which was also the original purpose of the utility: given a (single) .avg file with
accumulated running averages of velocities and their products, e.g. ⟨u⟩, ⟨uv⟩ obtained by running a
simulation with AVERAGE=2 set in the TOKENS section, rstress computes covariances by subtracting
the products of means from means of products, so that e.g. ⟨uv⟩ → ⟨u′v′⟩.

The other mode of operation, given two input files, is to perform binary operations (−, +, ×,
/) on the pair and write out the outcome. The ordering (where it is significant for − and /) is
second.op.first. The main use of this mode is to subtract one file (e.g. an analytical solution) from
another (e.g. a computed result).

$ rstress -h

usage: rstress [options] avg.file [field.file]

options:

-h ... display this message

-<s,a,m,d> ... binary op: subtract, add, multiply, divide [Default: subtract]

Please see also the discussions of §§ 4.9 and 7.5.

6.21 sem2tec

This is the primary utility used to prepare Semtex output for post-processing in the form of input files
for AMTEC’s Tecplot program. While Tecplot is a program which requires you to pay for a licence,
there are several open-source programs (Paraview and VisIt) which will read Tecplot input files (here
with a .plt extension). To speed up the process, sem2tec makes a system call to preplot, an
AMTEC-supplied utility, to convert the output of sem2tec from ASCII to binary.

$ sem2tec -h

usage: sem2tec [options] session[.fld]

options:

-h ... print this message

-o file ... write output to the named file instead of running preplot

-m file ... read the mesh from the named file (instead of stdin)

-d <num> ... extract dump <num> from file

-n <num> ... evaluate the solution on an evenly-spaced mesh with N X N

points. If N = 0, then no interpolation is done, i.e., the

output mesh will be on a standard GLL-spectral element mesh

-w ... extend the data by one additional plane in the z-direction

Two points to note initially: (a) each spectral–Fourier element becomes what Tecplot calls a ‘zone’;
(b) by default, sem2tec interpolates the solution from the underlying Gauss–Lobatto–Legendre mesh
to an isoparametrically-mapped uniform mesh (this helps make smooth solutions seem more smooth
to the human eye)—but occasionally you will wish to see the results computed by Semtex on
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the original Gauss–Lobatto–Legendre mesh, in which case use the -n 0 command-line instruction.
Finally, for three-dimensional solutions, especially in cylindrical coordinates, you may wish to use the
-w flag to ‘wrap’ the outcome one more z-plane so that the visualisation appears more periodic.

While we are on the topic of cylindrical-coordinate solutions and Tecplot: it can initially seem
confusing that the visualisation you will see for three-dimensional solutions appears as though it is in
Cartesian space. That’s because Tecplot doesn’t know that the results are in cylindrical coordinates.
You have to use equations to map your data into Cartesian coordinates (under data->alter). Below
we show an example equation file that you can read into Tecplot to do the mapping. This also maps
velocity components into Cartesian space, though typically you might wish to view (say) cylindrical
velocity components (e.g. swirl/w) but in Cartesian coordinates.

#!MC 1120

# Convert cylindrical coordinate data to Cartesian.

$!ALTERDATA

EQUATION="{YC} = {Y}*cos({Z})"

$!ALTERDATA

EQUATION="{ZC} = {Y}*sin({Z})"

$!ALTERDATA

EQUATION="{VC} = {V}*cos({Z})-{W}*sin({Z})"

$!ALTERDATA

EQUATION="{WC} = {W}*cos({Z})+{V}*sin({Z})"

6.22 sem2vtk

Deprecated. That’s because many VTK-based visualisation programs (e.g. VisIt and Paraview) now
seem capable of reading Tecplot input files. It lives on just in case you might need to use some other
visualisation tool that cannot, and requires .vtk files.

By the way: if you just need to visualise three-dimensional isosurfaces, you may find that the sview
program that is available with Semtex is, after some habituation, very much simpler and quicker to
use than any of the larger tools such as Tecplot. Also, sview can read simple input scripts so is
suited to producing sequences of graphics files suitable for making animations via a shell-based loop.
Its visualisation is based on OpenGL and GLUT.

6.23 slit

While the chop utility (§ 6.3) reproduces specific rows or ASCII input, slit reproduces specific
columns. Often the two utilities are used in concert. Unusually, slit has no usage prompt to output
via a -h command-line argument. From the header of utility/slit.c:

Usage: slit [-c <colstr>] [file], where <colstr> is a

comma-separated list of column numbers.

Example, to extract time-series of Fourier mode 2 out of a .mdl file (§,4.7) from the outcome of
a simulation with 24 z-planes (12 Fourier modes):

chop -s 5 -S 12 chan3.mdl | slit -c 1,3 > mode2.dat

6.24 traction

See also § 4.6. This utility is designed as a post-processing tool that will compute normal (pressure)
and tangential (viscous) traction distributions on boundary SURFACES that are in the wall group
from a Navier–Stokes field file.2 If token IO_WSS was set, such computations would have been carried
out during runtime, as reported in § 4.6. The output is another (binary) field file but of reduced

2At a solid wall in incompressible flow, wall-normal viscous traction is zero.
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dimensionality: if the original solution domain was two-dimensional, the outcome is one-dimensional;
if it was three-dimensional the outcome is two-dimensional: this reduction occurs because walls are
one dimension lower than domains. The output variables are called (n, t) (2D) or (n, t, s) (3D):
n being the normal traction (i.e. pressure) and t being the tangential viscous traction component
that lies in the (x, y) plane; s is the out-of-plane component of viscous traction. Together with
the wallmesh utility (§ 6.26), one can run sem2tec to produce a Tecplot input file for visualisation
purposes.

$ traction -h

Usage: traction [options] session [file] [options]:

-h ... print this message

-v[vv..] ... increase verbosity level

6.25 transform

Transform is used to carry out a two-dimensional discrete polynomial transform (DPT, Boyd;
2001; Blackburn and Schmidt; 2003) in (x, y) space or a one-dimensional discrete Fourier trans-
form (DFT/FFT) in the z-direction on a field file. The default DPT is to the ‘modal’ basis, see
Karniadakis and Sherwin (2005) or Blackburn and Schmidt (2003).

$ transform -h

Usage: transform [options] [file]

options:

-h ... print this message

-P ... Discrete Polynomial Transform (2D)

-F ... Discrete Fourier Transform (1D)

-B ... do both DPT & DFT [Default]

-i ... carry out inverse transform instead

-l ... use Legendre basis functions instead of modal expansions

6.26 wallmesh

The wallmesh utility extracts and prints up mesh locations for SURFACES that are in the wall
group— it is a postprocessor for meshpr that just supplies wall nodal locations, and the format is
very similar to what meshpr supplies, but of reduced dimensionality (see § 6.24). Its output may
be supplied to sem2tec in combination with a wall traction file to produce a distribution of wall
tractions that can be visualised in Tecplot.

$ wallmesh -h

usage: wallmesh [options] session [mesh.file]

options:

-h ... display this message

Note that meshpr is first used to supply locations from which only those in the wall group are
reproduced, and that in the header, NR=1, as follows from the reduction in dimensionality, as shown
below.

$ meshpr chan3 | wallmesh chan3 | chop -n 3

7 1 24 8 NR NS NZ NEL

-3.141592653589793 -1

-3.008250813538205 -1

6.27 xplane

The xplane utility extracts either one, or optionally two sequential, planes of data from a field file,
and outputs a new field file containing just one (or two) planes of data.
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$ xplane -h

xplane [-h] [-n plane] [-2] [input[.fld]

Why, optionally, two sequential planes? If the data have previously been Fourier transformed using
transform -F, that can pull out a complex mode, with the real part as the first extracted plane,
and the imaginary part as the second.
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Chapter 7

DNS 101 — Turbulent channel flow

Turbulent Poiseuille flow between two parallel plates is a canonical test case for direct numerical
simulation (DNS) codes. While Semtex will of course deal with more complicated problems, we’ll
use this as an example to illustrate techniques of mesh design, and of obtaining transition and
extracting turbulence statistics. Our basis for comparison will be the DNS results of Kim, Moin and
Moser (1987), obtained with a Fourier–Fourier–Chebyshev code.

A schematic of the configuration is shown with figure 7.1. The flow is assumed periodic in the x
(streamwise) and z (spanwise) directions. In the y-direction, non-slip Dirichlet boundary conditions
are applied for all velocity components at the upper and lower walls, where also a high-order pressure
boundary condition (of computed Neumann type, see Karniadakis et al.; 1991) is employed. Since
we are working with a spectral element–Fourier code, we are free to choose either of the x or z
directions as the Fourier direction; here, we will use Fourier expansions in the z direction, have a
spectral element mesh in the x–y plane, and set up explicit periodicity in the x direction.

Figure 7.1: Channel flow geometry.

7.1 Parameters

To match Kim et al. (1987) we will aim for a bulk flow Reynolds number based on the centreline
mean speed U and channel half-height δ = Ly/2 of Reδ = Uδ/ν = 3300. For this flow the associated
Reynolds number based on the friction velocity uτ = (τw/ρ)

1/2 and half-height is Reτ = uτδ/ν =
183. (It is worth noting that the relationship between the bulk and friction Reynolds numbers
for turbulent flows is empirically based. For channel flow, a reasonable approximation is given by
Reδ/Reτ = 2.5 lnReτ + 5, while for turbulent flow in a pipe of diameter D, Blasius’ correlation

Reτ = uτD/2ν = 99.44× 10−3Re
7/8
D is quite good at moderate Reynolds numbers.)
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Kim et al. (1987) used domain extents of Lx = 4πδ and Lz = 2πδ but for illustrative purposes
we will choose the smaller sizes Lx = 2πδ and Lz = πδ. We will find that the turbulence statistics
examined are apparently little affected by this reduction in domain size, but the cost of simulation is
significantly reduced. Since we will use Fourier expansions in the z direction we will have the basic
spanwise wavenumber β = 2π/Lz = 2. This is set below by the simulation token BETA = 2.

We will choose second-order time integration, usually the best compromise between stability and
accuracy. (This is set below by the token N TIME = 2, which could actually be omitted from the
session file since that is the default value.)

We need to choose a spectral element polynomial order. Values around 9 provide a good compro-
mise between speed and accuracy for this code. This is set with the token N P = 10 (the number of
points along the edge of an element, one more than the polynomial order). Sometimes in what fol-
lows we will also approximate the typical number of mesh divisions along the the edge of an element
as 10, although the sharp-eyed reader will note that it should logically be 9.

We need to choose the kinematic viscosity, ν. We aim to have Reδ = 3300. It is good simula-
tion/numerical practice to aim for a characteristic velocity scale of unity, as well as a characteristic
mesh length scale of unity. In this case these goals imply that we aim for a centreline mean speed
U ≃ 1 and our channel half-height δ = 1. With these choices we are left with

ν = Re−1
δ = 303× 10−6,

which is set by the simulation token KINVIS = 303e-6.
When using periodicity in the streamwise direction, a body force is required in order to maintain

the flow. This is needed because the pressure as well as the velocity is required to be streamwise-
periodic. The required body force per unit mass (i.e. acceleration) is calculated from a time-average
force balance in x-direction for the entire channel

ρ× fx ×��Lx × Ly ×��Lz︸ ︷︷ ︸
channel volume

= 2× τw × ��Lx ×��Lz︸ ︷︷ ︸
one wall surface

ρ× fx × δ = τw

fxδ

U2
=

(uτ
U

)2
=

(
Reτ
Reδ

)2

where τw is the time-average wall shear stress. With ρ = δ = U = 1 and (from correlation/previous
results) Reτ = 183, Reδ = 3300, the required value is

fx = 3.08× 10−3.

This will be set with the token CONST X = 3.08e-3 in the <FORCE> section. Note that if required
for body forces in the y or z directions there are corresponding tokens CONST Y and CONST Z respec-
tively (see section 4.13 for other types of forcing). These body forces are added to the component
momentum equations (the Navier–Stokes equations). Also note that the code is written assuming
ρ = 1.

The friction velocity uτ = (τw/ρ)
1/2 ≡ UReτ/Reδ = 55.5 × 10−3, and the viscous wall length

scale lw = ν/uτ = 5.46× 10−3.

7.2 Mesh design

In designing the mesh for the channel flow, rules of thumb established in related studies (Piomelli;
1997; Kim et al.; 1987; Blackburn and Schmidt; 2003) have been considered. All mentioned coor-
dinates are with respect to coordinate system established in this work. Thus, x is the streamwise
direction, y the wall-normal and z the spanwise direction — Fourier expansions are always used in
the z direction.
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Kim et al. (1987) used ∆x+ = ∆x/lw = 12, y+ = 0.05 (at the wall) and ∆z+ = 7 in their study.
(Piomelli; 1997) proposed similar values with ∆x+ = 15, ∆y+ < 1|wall and ∆z+ = 6.

The wall-normal part of the spectral element mesh design strategy for wall-resolved LES described
by Blackburn and Schmidt (2003) is to terminate the element closest to the wall at y+ = 10, the
second element at y+ ≃ 35, then use a geometric progression of sizes to reach the flow centreline
(one has to choose the number of elements and geometric expansion factor). This ensures there is
good resolution in the viscous-dominated wall layer as well as the buffer layer (10 < y+ < 35), where
turbulent energy production is greatest. Nevertheless, here, the second element layer is reduced to
y+ = 25 in order to improve resolution in the middle of the buffer layer.

The first two element heights in the wall-normal direction are then∆y1(10) = 0.056 and∆y2(25) =
0.139. For the remainder, we use a geometric progression of four elements starting with an initial
height of ∆y = 0.139−0.056 = 0.083 to reach the channel centreline. The total number of elements
in the y-direction is 12.

Next considering the x-direction, the indicative mesh spacing is ∆x+ = 15, corresponding to a
length ∆x = 15 × 5.46 × 10−3 = 81.9 × 10−3. The number of grid points needed to cover the
domain extent in the x-direction is then of order Nx = 2π/∆x = 76.7. For a mesh with N_P=10 we
need of order 8 elements. So our (x, y) spectral element mesh is now of size 8× 12 = 96 elements.

Finally considering the z direction, we have Lz = π and want ∆z+ ≃ 7, or ∆z ≃ 7×5.46×10−3 =
38.2 × 10−3. The implied number of z planes is then of order π/38.2 × 10−3 = 82.2. We need
an integer number of planes which must be even (one prime factor of 2) and other allowable prime
factors of 3 and 5. 80 planes seems convenient so we choose N_Z = 10. Note that means we could
run on either a single processor in serial execution or 2, 4, 8, 10, 20 or 40 in parallel. There will be
40 Fourier modes.

The mesh can be created using the provided tool rectmesh which reads from an input file con-
taining two blocks with all grid lines in x and y separated by an empty line. The output from running
rectmesh will be a valid Semtex session file but which will generally need some editing.

rectmesh [options] mesh.inp > sessionfile

A rectmesh input file for this case is as follows:

-3.14159265358979

-2.35619449019234

-1.5707963267949

-0.785398163397448

0.0000

0.785398163397448

1.5707963267949

2.35619449019234

3.14159265358979

-1.0

-0.944

-0.861

-0.745

-0.575

-0.330

0.0

0.330

0.575

0.745

0.861

0.944

1.0
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Once this file is built, all the above mentioned parameters can be changed to their desired value.
Also, the boundary conditions have to be named and set into place. We use wall boundary conditions
on the upper and lower edges of the domain, and edit the <SURFACES> section to obtain periodicity
in the streamwise direction. Here is the example input file for this particular case (which is much the
same as the chan3 session file in the mesh directory):

################################################################

# 96 element channel flow, for Re_bulk = 3300, Re_tau = 183

<FIELDS>

u v w p

</FIELDS>

<USER>

u = 1.0-y*y

v = 0.0

w = 0.0

p = 0.0

</USER>

<TOKENS>

N_TIME = 2

N_P = 10

N_Z = 80

BETA = 2.0

D_T = 0.01

T_FINAL = 800

N_STEP = int(T_FINAL/D_T)

KINVIS = 303e-6

IO_CFL = 100

IO_HIS = 100

AVERAGE = 2

</TOKENS>

<FORCE>

CONST_X = 3.08e-3

</FORCE>

<GROUPS NUMBER=1>

1 w wall

</GROUPS>

<BCS NUMBER=1>

1 w 4

<D> u = 0.0 </D>

<D> v = 0.0 </D>

<D> w = 0.0 </D>

<H> p </H>

</BCS>

<NODES NUMBER=117>

1 -3.14159 -1 0

...

117 3.14159 1 0

</NODES>

<ELEMENTS NUMBER=96>

1 <Q> 1 2 11 10 </Q>
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...

96 <Q> 107 108 117 116 </Q>

</ELEMENTS>

<SURFACES NUMBER=28>

1 1 1 <B> w </B>

2 2 1 <B> w </B>

3 3 1 <B> w </B>

4 4 1 <B> w </B>

5 5 1 <B> w </B>

6 6 1 <B> w </B>

7 7 1 <B> w </B>

8 8 1 <B> w </B>

9 89 3 <B> w </B>

10 90 3 <B> w </B>

11 91 3 <B> w </B>

12 92 3 <B> w </B>

13 93 3 <B> w </B>

14 94 3 <B> w </B>

15 95 3 <B> w </B>

16 96 3 <B> w </B>

17 8 2 <P> 1 4 </P>

18 16 2 <P> 9 4 </P>

19 24 2 <P> 17 4 </P>

20 32 2 <P> 25 4 </P>

21 40 2 <P> 33 4 </P>

22 48 2 <P> 41 4 </P>

23 56 2 <P> 49 4 </P>

24 64 2 <P> 57 4 </P>

25 72 2 <P> 65 4 </P>

26 80 2 <P> 73 4 </P>

27 88 2 <P> 81 4 </P>

28 96 2 <P> 89 4 </P>

</SURFACES>

<HISTORY NUMBER=1>

1 0.0 0.0 0.0

</HISTORY>

7.3 Initiating and monitoring transition

The critical bulk Reynolds number for linear instability of channel flow is Rec = 5772 but turbulence
can typically be maintained down to lower values (and here we are aiming at Reδ = 3300) if transition
is obtained. Our strategy here will be to start from a laminar flow profile and add some white noise
to obtain transition. This is done using the following single line to generate an initial condition:

compare chan | noiz -p 0.1 > chan.rst

Here, the command-line value 0.1 represents the standard deviation of the normal/Gaussian dis-
tribution from which the noise is derived using a pseudorandom number generator and is therefore
quite large compared to an average velocity of U = 1. It is necessary, since our Reynolds number
is here below the critical value, to assure a sufficient amount of disturbance to initiate transition
to a turbulent state. If the Reynolds number were above the critical value, any perturbation level
above machine noise level should eventually produce transition — it just depends on how long you
are prepared to wait.

We note that channel flow is a case for which it is relatively easy to obtain transition to turbulence
without carefully manipulating the noise level, or restricting the time step. In other flows (pipe flow
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(a) (b)

Figure 7.2: Modal energies for (a) the individual wave numbers over time and (b) by wavenumber.
These images were prepared using SuperMongo macros.

being a notorious example) transition can be quite a violent process and it can be hard to nurse
a simulation through it to reach a turbulent, though ultimately more energetically benign, state.
Expedients one can try are to (a) introduce the initial perturbation only in Fourier mode 1 rather
than all modes, as was done in the example above (see § 6.14), (b) reduce Reynolds number, (c) add
spectral vanishing viscosity (see § 4.12) to contain energy in high wavenumbers during transition,
(d) increase spatial resolution, (e) reduce timestepping order. Once transition completes, it may
be possible to revert to the original settings. Another common option is to project, interpolate or
otherwise reuse an existing turbulent restart file from another simulation; if one is just changing
Reynolds number, domain length, or perhaps viscosity model, this is the recommended approach—
though obviously one needs an existing outcome in a somewhat similar geometry to start from.

In order to monitor transition, a very useful diagnostic is to monitor the evolution of kinetic energies
in all Fourier modes. Transition should be easy to see as a moderately rapid increase in turbulent
energy within small scales that are represented by higher wave numbers. Figure 7.2(a) shows the
transition for the mentioned channel flow. Figure 7.2(b) indicates that the resolution is adequate due
to a separation of about three and a half decades between the highest and smallest wave number.
An increase of energy within the highest wave numbers would also indicate an under-representation
because of aliasing of the energy of higher modes back into the resolved frequency domain (which is
the underlying reason for the plateau seen at the highest wavenumbers in figure 7.2(b)).

Figure 7.2(a) shows the evolution of kinetic energies in the 40 Fourier modes represented. By way
of interpretation, the mode with highest energy (here, and typically) is mode 0, which represents
the two-dimensional or z-average flow. All the other modes start off with much the same energy,
which is a result of having chosen to pollute all modes equally when using the noiz utility (often,
one would just pollute mode 1 and allow convolution to distribute energy to all other modes — this
gives a more gentle perturbation). The highest modes typically decay rather rapidly initially, with
the lower modes either slowly losing or (as here, gaining) energy. Also the energy in mode 0 here
increases a little over time, partly because the initial condition here actually had a lower volumetric
flow rate than the equilibrium turbulent flow. At t ≈ 70 the flow makes a transition to a turbulent
state, typically signalled by the higher modes gaining energy fairly rapidly until a quasi-equilibrium is
reached. Eventually the flow settles to a statistical equilibrium at t ≈ 600. Figure 7.2(b) shows the
temporal average values of energies in the various Fourier modes. (The SuperMongo macros moden
and modav were used to plot figure 7.2.)

At the end of this simulation, the flow should be in an approximately statistical stationary state.
Check the x-component tractive force given at the end of chan.flx (which should be around 0.0388).
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This is the tractive force per unit domain width in the z-direction (see § 4.5). That ought to closely
balance the total body force per unit width, which is fx × 2× 2π = 303× 10−6 × 2× 2π = 0.0387.
Since the flow is turbulent and driven by a constant body force, both the bulk velocity (volumetric
flow rate per unit area) and wall tractions will fluctuate somewhat in time, and we should really
compare the time-average tractive force with the body force, but evidently the single-time outcome
is quite close. The agreement should also depend on the spatial and temporal resolution of the
simulation, but the resolution suggested in the session file is quite good for the Reynolds number
employed.

7.4 Timestepping order, restarting, and parallel execution

Semtex ’s dns can run with first, second, or third-order accurate timestepping according the token
N_TIME, whose default value of 2 implies second-order timestepping, which is generally the best
choice. However, CFL stability declines somewhat as timestepping order increases, and if in any
case you know that you are headed towards a steady-state outcome, N_TIME=1 might be a better
choice so that comparatively larger timesteps could be used while still maintaining CFL stability.
These choices also have a subtle interaction with restarting (which can be accomplished by copying
or moving session.fld to session.rst and running again), since only a single field dump is read
from session.rst, meaning that the first subsequent timestep can only be first-order accurate (the
second can be second-order accurate, etc., up to the order you are running with). For a turbulent
flow this effect has only minor overall significance, but it can lead to small disruptions at every restart
for a steady or periodic flow; generally it is an effect to be aware of rather than concerned about.

As will be pointed out immediately below, when restarting with token AVERAGE > 0, dns will also
attempt to read in session.avg in order to continue accumulating statistics.

7.5 Flow statistics

Flow statistics can be collected by setting the AVERAGE token to non-zero values 1, 2 or 3 (here a
value of 2 was used, see below). See also § 4.9. To obtain statistical convergence it is necessary to
average over a sufficiently long time, just as would be the case in a physical experiment. Statistics
are updated every IO_HIS simulation steps (here, every 100 steps). In the present case, the total
averaging time was chosen to be 400, which represents of order 60 ‘wash-through’ times, since the
domain length is 2π and the bulk flow speed U = 1. Since the time between data updates is
100× 0.002 = 0.2 there are a total of 400/0.2 = 2000 averaging buffer updates.

Once the simulation is run, a .avg file is produced. For AVERAGE=1, statistics for the represented
fields are collected, i.e. ⟨u⟩, ⟨v⟩, . . . , ⟨p⟩. For AVERAGE=2, averages of velocity field products
are stored too, i.e. ⟨uu⟩, ⟨uv⟩, etc. For AVERAGE=3, additional products are collected to allow
computation of terms in the fluctuating energy equation. Note that it is necessary to calculate
Reynolds stresses and energy equation terms in post-processing (e.g. ⟨u′v′⟩ = ⟨uv⟩ − ⟨u⟩⟨v⟩). Note
also that if .avg files exist, they are read in at start of execution of dns to initiate averaging buffers:
the Step value in the file’s header stores the number of averages obtained to date.

Having collected statistics, our next step is to calculate the Reynolds stresses and to average in
x- and z-direction. To illustrate the possible processing, here is an example shell script:

#!/bin/bash

# temporary files

FTNZ=’/tmp/chan_nz1’

FTRS=’/tmp/reynolds-stress.xy’

FRSY=’./reynolds-stress.y’
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Figure 7.3: Mean velocity profile of the channel flow compared to the law of the wall and data from
Kim et al. (1987)

# average field results in z

project -z1 chan.avg > /tmp/chan.avg.xy

# calculate reynolds-stresses (xy-plane)

rstress /tmp/chan.avg.xy > $FTRS

# new input file with NZ=1

LNZ=$(cat chan | grep N_Z -n | awk -F: ’{print $1}’)

sed ’$LNZs/.*/ N_Z = 1/’ <chan >$FTNZ

# average reynolds-stresses in x

rayavg npts navg y_0 x_0 y_0 x_1 dy dx $FTNZ $FTRS > $FRSY

rayavg npts navg y_0 x_1 y_0 x_2 dy dx $FTNZ $FTRS >> $FRSY

...

rayavg npts navg y_0 x_n-1 y_0 x_n dy dx $FTNZ $FTRS >> $FRSY

# PLOTTING -- make a gnuplot script if you like:

gnuplot ~/scripts/plot_rstress.gpl;

Figure 7.3 shows the mean velocity profile for the channel flow in comparison to data from Kim
et al. (1987). The dashed lines are representing the linear respectively logarithmic part of the law
of the wall. Figure 7.4 show rms Reynolds stress values in friction velocity units with comparison to
data from Kim et al. (1987). Quite good agreement is evident.

Finally (though it is very important), we should note that one could run this simulation either on
a single processor, or, using MPI, on up to 40 processors (and perhaps have sped up execution by
up to a factor of 40!). Please see the discussion of § 3.9.2 for further information.
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Figure 7.4: Root-mean-squares velocity fluctuations in global coordinates normalised by the wall
shear velocity uτ . Comparison to data from Kim et al. (1987).
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Åkervik, E., Brandt, L., Henningson, D. S., Hœpfner, J., Marxen, O. and Schlatter, P. (2006).
Steady solutions to the Navier–Stokes equations by selective frequency damping, Phys. Fluids
18: 068102–1–4.

Albrecht, T., Blackburn, H. M., Lopez, J. M., Manasseh, R. and Meunier, P. (2015). Triadic
resonances in precessing rapidly rotating cylinder flows, J. Fluid Mech. 778: R–1–11.

Amon, C. H. and Patera, A. T. (1989). Numerical calculation of stable three-dimensional tertiary
states in grooved-channel flow, Phys. Fluids A 1(2): 2005–2009.

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Croz, J. D., Greenbaum,
A., Hammarling, S., McKenney, A. and Sorensen, D. (1999). LAPACK User’s Guide, 3rd edn,
SIAM.

Barrett, R., Berry, M., Chan, T. F., Demmell, J., Donato, J. M., Dongarra, J., Eijkhout, V., Pozo, R.,
Romine, C. and der Vorst, H. V. (1994). Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods, 2nd edn, SIAM.

Batchelor, G. K. (1967). An Introduction to Fluid Dynamics, Cambridge University Press.
Blackburn, H. M. (2002). Three-dimensional instability and state selection in an oscillatory axisym-
metric swirling flow, Phys. Fluids 14(11): 3983–3996.

Blackburn, H. M. (2003). Computational bluff body fluid dynamics and aeroelasticity, in N. G.
Barton and J. Periaux (eds), Coupling of Fluids, Structures and Waves Problems in Aeronautics,
Notes in Numerical Fluid Mechanics, Springer, pp. 10–23.

Blackburn, H. M., Barkley, D. and Sherwin, S. J. (2008). Convective instability and transient growth
in flow over a backward-facing step, J. Fluid Mech. 603: 271–304.

Blackburn, H. M., Govardhan, R. N. and Williamson, C. H. K. (2000). A complementary numerical
and physical investigation of vortex-induced vibration, J. Fluids & Struct. 15(3/4): 481–488.

Blackburn, H. M. and Henderson, R. D. (1996). Lock-in behaviour in simulated vortex-induced
vibration, Exptl Thermal & Fluid Sci. 12(2): 184–189.

Blackburn, H. M. and Henderson, R. D. (1999). A study of two-dimensional flow past an oscillating
cylinder, J. Fluid Mech. 385: 255–286.

Blackburn, H. M., Lee, D., Albrecht, T. and Singh, J. (2019). Semtex: a spectral element–Fourier
solver for the incompressible Navier–Stokes solver in cylindrical or Cartesian coordinates, Comput.
Phys. Comm. 245: 106804–1–13. 50th Anniversary issue.

Blackburn, H. M. and Lopez, J. M. (2003a). On three-dimensional quasi-periodic Floquet instabilities
of two-dimensional bluff body wakes, Phys. Fluids 15(8): L57–60.

Blackburn, H. M. and Lopez, J. M. (2003b). The onset of three-dimensional standing and modulated
travelling waves in a periodically driven cavity flow, J. Fluid Mech. 497: 289–317.

Blackburn, H. M., Lopez, J. M., Singh, J. and Smits, A. J. (2021). On the Boussinesq approximation
in arbitrarily accelerating frames of reference, J. Fluid Mech. 924: R1–1–11.

Blackburn, H. M., Marques, F. and Lopez, J. M. (2005). Symmetry breaking of two-dimensional
time-periodic wakes, J. Fluid Mech. 522: 395–411.

Blackburn, H. M. and Schmidt, S. (2003). Spectral element filtering techniques for large eddy
simulation with dynamic estimation, J. Comput. Phys. 186(2): 610–629.

79



Blackburn, H. M. and Sherwin, S. J. (2004). Formulation of a Galerkin spectral element–Fourier
method for three-dimensional incompressible flows in cylindrical geometries, J. Comput. Phys.
197(2): 759–778.

Blackburn, H. M. and Sherwin, S. J. (2007). Instability modes and transition of pulsatile stenotic
flow: Pulse-period dependence, J. Fluid Mech. 573: 57–88.

Boyd, J. P. (2001). Chebyshev and Fourier Spectral Methods, 2nd edn, Dover, New York.
Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (1988). Spectral Methods in Fluid
Dynamics, Springer, Berlin.

Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (2006). Spectral Methods: Fundamen-
tals in Single Domains, Springer.

Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A. (2007). Spectral Methods: Evolution
to Complex Geometries and Applications in Fluid Dynamics, Springer.

Chin, C., Ng, H. C. N., Blackburn, H. M., Monty, J. and Ooi, A. S. H. (2015). Turbulent pipe flow
at Reτ = 1000: a comparison of wall-resolved large-eddy simulation, direct numerical simulation
and hot-wire experiment, Computers and Fluids 122: 26–33.

de Vahl Davis, G. (1983). Natural convection of air in a square cavity: A bench mark numerical
solution, Intnl J. Num. Meth. Fluids 3(3): 249–264.

Deville, M. O., Fischer, P. F. and Mund, E. H. (2002). High-Order Methods for Incompressible Fluid
Flow, Cambridge University Press.

Dong, S. (2015). A convective-like energy-stable open boundary condition for simulations of incom-
pressible flows, J. Comput. Phys. 302: 300–328.

Elston, J. R., Blackburn, H. M. and Sheridan, J. (2006). The primary and secondary instabilities of
flow generated by an oscillating circular cylinder, J. Fluid Mech. 550: 359–389.

Funaro, D. (1997). Spectral Elements for Transport-Dominated Equations, Vol. 1 of Lecture Notes
in Computational Science and Engineering, Springer, Berlin.

George, A. and Liu, J. W.-H. (1981). Computer Solution of Large Sparse Positive Definite Systems,
Prentice–Hall.

Gottlieb, D. and Orszag, S. A. (1977). Numerical Analysis of Spectral Methods: Theory and Appli-
cations, SIAM.

Guermond, J. L., Minev, P. and Shen, J. (2006). An overview of projection methods for incompressible
flows, Comp. Meth. Appl. Mech. & Engng 195: 6011–6045.

Guermond, J. L. and Shen, J. (2003). Velocity-correction projection methods for incompressible
flows, SIAM J. Numer. Anal. 41(1): 112–134.

Henderson, R. D. (1999). Adaptive spectral element methods for turbulence and transition, in
T. J. Barth and H. Deconinck (eds), High-Order Methods for Computational Physics, Springer,
chapter 3, pp. 225–324.

Henderson, R. D. and Karniadakis, G. E. (1995). Unstructured spectral element methods for simu-
lation of turbulent flows, J. Comput. Phys. 122: 191–217.

Hughes, T. J. R. (1987). The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis, Prentice-Hall. (Dover edition, 2013).

Karniadakis, G. E. (1989). Spectral element simulations of laminar and turbulent flows in complex
geometries, Appl. Num. Math. 6: 85–105.

Karniadakis, G. E. (1990). Spectral element–Fourier methods for incompressible turbulent flows,
Comp. Meth. Appl. Mech. & Engng 80: 367–380.

Karniadakis, G. E. and Henderson, R. D. (1998). Spectral element methods for incompressible flows,
in R. W. Johnson (ed.), Handbook of Fluid Dynamics, CRC Press, Boca Raton, chapter 29,
pp. 29–1–29–41.

Karniadakis, G. E., Israeli, M. and Orszag, S. A. (1991). High-order splitting methods for the
incompressible Navier–Stokes equations, J. Comput. Phys. 97(2): 414–443.

Karniadakis, G. E. and Sherwin, S. J. (2005). Spectral/hp Element Methods for Computational Fluid
Dynamics, 2nd edn, Oxford University Press.

80



Kernighan, B. W. and Pike, R. (1984). The UNIX Programming Environment, Prentice-Hall, New
Jersey.

Kerr, R. M. (1985). Higher-order derivative correlations and the alignment of small-scale structures
in isotropic numerical turbulence, J. Fluid Mech. 153: 31–58.

Kim, J., Moin, P. and Moser, R. (1987). Turbulence statistics in fully developed channel flow at low
Reynolds number, J. Fluid Mech. 177: 133–166.

Kirby, R. M. and Sherwin, S. J. (2006). Stabilisation of spectral/hp element method through spectral
vanishing viscosity: application to fluid mechanics modelling, Comp. Meth. Appl. Mech. & Engng
195: 3128–3144.

Koal, K., Stiller, J. and Blackburn, H. M. (2012). Adapting the spectral vanishing viscosity method
for large-eddy simulations in cylindrical configurations, J. Comput. Phys. 231: 3389–3405.

Korczak, K. Z. and Patera, A. T. (1986). An isoparametric spectral element method for solution of
the Navier–Stokes equations in complex geometry, J. Comput. Phys. 62: 361–382.

Maday, Y., Kaber, S. M. O. and Tadmor, E. (1993). Legendre pseudospectral viscosity method for
nonlinear conservation laws, SIAM J. Num. Anal. 30: 321–342.

Maday, Y. and Patera, A. T. (1989). Spectral Element Methods for the Incompressible Navier–Stokes
Equations, State-of-the-Art Surveys on Computational Mechanics, ASME, chapter 3, pp. 71–143.

Pasquetti, R. (2006). Spectral vanishing viscosity methods for large-eddy simulation of turbulent
flows, J. Sci. Comp. 27(1–3): 365–375.

Patera, A. T. (1984). A spectral element method for fluid dynamics: Laminar flow in a channel
expansion, J. Comput. Phys. 54: 468–488.

Piomelli, U. (1997). Large-eddy simulations: Where we stand, in C. Liu and Z. Liu (eds), Advances
in DNS/LES, AFOSR, Louisiana, pp. 93–104.

Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P. (1992). Numerical Recipes in
Fortran: The Art of Scientific Computing, 2nd edn, Cambridge University Press.

Reynolds, W. C. and Hussain, A. K. M. F. (1972). The mechanics of an organized wave in tur-
bulent shear flow. Part 3. Theoretical models and comparisons with experiments, J. Fluid Mech.
41(2): 263–288.

Rudman, M. and Blackburn, H. M. (2006). Direct numerical simulation of turbulent non-Newtonian
flow using a spectral element method, Appl. Math. Mod. 30(11): 1229–1248.

Sherwin, S. J. and Blackburn, H. M. (2005). Three-dimensional instabilities and transition of steady
and pulsatile flows in an axisymmetric stenotic tube, J. Fluid Mech. 533: 297–327.

Tadmor, E. (1989). Convergence of spectral methods for nonlinear conservation laws, SIAM J. Num.
Anal. 26(1): 30–44.

Temperton, C. (1992). A generalized prime factor FFT algorithm for any n = 2p3q5r, SIAM J. Sci.
Stat. Comput. 13(3): 676–686.

Wilhelm, D. and Kleiser, L. (2001). Stability analysis for different formulations of the nonlinear term
in PN–PN−2 spectral element discretizations of the Navier–Stokes equations, J. Comput. Phys.
174: 306–326.

Xu, C. and Pasquetti, R. (2004). Stabilized spectral element computations of high Reynolds number
incompressible flows, J. Comput. Phys. 196: 680–704.

Zang, T. A. (1991). On the rotation and skew-symmetric forms for incompressible flow simulations,
Appl. Num. Math. 7: 27–40.

81


	Introduction
	Numerical method
	Implementation
	Further reading

	Starting out
	Computational environment
	Equations to be solved
	Mesh resolution—and design
	Files
	Structure of a session file
	NODES
	ELEMENTS
	SURFACES
	FIELDS
	TOKENS
	GROUPS
	BCS
	CURVES
	FORCE
	USER
	HISTORY

	Structure of a field file
	Utilities

	Example applications
	Elliptic equations
	Curved element edges (and plotting the mesh)
	Boundary conditions
	Running the codes
	Laplace, Poisson, Helmholtz problems

	2D Taylor flow
	Session file
	Running the codes

	3D Kovasznay flow
	`High-order' pressure boundary condition
	Running the codes
	Valid values of N_Z in Semtex

	Vortex breakdown—a cylindrical-coordinate problem
	BCs for cylindrical coordinates

	Buoyancy driven flow in a cavity
	Timestepping stability: CFL and divergence energy
	Boundary condition roundup
	No-slip wall
	Inflow or prescribed-velocity boundary
	Slip (no-penetration) boundary
	`Stress-free' outflow boundary
	Energy-stable open boundary
	Axis boundary

	Fixing problems
	Execution speed
	Serial (per processor) speed
	Parallel execution


	Extra controls
	Default values of flags and internal variables
	Checkpointing
	Iterative solution
	Alternative forms of nonlinear terms
	Wall fluxes, forces, torques
	Wall tractions
	Modal energies
	History points
	Averaging
	Phase averaging
	Particle tracking
	Spectral vanishing viscosity (SVV)
	General body forcing
	Constant force
	Steady force
	Modulated force
	Sponge region
	'Drag' force
	White noise force
	Selective frequency damping (SFD)
	Rotating frame of reference: Coriolis and centrifugal force
	Boussinesq buoyancy
	`Canonical' steady Boussinesq buoyancy


	Code design and the Semtex API
	Useful things to know about
	Altering the code

	Utility programs
	addfield
	calc
	chop
	compare
	convert
	eneq
	assemble
	integral
	interp
	mapmesh
	meshplot
	meshpr
	moden
	noiz
	probe
	probeline
	probeplane
	project
	rectmesh
	rstress
	sem2tec
	sem2vtk
	slit
	traction
	transform
	wallmesh
	xplane

	DNS 101 — Turbulent channel flow
	Parameters
	Mesh design
	Initiating and monitoring transition
	Timestepping order, restarting, and parallel execution
	Flow statistics

	References

